大学物理习题选编及答案(主编:陈晓)_中国水利水电出版社(上)【38页】
大学物理[上册]课后习题答案解析
习题解答 习题一1-1|r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同?t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:〔1r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;〔2t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有rr ˆr =〔式中r ˆ叫做单位矢,则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示. 题1-1图<3>t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量.∵有ττ(v =v 表轨道节线方向单位矢,所以式中dt dv就是加速度的切向分量. <tt r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论> 1-2 设质点的运动方程为x =x <t >,y =y <t >,在计算质点的速度和加速度时,有人先求出r=22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
在1-1题中已说明trd d 不是速度的模,而只是速度在径向上的分量,同样,22d d tr也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。
大学物理习题选编及答案(主编:陈晓)_中国水利水电出版社(上)【38页】
质点运动学1一、选择题1、 分别以r、s 、 和a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是A 、r rB 、 dt ds dt r dC 、dt d aD 、 dtdr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y , 0 t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116 s m ,216 s mB 、116 s m ,216 s mC 、116 s m ,216 s mD 、116 s m ,216 s m [ C ]3、已知质点的运动方程为: cos cos 2Bt At x , sin sin 2Bt At y ,式中 、、B A 均为恒量,且0 A ,0 B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动; ( D )[分析] 质点的运动方程为 22cos cos sin sin x At Bt y At Bt由此可知tan xy, 即 x y tan 由于 恒量,所以上述轨道方程为直线方程。
又sin cos Bt A v Bt A v y x 22恒量恒量sin cos B a B a yx 22由于0 A ,0 B ,显然v 与a 同号,故质点作匀加速直线运动。
4、质点在平面内运动,位矢为)(t r,若保持0 dtdr,则质点的运动是A 、匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x ,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。
6、质点的运动方程为j t t i t t r )3121()21(32 ,当s t 2 时,其加速度 a4r i j v v v。
7、质点以加速度t k a 2 作直线运动,式中k 为常数,设初速度为0 ,则质点速度 与时间t 的函数关系是20111kt v v 2。
大学物理第五版课后答案解析(上)[完整版]
1-1 。
分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。
分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。
分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。
分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。
大学物理习题答案解答第三章功和能
即
(3-7)
再应用在第二次击打的过程,有
即
(3-8)
联立(3-7)和(3-8),可解
所求第二次击打,能将铁钉击入
4、机车受到四个力的作用,分别为牵引力 ,重力 ,路轨对它的支持力 和摩擦力 ,由动能定理,有
第三章功和能
一、填空题
1、考察货物自静止开始随汽车匀加速运动4秒内的过程,显然,初速率 ,而4秒末的速率为
在该过程中,货物受到3个力的作用,即:重力 ,车厢底板对它的支持力 和静摩擦力 ,对货物使用动能定理,合外力 做功为
所以摩擦力做功为
2、考察物体以 的恒定加速度下落一段距离 的过程。设初速率为 ,末速率 满足
设水的密度为则这薄层水的质量为将其抽出池塘抽水机至少需做功所以把池塘的水全部抽完抽水机至少做功2设所求时间为因抽水机的电功率以效率转化为抽水功率故所求时间3取铁钉进入木板的方向为x轴依题设当铁钉进入木板的深度为时受到木板对铁钉的阻力考察第一次击钉的过程在此过程中设质量为的铁钉从锤子获得的速度为钉子从木板表面进入到深度为的位置对铁钉应用动能定理有即37再应用在第二次击打的过程有即38联立37和38可解所求第二次击打能将铁钉击入4机车受到四个力的作用分别为牵引力重力路轨对它的支持力和摩擦力由动能定理有机车的牵引力做功所以机车的平均功率5对斜面上的物体进行受力分析如图35所示有所以斜面对物体的摩擦力对于高长的斜面有1考察物体自斜面顶端滑至斜面底端的过程对物体使用动能定理有图35而和所以物体滑到斜面底端的速率为2考察物体自斜面底端沿水平面滑行至静止的过程由动能定理有而所以所求物体在水平面上滑行的最大距离为6一般地设炮弹以仰角和初速发射则依据运动叠加原理可将炮弹的运动视为水平方向作的匀速直线运动与竖直方向作初速为的上抛运动的合成
大学物理习题选编(主编:陈晓)(下)
振动习题一、选择题1、 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.则与之对应的振动曲线是 [ B ]2、 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为A 、T /12B 、T /8.C 、T /6.D 、T /4 [ C ] 3、 将两个振动方向,振幅,周期都相同的简谐振动合成后,若合振幅和分振动的振幅相同,则这两个分振动的位相差是: A 、6π; B 、3π; C 、2π; D 、23π [ D ]二、填空题4、 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为 0 ,速度为 3π cm/s .5、 一简谐振动的旋转矢量如图所示,振幅矢量长2cm ,则该简谐振动的初相为 π/4 .振动方程为x=2cos(πt+π/4) cm .6、 一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为x=0.04cos(πt+π/2) m 。
