纳米二氧化钛光催化原理

合集下载

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲醛原理Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998纳米二氧化钛光催化分解甲醛原理1. 光催化剂的发现历史自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。

而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。

1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。

近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。

但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。

如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。

纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。

纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。

由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为 nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。

二氧化钛光催化原理

二氧化钛光催化原理

TiO 2光催化氧化机理TiO 2属于一种n 型半导体材料,它的禁带宽度为3.2ev (锐钛矿),当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1-1所示。

如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO 2表面不同的位置。

TiO 2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h +则可氧化吸附于TiO 2表面的有机物或先把吸附在TiO 2表面的OH -和H 2O 分子氧化成 ·OH 自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO 2和H 2O 等无害物质。

反应过程如下:反应过程如下:TiO 2 + hv → h + +e - (3) h + +e - → 热能 (4)h + + OH- →·OH (5) h + + H 2O →·OH + H + (6)e- +O 2 → O 2- (7) O 2 + H+ → HO 2· (8)2 H 2O ·→ O 2 + H 2O 2 (9) H 2O 2 + O 2 →·OH + H + + O 2 (10)·OH + dye →···→ CO 2 + H 2O (11)H + + dye →···→ CO 2 + H 2O (12) 由机理反应可知,TiO 2光催化降解有机物,实质上是一种自由基反应。

Ti02光催化氧化的影响因素1、 试剂的制备方法常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。

TiO2光催化原理和应用

TiO2光催化原理和应用

TiO2光催化原理及应用一.前言在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。

根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。

长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。

水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。

常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。

包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。

臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。

这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。

自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。

这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

光化学反应的过程与植物的光合作用很相似。

光化学反应一般可以分为直接光解和间接光解两类。

直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。

直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。

间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。

半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。

半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。

(完整)第一节 二氧化钛光催化原理

(完整)第一节   二氧化钛光催化原理

第一节二氧化钛光催化研究现状及机理在社会和经济快速发展的同时,人类赖以生存的环境也遭到不同程度的污染和破坏,最主要包括水体污染和空气污染.不容置疑,水体和空气的净化与保护已成为人类社会实现可持续发展亟待解决的重要问题。

因此,我们亟需一种简便有效的方法来治理水体污染和大气污染。

以产生氢氧自由基(·OH)为主要特点的高级氧化技术(Advanced Oxidation Technology, 亦即深度氧化技术)在环境治理中优势逐渐得以体现并迅速发展。

高级氧化技术反应过程中产生大量·OH,反应速度快,适用范围广,较高的氧化电位使得·OH几乎能将所有的有机物氧化直至完全矿化,反应条件温和,可诱发链反应。

半导体光催化氧化还原技术就为高级氧化技术开辟了一条极富潜力的途径.其主要的特点是,利用半导体物质作为光催化剂以实现光能到化学能的转化,一般不需外加氧化剂.反应过程中电子的传输与得失主要通过(光照条件下)半导体与H2O或O2或OH-和有机物三者间的相互作用完成。

这个过程不需要其他化学助剂,反应条件温和,而且能将有机污染物完全氧化成水和二氧化碳,不会产生二次污染。

美国环保局公布了九大类114种有机物被证实可以通过半导体光催化氧化方法处理,该方法尤其适合于难以或无法生物降解的有毒有机物质。

用作光催化剂的半导体大多数为金属氧化物或硫化物,如TiO2,CdS,ZrO,V2O3,WO3,ZnO,SeO2,GaP,SnO2,SiC,Fe2O3等等。

其中只有TiO2由于化学性质稳定、抗光腐蚀、便宜、无毒并具有较高活性而得到了广泛的研究与应用。

因此本研究采用TiO2形貌及其光催化等方面的进行研究。

1.1.1二氧化钛的研究现状日本学者Fujishima和Honda[1]于1972年在《Nature》杂志上发表了一篇论文,报道了在光辐射下TiO2可以将水分解产生氢气,引起了人们对光催化技术浓厚的兴趣。

二氧化钛光催化原理

二氧化钛光催化原理

TiO 2光催化氧化机理T iO2属于一种n型半导体材料,它得禁带宽度为3、2ev (锐钛矿),当它受到波长小于或等于387、5nm得光(紫外光)照射时,价带得电子就会获得光子得能量而越前至导带,形成光生电子(e—);而价带中则相应地形成光生空穴(h+),如图1—1所示。