三、计算题7、 质量为2 kg 的质点,按方程)]6/(5sin[2.0π-=t x 沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小;(2) 作用于质点的力的最大值和此时质点的位置.t-解:(1))65cos(π-==t dt dx v )65sin(5π--==t dt dv aN t ma F 5)65sin(520=-⨯==∴π(2)N F10max=m x 2.0±=∴8、 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解:(1) T=8s )/(42s rad T ππω==∴ 设振动方程为)4cos(ψπ+=A xt=0时,5cos 0-==ψA x①t=2时,5)2cos(0=+=πψA x ② 由①②得,1=ψtg ,考虑到00>vπψ43-=∴ 代入①得,cm A 25=)434cos(25ππ-=∴t x (cm)(2))434sin(245πππ--==t dt dx vππ45222450=⨯=v (cm/s)波动习题1一、选择题1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为 π / b .D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ . 三、计算题7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
大学物理习题集(上-含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v r 运动,0v r 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F r拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a r 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;(4)用与斜面平行的加速度1b r把小车沿斜面往上推(设b 1 = b );(5)以同样大小的加速度2b r(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=-r r r 得:21p p p =+∆r r r,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s r的大小为 d s = R d θ.重力G r的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πr rsin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f r的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πr rcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G r 、摩擦力f r 和马的拉力F r 就是平衡力,即0F G f ++=rr r ,或者()F G f =-+r r r . 拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅r r r rr r 12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)22k mgR μ=-+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理学答案
3-8 质量1m 、长l 的均匀直棒,可绕垂直于棒的一端的水平轴O 无摩擦地转。
它原来静止在平衡位置上。
现在一质量为2m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞。
撞后,棒从平衡位置处摆动达到最大角度030θ=,如图,(1)设碰撞为弹性的,试计算小球的初速度的大小。
(2)相撞时,小球受到多大的冲量? 解:(1)设u 为小球碰后的速度,由于弹性碰撞,碰撞过程角动量和动能守恒。
所以有:2221213m vl J m ul m l m ul ωω=+=+化简得:12(1)3m l v u m ω-=22222121111()2232m v m l m u ω=+ 化简得:222212(2)3m l v u m ω-=(2)(1)得:(3)v u l ω+=2123()(4)6m m v l m ω++=(1)(3)得:撞后,由于无外力作用,棒的机械能应守恒,所以有:201111(1cos30)(5)22m m gl ωω=-=解得:将(5)式代入(4)式,得:2v =(2)根据动量定理,小球受到的冲量等于小球动量的增量,所以有:222()I m u m v m v u =-=--将(1)式和(5)式代入,解得:I = 3-9 两轮A 、B 分别绕通过其中心的垂直轴向同一方向转动,如图示。
角速度分别为题3-8图1m1150,200A B rad s rad s ωω--=⋅=⋅。
已知两轮的半径与质量分别为0.2,0.1,2,4.A B A B r m r m m kg m kg ====两轮沿轴线方向彼此靠近而接触,试求两轮衔接后的角速度。
解:在两轮靠近的过程中,由于不受外力矩的作用, 角动量守恒,所以有:222201111()()[()()]2222A A AB B B A A B B L Lm r m r m r m r ωωω=+=+即2212211()()22100()11()()22A A A B B BA AB B m r m r rad s m r m r ωωω-+==⋅+3-11 质量为0.06kg ,长0.2m 的均匀细棒,可绕垂直于棒的一端的光滑水平轴转动。
大学物理第五版课后答案解析(上)完整版
⼤学物理第五版课后答案解析(上)完整版1-1 。
分析与解 (1) 质点在t ⾄(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所⽰, 其中路程Δs =PP ′, 位移⼤⼩|Δr |=PP ′,⽽Δr =|r |-|r |表⽰质点位⽮⼤⼩的变化量,三个量的物理含义不同,在曲线运动中⼤⼩也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′⽆限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v .但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。
分析与解trd d 表⽰质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常⽤符号v r 表⽰,这是速度⽮量在位⽮⽅向上的⼀个分量;td d r 表⽰速度⽮量;在⾃然坐标系中速度⼤⼩可⽤公式t s d d =v 计算,在直⾓坐标系中则可由公式22d d d d ??+? =t y t x v 求解.故选(D).1-3 。
分析与解td d v表⽰切向加速度a t,它表⽰速度⼤⼩随时间的变化率,是加速度⽮量沿速度⽅向的⼀个分量,起改变速度⼤⼩的作⽤;t r d d 在极坐标系中表⽰径向速率v r (如题1 -2 所述);ts d d 在⾃然坐标系中表⽰质点的速率v ;⽽td d v表⽰加速度的⼤⼩⽽不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。
分析与解加速度的切向分量a t起改变速度⼤⼩的作⽤,⽽法向分量a n 起改变速度⽅向的作⽤.质点作圆周运动时,由于速度⽅向不断改变,相应法向加速度的⽅向也在不断改变,因⽽法向加速度是⼀定改变的.⾄于a t是否改变,则要视质点的速率情况⽽定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为⼀不为零的恒量,当a t改变时,质点则作⼀般的变速率圆周运动.由此可见,应选(B).1-5 。
大学物理习题集加答案解析
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
物理学答案(第五版)(可编辑)
物理学答案(第五版)物理学答案第五版 --马文蔚txt人和人的心最近又最远真诚是中间的通道试金可以用火试女人可以用金试男人可以用女人--往往都经不起那么一试面向 21 世纪课程教材学习辅导书物理学第五版习题分析与解答马文蔚主编殷实沈才康包刚编高等教育出版社前言本书是根据马文蔚教授等改编的面向21世纪课程教材《物理学》第五版一书中的习题而作的分析与解答与上一版相比本书增加了选择题更换了约25%的习题所选习题覆盖了教育部非物理专业大学物理课程教学指导分委员会制定的《非大学物理课程教学基本要求讨论稿》中全部核心内容并选有少量扩展内容的习题所选习题尽可能突出基本训练和联系工程实际此外为了帮助学生掌握求解大学物理课程范围内的物理问题的思路和方法本书还为力学电磁学波动过程和光学热物理相对论和量子物理基础等撰写了涉及这些内容的解题思路和方法以期帮助学生启迪思维提高运用物理学的基本定律来分析问题和解决问题的能力物理学的基本概念和规律是在分析具体物理问题的过程中逐步被建立和掌握的解题之前必须对所研究的物理问题建立一个清晰的图像从而明确解题的思路只有这样才能在解完习题之后留下一些值得回味的东西体会到物理问题所蕴含的奥妙和涵义通过举一反三提高自己分析问题和解决问题的能力有鉴于此重分析简解答的模式成为编写本书的指导思想全书力求在分析中突出物理图像引导学生以科学探究的态度对待物理习题初步培养学生即物穷理的精神通过解题过程体验物理科学的魅力和价值尝试做学问的乐趣因此对于解题过程本书则尽可能做到简明扼要让学生自己去完成具体计算编者企盼这本书能对学生学习能力的提高和科学素质的培养有所帮助本书采用了1996 年全国自然科学名词审定委员会公布的《物理学名词》和中华人民共和国国家标准GB3100~3102 -93 中规定的法定计量单位本书由马文蔚教授主编由殷实沈才康包刚韦娜编写西北工业大学宋士贤教授审阅了全书并提出了许多详细中肯的修改意见在此编者致以诚挚的感谢由于编者的水平有限敬请读者批评指正编者2006 年1 月于南京目录第一篇力学求解力学问题的基本思路和方法第一章质点运动学第二章牛顿定律第三章动量守恒定律和能量守恒定律第四章刚体的转动第二篇电磁学求解电磁学问题的基本思路和方法第五章静电场第六章静电场中的导体与电介质第七章恒定磁场第八章电磁感应电磁场第三篇波动过程光学求解波动过程和光学问题的基本思路和方法第九章振动第十章波动第十一章光学第四篇气体动理论热力学基础求解气体动理论和热力学问题的基本思路和方法第十二章气体动理论第十三章热力学基础第五篇近代物理基础求解近代物理问题的基本思路和方法第十四章相对论第十五章量子物理附录部分数学公式第一篇力学求解力学问题的基本思路和方法物理学是一门基础学科它研究物质运动的各种基本规律.由于不同运动形式具有不同的运动规律从而要用不同的研究方法处理.力学是研究物体机械运动规律的一门学科而机械运动有各种运动形态每一种形态和物体受力情况以及初始状态有密切关系.掌握力的各种效应和运动状态改变之间的一系列规律是求解力学问题的重要基础.但仅仅记住一些公式是远远不够的.求解一个具体物理问题首先应明确研究对象的运动性质选择符合题意的恰当的模型透彻认清物体受力和运动过程的特点等等.根据模型条件和结论之间的逻辑关系运用科学合理的研究方法进而选择一个正确简便的解题切入点在这里思路和方法起着非常重要的作用.1.正确选择物理模型和认识运动过程力学中常有质点质点系刚体等模型.每种模型都有特定的含义适用范围和物理规律.采用何种模型既要考虑问题本身的限制又要注意解决问题的需要.例如用动能定理来处理物体的运动时可把物体抽象为质点模型.而用功能原理来处理时就必须把物体与地球组成一个系统来处理.再如对绕固定轴转动的门或质量和形状不能不计的定滑轮来说必须把它视为刚体并用角量和相应规律来进行讨论.在正确选择了物理模型后还必须对运动过程的性质和特点有充分理解如物体所受力矩是恒定的还是变化的质点作一般曲线运动还是作圆周运动等等以此决定解题时采用的解题方法和数学工具.2叠加法叠加原理是物理学中应用非常广泛的一条重要原理据此力学中任何复杂运动都可以被看成由几个较为简单运动叠加而成.例如质点作一般平面运动时通常可以看成是由两个相互垂直的直线运动叠加而成而对作圆周运动的质点来说其上的外力可按运动轨迹的切向和法向分解其中切向力只改变速度的大小而法向力只改变速度的方向.对刚体平面平行运动来说可以理解为任一时刻它包含了两个运动的叠加一是质心的平动二是绕质心的转动.运动的独立性和叠加性是叠加原理中的两个重要原则掌握若干基本的简单运动的物理规律再运用叠加法就可以使我们化复杂为简单.此外运用叠加法时要注意选择合适的坐标系选择什么样的坐标系就意味着运动将按相应形式分解.在力学中对一般平面曲线运动多采用平面直角坐标系平面圆周运动多采用自然坐标系而对刚体绕定轴转动则采用角坐标系等等.叠加原理在诸如电磁学振动波动等其他领域内都有广泛应用是物理学研究物质运动的一种基本思想和方法需读者在解题过程中不断体会和领悟.3类比法有些不同性质运动的规律具有某些相似性理解这种相似性产生的条件和遵从的规律有利于发现和认识物质运动的概括性和统一性.而且还应在学习中善于发现并充分利用这种相似性以拓宽自己的知识面.例如质点的直线运动和刚体绕定轴转动是两类不同运动但是运动规律却有许多可类比和相似之处如与与其实它们之间只是用角量替换了相应的线量而已这就可由比较熟悉的公式联想到不太熟悉的公式.这种类比不仅运动学有动力学也有如与与与可以看出两类不同运动中各量的对应关系十分明显使我们可以把对质点运动的分析方法移植到刚体转动问题的分析中去.当然移植时必须注意两种运动的区别一个是平动一个是转动状态变化的原因一个是力而另一个是力矩.此外还有许多可以类比的实例如万有引力与库仑力静电场与稳恒磁场电介质的极化与磁介质的磁化等等.只要我们在物理学习中善于归纳类比就可以沟通不同领域内相似物理问题的研究思想和方法并由此及彼触类旁通.4.微积分在力学解题中的运用微积分是大学物理学习中应用很多的一种数学运算在力学中较为突出也是初学大学物理课程时遇到的一个困难.要用好微积分这个数学工具首先应在思想上认识到物体在运动过程中反映其运动特征的物理量是随时空的变化而变化的.