如果把分散在溶液中得每一颗T iO 2粒子近似瞧成就是小型短路得光电化学电池,则光电效应应产生得光生电子与空穴在电场得作用下分别迁移到Ti O2表面不同得位置。

TiO 2表面得光生电子e -易被水中溶解氧等氧化性物质所捕获,而空穴h +则可氧化吸附于Ti O2表面得有机物或先把吸附在TiO 2表面得OH -与H2O 分子氧化成 ·OH 自由基,·O H自由基得氧化能力就是水体中存在得氧化剂中最强得,能氧化水中绝大部分得有机物及无机污染物,将其矿化为无机小分子、CO 2与H2O 等无害物质。

反应过程如下:反应过程如下:TiO 2 + hv → h+ +e- (3) h + +e - → 热能 (4) h + + OH — →·OH (5) h + + H2O →·OH + H + (6)e — +O 2 → O 2- (7) O 2 + H+ → HO 2· (8) 2 H 2O ·→ O 2 + H2O 2 (9) H 2O 2 + O 2 →·O H + H + + O 2 (10)·OH + dye →···→ CO 2 + H2O (11) H + + d ye →···→ CO 2 + H 2O (12)由机理反应可知,TiO 2光催化降解有机物,实质上就是一种自由基反应。

Ti02光催化氧化得影响因素1、 试剂得制备方法常用T i02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

纳米二氧化钛的制备与光催化性能研究毕业论文

纳米二氧化钛的制备与光催化性能研究毕业论文

毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。

二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。

二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。

二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。

在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。

由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。

但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。

人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。

众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。

1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。

这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。

锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。

事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。

简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。

纳米二氧化钛光催化应用

纳米二氧化钛光催化应用

纳米二氧化钛光催化应用纳米二氧化钛是近年来发展起来的一种新型高性能材料,其粒子尺寸在1~100nm,表面能和表面张力随粒径的下降急剧增大而使其具有块状材料所不具备的量子尺寸效应、体积效应、表面效应和宏观隧道效应。

与常规材料相比,纳米二氧化钛具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等独特的性能,同时还具有光化学性质稳定、催化效率高、氧化能力强、无毒、价格便宜等优点,在化妆品、塑料、涂料、精细陶瓷、催化剂及环保领域应用广泛。

无机抗菌剂纳米二氧化钛是一种N型半导体,受到波长小于387.5nm 的紫外光的照射时,价带上的电子跃迁到导带,激发电离出电子同时产生正电性的空穴,产生电子–空穴对(e--h+),并与其表面吸附的O2 和OH- 作用生成超氧化物阴离子自由基O2-和羟基自由基·OH,新生成的这两种自由基非常活泼,当遇到细菌时直接攻击细菌的细胞壁、细胞膜或细胞内的组成成分,对绿脓杆菌、大肠杆菌、金黄葡萄球菌、沙门氏菌、牙枝菌和曲菌及癌细胞等有很强的杀灭能力。

以·OH为例,·OH有很强的氧化能力,它攻击有机物的不饱和键或抽取其氢原子,反应产生的新自由基将会激发链式反应,致使细菌蛋白质的多肽链断裂和糖类解聚,杀死细菌并使之分解。

美国得克萨斯大学研究人员将大肠杆菌和纳米二氧化钛混合液在大于380nm 的光线下照射,发现大肠杆菌以一级反应动力方程被迅速杀死。

东森公司研制的纳米二氧化钛对23 种有害细菌具有明显的杀菌、抑菌效果。

日本已经开发出了用纳米二氧化钛被覆的抗菌陶瓷品,其制造工艺是先将纳米二氧化钛加水制成浆料,涂在陶瓷砖表面,经高温锻烧即得到1cm厚具有杀菌性能的纳米二氧化钛薄膜产品。

该产品在光照射下能完全杀死表面细菌;若要使其在微弱光下亦有抗菌性能,可在纳米二氧化钛浆料中添加银、铜离子化合物。

添加约1%纳米二氧化钛的抗菌塑料,可广泛应用于食品包装、电器、家具、餐具、公共设施等,以防止病菌的繁殖和交叉感染。

纳米二氧化钛光催化机理

纳米二氧化钛光催化机理

纳米二氧化钛光催化机理2011-11-30 17:54:35纳米TiO2光催化降解机理共分为7个步骤来完成光催化的过程: 1、 TiO2 + hv? eˉ+ h+2、 h+ + H2O?OH + H+3、eˉ+ O2?OOˉ4、OOˉ+H+ ?OOH5、 2OOH ? O2 + H2O26、OOˉ+ eˉ+ 2H+ ?H2O27、H2O2 + eˉ?OH + OHˉ8、h+ + OHˉ?OH当一个具有hv能量大小的光子或者具有大于半导体禁带宽度Eg的光子射入半导体时,一个电子由价带(VB)激发到导带(CB),因而在导带上产生一个高活性电子(eˉ ),在价带上留下了一个空穴(h +),形成氧化还原体系。

溶解氧及水和电子及空穴相互作用,最终产生高活性的羟基。

OHˉ、O2ˉ、OOHˉ自由基具有强氧化性,能把大多数吸附在TiO2表面的有机污染物降解为CO2、H2O,把无机污染物氧化或还原为无害物。

纳米二氧化钛的应用二氧化钛俗称钛白,是钛系最重要的产品之—,也是一种重要的化工和环境材料.纳米二氧化钛是二十世纪七、八十年代开发成功的产品,这种新型无机材料的粒径仅为普通材料的十分之一左右,因而具有很高的化学及表面活性、良好的耐热性和耐化学腐蚀性.利用纳米二氧化钛的特征,已开拓了许多新颖的应用领域,其目前主要用于涂料,搪瓷,塑料,橡胶,太阳能电池,自洁玻璃,降解有机污染物和杀灭细菌等方面.用二氧化钛制造的涂料色泽鲜艳,用量省,品种多,且能保护介质的物理稳定性,增强漆膜的机械强度和附着力,防止裂纹和裂缝,使用时还能防止紫外线[04]及水分穿透,延长漆膜的寿命(二氧化钛折射率高,制得的瓷釉透明度强,[04]具有重量轻、抗弯、抗冲击等优越特点(用二氧化钛作配料制得的塑料,不[04]仅可以提高塑料的强度,延长使用寿命,而且用量省,色彩鲜艳(用二氧化钛制得的白色和彩色橡胶制品在阳光照射下,耐曝晒、不裂、不变色、伸展率[04]大,并且有耐酸碱的性能(用二氧化钛作纸张的填料,有较高的白度,光泽[04]好,强度大,薄而光滑性能稳定,印刷穿透能力小(用二氧化钛制成的焊条药皮,可交直流两用,是一种很好的造渣剂,焊接时形成熔渣覆盖在熔池上,不仅能使熔化金属与周围气体隔绝,而且能使焊缝金属结晶处于缓慢冷却的保[04]护中,从而改善焊缝结晶的形成条件(纳米二氧化钛在太阳能电池方面有很重要的应用(目前,开发太阳能电池有两个关键问题,即:提高转换效率和降低成本.目前市场上的太阳能电池大多属于硅太阳能电池,其制造成本过高,不利于广泛应用.而九十年代发展起来的纳米晶二氧化钛太阳能电池具有成本廉价,工艺简单及性能稳定等优点,已成为传统太阳能电池的有力竞争对手.目前,纳米晶二氧化钛太阳能电池光电效率稳定[06]在10 %,制作成本仅为硅太阳能电池的1/ 5,1/ 10 ,寿命能达到20年以上. 纳米二氧化钛在自洁玻璃中的应用.通常情况下,二氧化钛表面与水的接触角约为72?,经紫外光照射后,接触角在5?以下,甚至可达到0?,即:此时水滴可完全浸润表面,显示非常强的超亲水性,停止光照后,表面超亲水性可维持数小时到一周左右,慢慢回到以前的疏水状态.再用紫外灯照射,又表现为超亲水[05]性.采用间歇紫外灯照射可以使表面始终保持超亲水性.实验表明,镀有二氧化钛薄膜的表面具有超亲水性,一旦表面被油污等污染,因其超亲水性,油污不易附着,会在外部风力,水淋冲力和重力等作用下自行脱落,阳光中的紫外线足以维持表面超亲水性,从而使其具有长期自洁去污的功能. 纳米二氧化钛在杀菌方面的应用.TiO 受光时能生成化学活泼性很强的超氧化2物阴离子自由基和氢氧自由基,当遇到细菌时,会直接攻击细菌的细胞,致使细菌细胞内的有机物降解,以此杀灭细菌,并使之分解.一般常用的杀菌剂银、铜等都能使细菌细胞失去活性,但细菌杀死后,尸体会释放出内毒素等有害的[05]组分.而纳米二氧化钛不仅能影响细菌繁殖力,而且能破坏细菌的细胞膜结构,达到彻底降解细菌,防止内毒素引起的二次污染.纳米二氧化钛属于非溶出型材料,在杀灭和降解细菌的同时,自身不分解、不溶出,光催化作用持久,并具有持久的杀灭和降解细菌的效果.纳米二氧化钛在降解污染物方面的应用.TiO光催化技术工艺简单、成本低廉,2利用自然光、常温常压即可催化分解污染物,具有高活性、无二次污染、无剌激性、安全无毒、化学稳定性和热稳定性好等特点,是最具开发前景的绿色环保催化剂之一.采用纳米TiO光催化剂处理有机废水,能有效地将水中的卤化脂2 肪烃、卤代芳烃、硝基芳烃、多环芳烃、酚类、染料、农药等进行除毒、脱色、矿化,最终降解为二氧化碳和水,目前这方面的研究已取得进展,光催化降解污水将成为有效的处理手段.利用金红石型纳米二氧化钛的紫外线屏蔽优异性,以及光催化效应来降解氧化物(NOX)、硫氧化物(SOX)等,还可以有效地治理工业废气、汽车尾气排放所造成的大气污染,其原理是将有机或无机污染物进行氧化还原反应,生成水、二氧化碳、盐等,从而净化空气.研究结果显示,纳米二氧化钛光催化空气净化涂料、陶瓷等材料在消除氮氧化物等方面具有良好的应用前景.此外,纳米二氧化钛在磁性材料、浅色导电材料、气体传感器、湿度传感器等领域已得到很好的应用.随着应用研究的深入,它的应用领域必将越来越广泛.。