一般来说它们是时空坐标的函数.运用微积分可求得质点的运动方程和运动状态.这是大学物理和中学物理最显著的区别.例如通过对质点速度函数中的时间t 求一阶导数就可得到质点加速度函数.另外对物理量数学表达式进行合理变形就可得出新的物理含义.如由借助积分求和运算可求得在t1 -t2 时间内质点速度的变化同样由也可求得质点的运动方程.以质点运动学为例我们可用微积分把运动学问题归纳如下第一类问题已知运动方程求速度和加速度第二类问题已知质点加速度以及在起始状态时的位矢和速度可求得质点的运动方程.在力学中还有很多这样的关系读者不妨自己归纳整理一下从而学会自觉运用微积分来处理物理问题运用时有以下几个问题需要引起大家的关注1 运用微积分的物理条件.在力学学习中我们会发现和等描述质点运动规律的公式只是式和式在加速度为恒矢量条件下积分后的结果.此外在高中物理中只讨论了一些质点在恒力作用下的力学规律和相关物理问题而在大学物理中则主要研究在变力和变力矩作用下的力学问题微积分将成为求解上述问题的主要数学工具.2 如何对矢量函数进行微积分运算.我们知道很多物理量都是矢量如力学中的rvap 等物理量矢量既有大小又有方向从数学角度看它们都是二元函数在大学物理学习中通常结合叠加法进行操作如对一般平面曲线运动可先将矢量在固定直角坐标系中分解分别对xy 轴两个固定方向的分量可视为标量进行微积分运算最后再通过叠加法求得矢量的大小和方向对平面圆周运动则可按切向和法向分解对切线方向上描述大小的物理量atvs 等进行微积分运算.3 积分运算中的分离变量和变量代换问题.以质点在变力作用下作直线运动为例如已知变力表达式和初始状态求质点的速率求解本问题一条路径是由F =m a 求得a的表达式再由式dv = adt 通过积分运算求得v其中如果力为时间t 的显函数则a =a t 此时可两边直接积分即但如果力是速率v 的显函数则a = a v 此时应先作分离变量后再两边积分即又如力是位置x 的显函数则a=a x 此时可利用得并取代原式中的dt再分离变量后两边积分即用变量代换的方法可求得v x 表达式在以上积分中建议采用定积分下限为与积分元对应的初始条件上限则为待求量.5求解力学问题的几条路径综合力学中的定律可归结为三种基本路径即1 动力学方法如问题涉及到加速度此法应首选.运用牛顿定律转动定律以及运动学规律可求得几乎所有的基本力学量求解对象广泛但由于涉及到较多的过程细节对变力矩问题还将用到微积分运算故计算量较大.因而只要问题不涉及加速度则应首先考虑以下路径.2 角动量方法如问题不涉及加速度但涉及时间此法可首选.3 能量方法如问题既不涉及加速度又不涉及时间则应首先考虑用动能定理或功能原理处理问题.当然对复杂问题几种方法应同时考虑.此外三个守恒定律动量守恒能量守恒角动量守恒定律能否成立往往是求解力学问题首先应考虑的问题.总之应学会从不同角度分析与探讨问题.以上只是原则上给出求解力学问题一些基本思想与方法其实求解具体力学问题并无固定模式有时全靠悟性.但这种悟性产生于对物理基本规律的深入理解与物理学方法掌握之中要学会在解题过程中不断总结与思考从而使自己分析问题的能力不断增强.第一章质点运动学1 -1 质点作曲线运动在时刻t 质点的位矢为r速度为v 速率为vt 至 t +Δt 时间内的位移为Δr 路程为Δs 位矢大小的变化量为Δr 或称Δ|r|平均速度为平均速率为.1 根据上述情况则必有A |Δr|Δs ΔrB |Δr|≠Δs ≠Δr当Δt→0 时有|dr| ds ≠ drC |Δr|≠Δr ≠Δs当Δt→0 时有|dr| dr ≠ dsD |Δr|≠Δs ≠Δr当Δt→0 时有|dr| dr ds2 根据上述情况则必有A ||||B ||≠||≠C ||||≠D ||≠||分析与解 1 质点在t 至 t +Δt 时间内沿曲线从P 点运动到P′点各量关系如图所示其中路程Δs =PP′位移大小|Δr|=PP′而Δr =|r|-|r|表示质点位矢大小的变化量三个量的物理含义不同在曲线运动中大小也不相等注在直线运动中有相等的可能.但当Δt→0 时点P′无限趋近P点则有|dr|=ds但却不等于dr.故选 B .2 由于|Δr |≠Δs故即||≠.但由于|dr|=ds故即||=.由此可见应选 C .1 -2 一运动质点在某瞬时位于位矢r xy 的端点处对其速度的大小有四种意见即1 2 3 4 .下述判断正确的是A 只有 1 2 正确B 只有 2 正确C 只有 2 3 正确D 只有 3 4 正确分析与解表示质点到坐标原点的距离随时间的变化率在极坐标系中叫径向速率.通常用符号vr表示这是速度矢量在位矢方向上的一个分量表示速度矢量在自然坐标系中速度大小可用公式计算在直角坐标系中则可由公式求解.故选 D .1 -3 质点作曲线运动r 表示位置矢量 v表示速度a表示加速度s 表示路程 at表示切向加速度.对下列表达式即1 d v dt =a2 drdt =v3 dsdt =v4 d v dt|=at.下述判断正确的是A 只有 1 4 是对的B 只有 2 4 是对的C 只有 2 是对的D 只有 3 是对的分析与解表示切向加速度at它表示速度大小随时间的变化率是加速度矢量沿速度方向的一个分量起改变速度大小的作用在极坐标系中表示径向速率vr 如题1 -2 所述在自然坐标系中表示质点的速率v而表示加速度的大小而不是切向加速度at.因此只有 3 式表达是正确的.故选 D .1 -4 一个质点在做圆周运动时则有A 切向加速度一定改变法向加速度也改变B 切向加速度可能不变法向加速度一定改变C 切向加速度可能不变法向加速度不变D 切向加速度一定改变法向加速度不变分析与解加速度的切向分量at起改变速度大小的作用而法向分量an起改变速度方向的作用.质点作圆周运动时由于速度方向不断改变相应法向加速度的方向也在不断改变因而法向加速度是一定改变的.至于at是否改变则要视质点的速率情况而定.质点作匀速率圆周运动时 at恒为零质点作匀变速率圆周运动时 at为一不为零的恒量当at改变时质点则作一般的变速率圆周运动.由此可见应选 B .1 -5 如图所示湖中有一小船有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳绳不伸长且湖水静止小船的速率为v则小船作A 匀加速运动B 匀减速运动C 变加速运动D 变减速运动E 匀速直线运动分析与解本题关键是先求得小船速度表达式进而判断运动性质.为此建立如图所示坐标系设定滑轮距水面高度为ht 时刻定滑轮距小船的绳长为l则小船的运动方程为其中绳长l 随时间t 而变化.小船速度式中表示绳长l 随时间的变化率其大小即为v0代入整理后为方向沿x 轴负向.由速度表达式可判断小船作变加速运动.故选 C .讨论有人会将绳子速率v0按xy 两个方向分解则小船速度这样做对吗1 -6 已知质点沿x 轴作直线运动其运动方程为式中x 的单位为mt 的单位为 s.求1 质点在运动开始后40 s内的位移的大小2 质点在该时间内所通过的路程3 t=4 s时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到而在求路程时就必须注意到质点在运动过程中可能改变运动方向此时位移的大小和路程就不同了.为此需根据来确定其运动方向改变的时刻tp 求出0~tp 和tp~t 内的位移大小Δx1 Δx2 则t 时间内的路程如图所示至于t =40 s 时质点速度和加速度可用和两式计算.