二氧化钛光催化原理讲解学习

二氧化钛光催化原理讲解学习

TiO2光催化氧化机理TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。

如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。

TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等无害物质。

反应过程如下:反应过程如下:TiO2+ hv → h+ +e- (3) h+ +e-→热能(4)h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6)e- +O2→ O2- (7)O2 + H+ → HO2·(8)2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10)·OH + dye →···→ CO2 + H2O (11)H+ + dye→···→ CO2 + H2O (12)由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。

Ti02光催化氧化的影响因素1、试剂的制备方法常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。

同时在制备过程中有无复合,有无掺杂等对光降解也有影响。

Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米二氧化钛的制备及光催化分析

纳米二氧化钛的制备及光催化分析

苏州科技大学材料科技进展化学生物与材料工程学院材料化学专业题目:纳米二氧化钛的制备及光催化*名:**学号:**********指导老师:***起止时间:5月20日——6月8日纳米二氧化钛的制备及光催化吕岩(苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009)摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。

本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。

并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。

通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。

关键词:纳米TiO2,制备方法,光催化.The study on preparation of nanometer TiO2 and photocatalyticLv Yan(University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living.Key words: nanometer T iO2; preparation method, photocatalysis引言:纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。

二氧化钛光催化技术介绍

二氧化钛光催化技术介绍

纳米二氧化缺光催化技荷介^纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。

纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。

然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。

光催化原理-什麽是光催化光催化[Photocatalyst ]是光[Photo二Light] +催化蒯[catalyst]的合成羞司。

主要成分是二氧化金太(Ti02),二氧化金太本身照毒照害,已腐泛用於食品,髻桑,化片攵品等各希重令臭域。

光催化在光的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。

亚且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。

光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。

-光催化反雁原理TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。

在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。

熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。

二氧化钛光催化原理

二氧化钛光催化原理

TiO2光催化氧化机理TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。

如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。

TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等无害物质。

反应过程如下:反应过程如下:TiO2+ hv → h+ +e- (3) h+ +e-→热能(4)h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6)e- +O2→ O2- (7)O2 + H+ → HO2·(8)2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10)·OH + dye →···→ CO2 + H2O (11)H+ + dye→···→ CO2 + H2O (12)由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。

Ti02光催化氧化的影响因素1、试剂的制备方法常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。

不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。

同时在制备过程中有无复合,有无掺杂等对光降解也有影响。

Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

纳米二氧化钛

纳米二氧化钛

纳米二氧化钛光催化性能的测试一、实验导读1.半导体光催化剂半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。