解 1 质点在40 s内位移的大小2 由得知质点的换向时刻为t=0不合题意则所以质点在40 s时间间隔内的路程为3 t=40 s时1 -7 一质点沿x 轴方向作直线运动其速度与时间的关系如图 a 所示.设t=0 时x=0.试根据已知的v-t 图画出a-t 图以及x -t 图.分析根据加速度的定义可知在直线运动中v-t曲线的斜率为加速度的大小图中ABCD 段斜率为定值即匀变速直线运动而线段BC 的斜率为0加速度为零即匀速直线运动.加速度为恒量在a-t 图上是平行于t 轴的直线由v-t 图中求出各段的斜率即可作出a-t 图线.又由速度的定义可知x-t 曲线的斜率为速度的大小.因此匀速直线运动所对应的x -t 图应是一直线而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x t 求出不同时刻t 的位置x采用描数据点的方法可作出x-t 图.解将曲线分为ABBCCD 三个过程它们对应的加速度值分别为匀加速直线运动匀速直线运动匀减速直线运动根据上述结果即可作出质点的a-t 图〔图 B 〕.在匀变速直线运动中有由此可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内质点是作的匀速直线运动其x -t 图是斜率k=20的一段直线〔图 c 〕.1 -8 已知质点的运动方程为式中r 的单位为mt 的单位为s.求1 质点的运动轨迹2 t =0 及t =2s时质点的位矢3 由t =0 到t =2s内质点的位移Δr 和径向增量Δr4 2 s内质点所走过的路程s.分析质点的轨迹方程为y =f x 可由运动方程的两个分量式x t 和y t 中消去t 即可得到.对于rΔrΔrΔs 来说物理含义不同可根据其定义计算.其中对s的求解用到积分方法先在轨迹上任取一段微元ds则最后用积分求s.解 1 由x t 和y t 中消去t 后得质点轨迹方程为这是一个抛物线方程轨迹如图 a 所示.2 将t =0s和t =2s分别代入运动方程可得相应位矢分别为图 a 中的PQ 两点即为t =0s和t =2s时质点所在位置.3 由位移表达式得其中位移大小而径向增量4 如图 B 所示所求Δs 即为图中PQ段长度先在其间任意处取AB 微元ds 则由轨道方程可得代入ds则2s内路程为1 -9 质点的运动方程为式中xy 的单位为mt 的单位为s.试求 1 初速度的大小和方向 2 加速度的大小和方向.分析由运动方程的分量式可分别求出速度加速度的分量再由运动合成算出速度和加速度的大小和方向.解 1 速度的分量式为当t =0 时 vox =-10 ms-1 voy =15 ms-1 则初速度大小为设vo与x 轴的夹角为α则α=123°41′2 加速度的分量式为则加速度的大小为设a 与x 轴的夹角为β则β=-33°41′或326°19′1 -10 一升降机以加速度122 ms-2上升当上升速度为244 ms-1时有一螺丝自升降机的天花板上松脱天花板与升降机的底面相距274 m.计算 1 螺丝从天花板落到底面所需要的时间 2 螺丝相对升降机外固定柱子的下降距离.分析在升降机与螺丝之间有相对运动的情况下一种处理方法是取地面为参考系分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动列出这两种运动在同一坐标系中的运动方程y1 =y1 t 和y2 =y2 t 并考虑它们相遇即位矢相同这一条件问题即可解另一种方法是取升降机或螺丝为参考系这时螺丝或升降机相对它作匀加速运动但是此加速度应该是相对加速度.升降机厢的高度就是螺丝或升降机运动的路程.解 1 1 以地面为参考系取如图所示的坐标系升降机与螺丝的运动方程分别为当螺丝落至底面时有y1 =y2 即2 螺丝相对升降机外固定柱子下降的距离为解2 1 以升降机为参考系此时螺丝相对它的加速度大小a′=g +a螺丝落至底面时有2 由于升降机在t 时间内上升的高度为则1 -11 一质点P 沿半径R =30 m的圆周作匀速率运动运动一周所需时间为200s设t =0 时质点位于O 点.按 a 图中所示Oxy 坐标系求 1 质点P 在任意时刻的位矢2 5s时的速度和加速度.分析该题属于运动学的第一类问题即已知运动方程r =r t 求质点运动的一切信息如位置矢量位移速度加速度.在确定运动方程时若取以点 03 为原点的O′x′y′坐标系并采用参数方程x′=x′ t 和y′=y′ t 来表示圆周运动是比较方便的.然后运用坐标变换x =x0 +x′和y =y0 +y′将所得参数方程转换至Oxy 坐标系中即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 1 如图 B 所示在O′x′y′坐标系中因则质点P 的参数方程为坐标变换后在Oxy 坐标系中有则质点P 的位矢方程为2 5s时的速度和加速度分别为1 -12 地面上垂直竖立一高200 m 的旗杆已知正午时分太阳在旗杆的正上方求在下午2∶00 时杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至200 m分析为求杆顶在地面上影子速度的大小必须建立影长与时间的函数关系即影子端点的位矢方程.根据几何关系影长可通过太阳光线对地转动的角速度求得.由于运动的相对性太阳光线对地转动的角速度也就是地球自转的角速度.这样影子端点的位矢方程和速度均可求得.解设太阳光线对地转动的角速度为ω从正午时分开始计时则杆的影长为s=htgωt下午2∶00 时杆顶在地面上影子的速度大小为当杆长等于影长时即s =h则即为下午3∶00 时.1 -13 质点沿直线运动加速度a=4 -t2 式中a的单位为ms-2 t的单位为s.如果当t =3s时x=9 mv =2 ms-1 求质点的运动方程.分析本题属于运动学第二类问题即已知加速度求速度和运动方程必须在给定条件下用积分方法解决.由和可得和.如a=a t 或v =v t 则可两边直接积分.如果a 或v不是时间t 的显函数则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知应有得 1由得 2将t=3s时x=9 mv=2 ms-1代入 1 2 得v0=-1 ms-1x0=075 m.于是可得质点运动方程为1 -14 一石子从空中由静止下落由于空气阻力石子并非作自由落体运动现测得其加速度a=A -Bv式中AB 为正恒量求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题与上题不同之处在于加速度是速度v 的函数因此需将式dv =a v dt 分离变量为后再两边积分.解选取石子下落方向为y 轴正向下落起点为坐标原点.1 由题意知 1用分离变量法把式 1 改写为2将式 2 两边积分并考虑初始条件有得石子速度由此可知当t→∞时为一常量通常称为极限速度或收尾速度.2 再由并考虑初始条件有得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j式中a的单位为ms-2 .在t =0时其速度为零位置矢量r0 =10 mi.求 1 在任意时刻的速度和位置矢量 2 质点在Oxy 平面上的轨迹方程并画出轨迹的示意图.分析与上两题不同处在于质点作平面曲线运动根据叠加原理求解时需根据加速度的两个分量ax 和ay分别积分从而得到运动方程r的两个分量式x t 和y t .由于本题中质点加速度为恒矢量故两次积分后所得运动方程为固定形式即和两个分运动均为匀变速直线运动.读者不妨自己验证一下.。
大物习题册答案全套
练习一 力学导论 参考解答1. (C); 提示:⎰⎰=⇒=t3x9vdt dxtd xd v2. (B); 提示:⎰⎰+=R20y 0x y d F x d F A3. 0.003 s ; 提示:0t 3104400F 5=⨯-=令 0.6 N·s ; 提示: ⎰=003.00Fdt I2 g ; 提示: 动量定理0mv 6.0I -==3. 5 m/s 提示:图中三角形面积大小即为冲量大小;然后再用动量定理求解 。
5.解:(1) 位矢 j t b i t a r ρρρωωsin cos += (SI)可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy -==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v由A →B ⎰⎰-==0a 20a x x x t cos a m x F A d d ωω=⎰=-022221d a ma x x m ωω⎰⎰-==b 02b 0y y t sin b m y F A dy d ωω=⎰-=-b mb y y m 022221d ωω6. 解:建立图示坐标,以v x 、v y 表示小球反射速度的x 和y 分量,则由动量定理,小球受到的冲量的x,y 分量的表达式如下: x 方向:x x x v v v m m m t F x 2)(=--=∆ ① y 方向:0)(=---=∆y y y m m t F v v ② ∴ t m F F x x ∆==/2v v x =v cos a∴ t m F ∆=/cos 2αv 方向沿x 正向.根据牛顿第三定律,墙受的平均冲力 F F =' 方向垂直墙面指向墙内.ααmmOx y练习二 刚体的定轴转动 参考解答1.(C) 提示: 卫星对地心的角动量守恒2.(C) 提示: 以物体作为研究对象P-T=ma (1);以滑轮作为研究对象 TR=J β (2)若将物体去掉而以与P 相等的力直接向下拉绳子,表明(2)式中的T 增大,故β也增大。
大学物理(上)练习题解答
大学物理(上)练习题参考解答第一章 质点的运动1.解:平均速率 Sv t∆=∆,平均速度的大小 r rv t t ∆∆==∆∆S r ∆≠∆ ,v v ∴≠速率 0limt S v t∆→∆=∆,速度的大小 0limt r v t∆→∆=∆当0t ∆→时,r S ∆=∆故(B )正确。
2.解:位移大小 (4)(0)8x x x m ∆=-= 令速度 20dx v b t dt==-=,得3t s =,即在3t s =前后,速度方向逆转,所以,路程(4)(3)(3)(0)10S x x x x m ∆=-+-= 3.解:(1)(2)(1)0.5/21x x v m s -==--(2)296dx v t t dt==-,(2)6/v m s ∴=-(3)令0v =,得0t =或1.5s(1.5)(1)(2)(1.5) 2.25S x x x x m =-+-=4.解:由相似三角形的性质得:21M Mh x x h x -=即 112M h x x h h =-两边对时间求导,得 112M h v v h h =-5.解:(1)t dv a a dt =≠, (2)dr dr dr v dtdtdt=≠=,(3)ds v dt= 正确, (4)t dv a a dt=≠。
6.解:(A )错,因为切向加速度t dv a dt=,速率可能不变,如匀速率圆周运动,切向加速度为零。
(B )2n va ρ=,除拐点外,ρ为有限值,0n a ∴≠,故(B )正确。
(C )n a 反应速度方向变化的快慢,只要速度方向有变化,n a 就不为零。
(D )0t dv a dt== ,0n a a ∴=≠。
(E )dv a dt==恒矢量,质点作匀变速度运动,而非匀变速率运动,如抛体运动。
7.解:2ds ct dt=,2Stds ct dt ∴=⎰⎰,即 31()3s t ct =2t dv a ct dt==,224n vc t a RR==第二章 牛顿运动定律1.解:(1)v kx = ,2dv a kv k x dt∴===,故 2F Ma Mk x == (2)由 dx v kx dt==,得1x txdx kdt x∆=⎰⎰,故 101lnx t kx ∆=2.解:(1)子弹进入沙土后,受的力 F kv =-,由牛顿定律得 dv kv mdt -=分离变量并作积分 0t vvk dv dt mv-=⎰⎰,得/0kt mv v e-=(2)dv dv dx dv kv mm mv dtdx dtdx-===分离变量后作积分m axx vkdx m dv-=⎰⎰,得 0max mv x k=3.解:2p mvj mvj mvj ∆=--=-,应选(D )。
大学物理课后答案总
大学物理课后答案(上)习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D)22)()(dtdy dt dx + [答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ [答案:B] 1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
大学物理上册习题答案.docx
习题一1. 2 解:(1)最初2s 内的位移为为:Zkx = x(2)-x(0) = 0-0 = 0(m/5)最初2s内的平均速度为:v ave = — = —= 0(m / s) At 2__ dxT时刻的瞬时速度为:v(0 = — = 4 —4tdt2s末的瞬时速度为:u(2) = 4 —4x2 = —4%/s(2) Is末到3s末的平均加速度为:%e = 空=讯3)—V。
)= 皂也"“ A? 2 2⑶3s末的瞬时加速度为:a = d=d(4_40 = _4(”〃$2)。
dt dt1. 3解:由题意知,加速度和时间的关系为bQ = --- 1T利用dv = adt,并取积分得b V b 2C L Q H—t dv , V — CL^t -\ - 1T ) I T再利用dx = vdt,并取积分[设t = 0时兀o = 0 ]得\dx — ivdt f — _ af------ 尸J o 2 6厂r(t) = r(0) + f 0(/)力=”'+ *尸](1) 当4 —八=0,即/ = 2s时,到达x轴。
(2) t = 2s时到达x轴的位矢为:r(2) = 12i即质点到达兀轴时的位置为x = 12m, y = 0o1・4解: v(?) = v(0 > [刁⑴力1. 5解:按题意d2xdt2=—G^X-4m/ s12 d 1 2x dv dv dx dv -co x = —— = — = = v —, dt dt dx dt dx/ 、2v = +co\lA 2 —x~ , A 2= — + X QW 丿1. 6解:(1)速度和加速度分别为:v= — = (8t)j+k , dt (2)令r(?) = xi + yj + zk ,与所给条件比较可知x = l, y = 4r 2, z = t所以轨迹方程为:x = l, 丁 = 4于。
1. 7解:在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运4 4动出现往返。
大学物理第六版上册北京邮电大学出版课后答案详解
大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。
下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。
大学物理习题与答案.docx
质点运动学(1)——答案一、选择题l. D 2.B 3.D 4.D 5.D二、填空题1.23 m/s2.[(y51 2 - a)2 )cos cot + 2/3co sin cot\\ ^(2Z7+1)JT /co (〃 = 0, 1, 2,...)3.0.1 m/s24 + bt ; Jb二+ (I?。
+ )4 /R25. -g/2; 2面2/(3g)三、计算题1. 解:(l)v = Ax I At = -6m/s,7(2)v = dx/dt = 10/-9^ , v⑵=—16 /s,(3)(2 = dv/dt-10 —18Z, 口(2)= -26血<2.解: 设质点在x处的速度为vdv dv dx dv c , 2a =——= -------- =y——=3 + ()xdt dx dt dx源m =£(3 + 6疽)心,v=(6x+4%3)1/23. (1) x = 4c°s仞,消去t得轨道方程为具+二=1(椭圆)y = A2 sin cot A~ &一— dr .一v =——=-coA x sin coti + coA2 cos cot j(2)出_-dv2 A24.」2-a ————co & cos coti — co sin cot j ——co rdta与r反向,故a恒指向椭圆中心。
1 兀n A ■兀ix = A} cos — = 0, y = A sm— = A。
1 2 2质点位于图中的Q点。
显然质点在椭圆形轨道上沿反时针方向运动。
在M点,加速度Z的切向分量言,如图所示。
可见在该点切向加速度/的方向(3 )当t=0时,x=l , y=0 ,质点位于r =—时,J C 一、与速度V的方向相反。
所以,质点在通过M点速率减小。
4.解:先求质点的位置t = 2s,s =20x2 +5x22 = 60(m)(在大圆)v = ds /dt =20 + 以,松2) = 40m/s,=2s 时 2 =ia t—dv!dt - lOm/s Q〃一v 1RdvUy = ~dt『他=J;2力EE = J。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点运动学1一、选择题1、 分别以r、s 、 和a 表示质点运动的位矢、路程、速度和加速度,下列表述中正确的是A 、r rB 、 dt ds dt r dC 、dt d aD 、 dtdr [ B ] 2、 一质点沿Y 轴运动,其运动学方程为324t t y , 0 t 时质点位于坐标原点,当质点返回原点时,其速度和加速度分别为 A 、116 s m ,216 s mB 、116 s m ,216 s mC 、116 s m ,216 s mD 、116 s m ,216 s m [ C ]3、已知质点的运动方程为: cos cos 2Bt At x , sin sin 2Bt At y ,式中 、、B A 均为恒量,且0 A ,0 B ,则质点的运动为:A .一般曲线运动;B .圆周运动;C .椭圆运动;D .直线运动; ( D )[分析] 质点的运动方程为 22cos cos sin sin x At Bt y At Bt由此可知tan xy, 即 x y tan 由于 恒量,所以上述轨道方程为直线方程。
又sin cos Bt A v Bt A v y x 22恒量恒量sin cos B a B a yx 22由于0 A ,0 B ,显然v 与a 同号,故质点作匀加速直线运动。
4、质点在平面内运动,位矢为)(t r,若保持0 dtdr,则质点的运动是A 、匀速直线运动B 、 变速直线运动C 、圆周运动D 、匀速曲线运动 [ C ]二、填空题5、一质点沿直线运动,其运动学方程为26t t x ,则t 由0至4s 的时间间隔内,质点的位移大小为 8 m ,在t 由0到4s 的时间间隔内质点走过的路程为 10 m 。
6、质点的运动方程为j t t i t t r )3121()21(32 ,当s t 2 时,其加速度 a4r i j v v v。
7、质点以加速度t k a 2 作直线运动,式中k 为常数,设初速度为0 ,则质点速度 与时间t 的函数关系是20111kt v v 2。
8、 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M=121h v h h 。
三、计算题9、 一质点按t y t x 6sin 8,6cos 5 规律运动。
求(1)该质点的轨迹方程;(2)第五秒末的速度和加速度解:(1)164y 25x 22 (2) x 5y 5=-5.6sin 608*6cos64848t t dx v t dt yx v t dt v jv r221800180x y a a a ir r 10、某质点的初位矢i r 2 ,初速度j 2 ,加速度j t i a24 ,求(1)该质点的速度;(2)该质点的运动方程。
解:(1)0220(4242224())2t v v i tj v t t dv a dti dt d j v j v ti t jr r v v r v v v rr v v r r (2) 020203(2)1(22(34)2)t rr d v dtt dt r i t j r r r r t i t t j dr r r v v v v v v v v v 11.一质点沿x 轴运动,其加速度a 与位置坐标的关系为226a x 。
如果质点在原点处的速度为0,试求其在任意位置处的速度。
解:由题意2()26a x x ,求()v x232()4(26)44xvdr dv dx dv a x vdt dx dt dx x dx vdvx x v Cr原点2,0a v ,因此0C ,只朝正方向运动v 质点运动学2一、 选择题1、 以下五种运动形式中,a保持不变的运动是 A 、圆锥摆运动. B 、匀速率圆周运动.C 、行星的椭圆轨道运动.D 、抛体运动. [ D ] 2、 下列说法正确的是A 、质点作圆周运动时的加速度指向圆心;B 、匀速圆周运动的加速度为恒量;C 、只有法向加速度的运动一定是圆周运动;D 、只有切向加速度的运动一定是直线运动。
[ D ]3、 一质点的运动方程是j t R i t R rsin cos ,R 、 为正常数。
从t = /到t = /2时间内(1)该质点的位移是 [ B ](A) i R 2 ; (B) i R 2; (C) j2 ; (D) 0。
(2)该质点经过的路程是 [ B ](A) 2R ; (B) R ; (C) 0; (D) R 。
二、 填空题4、 质点在半径为16m 的圆周上运动,切向加速度2/4s m a t ,若静止开始计时,当t =2s 时,其加速度的方向与速度的夹角为45度;此时质点在圆周上经过的路程s =8 。
5、 质点沿半径为R 的圆周运动,运动学方程为 223t ,则t时刻质点的法向加速度大小为a n = 216Rt ;角加速度 = 4rad/s 2 。
6、 某抛体运动,如忽略空气阻力,其轨迹最高点的曲率半径恰为 9.8m ,已知物体是以60度仰角抛出的,则其抛射时初速度的大小为 g 2 =2g=19.6。
7、 距河岸(看成直线)500 m 处有一艘静止的船,船上的探照灯以转速为n =1 r/min 转动.当光束与岸边成60°角时,光束沿岸边移动的速度v =2009ms . 8、两条直路交叉成 角,两辆汽车分别以速率1v 和2v 沿两条路行驶,一车相对另一车的速度大小为 cos 2212221v v v v 或cos 2212221v v v v三、 计算题9、一质点作圆周运动,设半径为R ,运动方程为2021bt t s ,其中s 为弧长,0 为初速,b 为常数。
求:(1) 任一时刻t 质点的法向、切向和总加速度;(2) 当t 为何值时,质点的总加速度在数值上等于b ,这时质点已沿圆周运行了多少圈?解:(1)t t S b v d /d 0 v b d /d t a t v R t a n /b v 2a n n t t a e a e r r大小420(v bt)b R方向tan n t a a(2) 根据题意:22022)Rbt v (b b ; b /v t 0; 2b v s 20 ; Rb 4v n 20 10、一飞轮以速率n=1500转/分的转速转动,受到制动后均匀地减速,经t =50秒后静止。
试求:(1) 角加速度 ;(2) 制动后t =25秒时飞轮的角速度,以及从制动开始到停转,飞轮的转数N ; (3) 设飞轮半径R=1米,则t =25秒时飞轮边缘一点的速度和加速度的大小?解:(1) 0020t t 1500250r rad ad/s 60/ts 0;t减速运动(2)02t 5rad s2011s t-t 5050622500252转(3)2t 222n 2225v R 25m/sa R rad /s a R 625m a /s t n a a a n tnta a;11.有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为 y 方向,由题意可得u x = 0u y = a (x l /2)2+b令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0,代入上式定出a 、b,而得 x x l lu u y204 船相对于岸的速度v(v x ,v y )明显可知是2/0v v x y y u )2/(0v v ,y45 °v 0 u 0xl将上二式的第一式进行积分,有 t x 20v还有, x y t x x y t y y d d 2d d d d d d 0v v= x x l lu 20042v 即x x l l u x y20241d d v 因此,积分之后可求得如下的轨迹(航线)方程:2300200v 3v y x x x l l到达东岸的地点(x ,y )为0 , 1x l x l y y l牛顿定律一、选择题1. 如图所示,质点从竖直放置的圆周顶端A 处分别沿不同长度的弦AB和AC (AC <AB )由静止下滑,不计摩擦阻力。
质点下滑到底部所需要的时间分别为B t 和C t ,则 [ A ] (A) B t =C t ;ACB(B) B t >C t ; (C) B t <C t ;(D)条件不足,无法判定。
2. 一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g .(B)g Mm . (C) g M m M . (D) g m M m M .(E) g Mm M .[ C ] 3. 一公路的水平弯道半径为 R ,路面的外侧高出内侧,并与水平面夹角为 .要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为 (A)Rg (B) Rgtg(C)(D)答案:B二、填空题1.如果一个箱子与货车底板之间的静摩擦系数为 ,当这货车爬一与水平方向成 角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =______________g )sin cos ( _________________________.2.一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F Fcos 0 (SI), t = 0时刻,质点的位置坐标为0x ,初速度00 v.则质点的位置坐标和时间的关系式是x=M W F i wt X MW F 200cos 2。
3.有一质量为M 的质点沿X 轴正方向运动,假设该质点通过坐标为x 处时的速度为kx (k 为正常数),则此时作用于该质点上的力F =__mk2x____,该质点从x =x0点mMFAB Mm出发运动到x =x1 处所经历的时间t =01ln1x x K _____。
4.一冰块由静止开始沿与水平方向成300倾角的光滑斜屋顶下滑10m 后到达屋缘,若屋缘高出地面10m ,则冰块从脱离屋缘到落地过程中越过的水平距离为35。
三、计算题1. 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.58.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin . 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0F sin θ+N -Mg =0 f =μN得sin cos MgF令 0)sin (cos )cos sin (d d 2Mg F ∴ 6.0tg ,637530且 0d d 22F∴ l =h / sin θ=2.92 m 时,最省力.2. 质量为m 的小球,在水中受的浮力为常力F ,当它从静止开始沉降时,受到水的粘滞阻力大小为f=k v (k 为常数).证明小球在水中竖直沉降的速度v 与时间t 的关系为),e 1(/m kt kFmgv 式中t 为从沉降开始计算的时间. 解:小球受力如图,根据牛顿第二定律tm ma F k mg d d vvt mF k mg d /)(d v v初始条件: t = 0, v = 0.tt F)/m k mg 00d (d v -v v∴k F mg m kt /)e 1)((/ v3. 如图所示,质量分别为和的两只小球用轻弹簧连在一起,且以长为L1的细绳拴在轴O 上.m1与m2均以角速度ω做匀速圆周运动.当两球之间距离为L2时将细线烧断,则细线烧断瞬间m1球的加速度大小为多少?,m2球的加速度大小为多少?.(球可视为质点,不计摩擦)hM lg M PF N fgmxfF a答:由牛顿运动定律,细线烧断前弹簧的弹力细线烧断瞬间,细线的弹力立即减为0,弹簧的弹力T2不变,)L L (m T 21222 221121222a m a m )L L (m T 121221m )L L (m a)L L (a 2122动量与能量1一、选择题1、 如图所示,置于水平光滑桌面上质量分别为1m 和2m 的物体A 和B 之间夹有一轻弹簧,首先用双手挤压A 和B 使弹簧处于压缩状态,然后撤掉外力,则在A 和B 被弹开的过程中:A 、系统的动量守恒,机械能不守恒;B 、系统的动量守恒,机械能守恒;C 、系统的动量不守恒,机械能守恒;D 、系统的动量和机械能都不守恒。