导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。

纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。

宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。

在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。

价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。

跃迁到导带上的电子和价带上的空穴可能重新复合,并产生热能或以辐射方式散发掉。

但是当半导体光催化剂存在表面缺陷、合适的俘获剂、或者电场作用等因素时,电子和空穴的合并就得到了拟制。

同时纳米半导体粒子所具有的量子尺寸效应使其导带和价带能级变为分立的能级,能隙变宽,使其电子-空穴对具有更正的价带电位和更负的导带电位,因而具有更高的氧化能力和还原能力。

而且粒子越小,电子和空穴达到粒子表面的速度越快,电荷分离效果越好,电子与空穴复合几率反而越小,从而提高了纳米半导体的光催化活性。

作为半导体光催化剂的材料众多,包括TiO2、ZnO、WO3、SnO2、ZrO2等多种金属氧化物,CdS、FeS、MoS2等多种硫化物半导体。

TiO2等半导体纳米微粒,由于其表面的电子结构及晶体结构,具有特殊的表面效应、体积效应、量子尺寸效应、宏观量子隧道效应以及介电限域效应以外,还拥有高效的光催化活性,热稳定性好,价格低廉,对人体无毒、无害、无二次污染等特点,使其成为新兴的环保材料。

实验32--纳米二氧化钛光催化剂的合成及其催化性能

实验32--纳米二氧化钛光催化剂的合成及其催化性能

实验32 纳米二氧化钛光催化剂的合成及其催化性能一、实验目的1.了解纳米光催化技术的基础知识和发展趋势。

2.掌握溶胶-凝胶法制备纳米粒子的原理,用溶胶-凝胶法制备纳米TiO2微粉。

3.了解纳米粒子常用的表征手段。

4.掌握纳米材料的合成方法并对其了解应用前景。

二、实验原理自70年代初发现二氧化钛电极具有光照下分解水的功能以来,有关二氧化钛半导体光催化剂的研究成为环境领域的一个热点。

用半导体光催化分解毒性有机物有两个优点:第一,适当选择催化剂,可以利用太阳能处理毒物,节约能源;第二,一些半导体的光生空穴具有很强的氧化能力,能彻底降解绝大多数有机物质,而且能将它们最后分解为二氧化碳、水和无机物,避免了用化学方法处理带来的二次污染。

制备纳米粒子的方法很多,如化学沉淀法、溶胶-凝胶法、水热法、微乳液法、反相胶团法、气相法等。

溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

溶胶是指微小的固体颗粒悬浮分散在液相中,并且不停的进行布朗运动的体系。

根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。

由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。

凝胶是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。

并非所有的溶胶都能转变为凝胶,凝胶能否形成的关键在于胶粒间的相互作用力是否足够强,以致克服胶粒-溶剂间的相互作用力。

对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。

因此,胶粒间相互靠近或吸附聚合时,可降低体系的能量,并趋于稳定,进而形成凝胶。

该方法的优点是:(1)反应温度低,反应过程易于控制;(2)制品的均匀度和纯度高、均匀性可达分子或原子水平;(3)化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类);(4)从同一种原料出发,改变工艺过程即可获得不同的产品如粉料、薄膜、纤维等;(5)工艺简单,不需要昂贵的设备。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价一、实验目的3、了解纳米半导体材料的性质。

4、了解纳米半导体光催化的原理。

二、实验原理二氧化钛,化学式为,俗称钛白粉。

多用于光触媒、化装品,能靠紫外线消毒及杀菌。

以纳米级为代表的具有光催化功能的光半导体材料,因其颗粒细小、比外表积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。

1、纳米二氧化钛的制备溶胶凝胶法中,反响物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成,脱水后即可得到。

在后续的热处理过程中,只要控制适当的温度条件和反响时间,就可以得到二氧化钛。

在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反响,钛酸四丁酯在酸性条件下,在乙醇介质中水解反响是分步进行的。

一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。

上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。

此过程中涉及的反响为:2、光催化活性评价光触媒在光照条件下〔可以是不同波长的光照)所起到的催化作用的化学反响,通称为光反响。

光催化一般是多种相态之间的催化反响。

本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反响前后的溶液的吸光度的变化算出降解率来评价制备的二氧化钛的活性。

三、实验仪器与试剂仪器:磁力搅拌器,搅拌磁子,水浴锅,PH试纸,胶头滴管,量筒,玻璃棒,烧杯,坩埚,石棉网,电炉,真空枯燥箱,量杯,充气管,自制紫外灯光催化装置,离心机。

试剂:亚甲基蓝,甲基橙,盐酸,冰醋酸,钛酸丁酯,四氯化钛,硫酸氧钛,纳米二氧化钛,无水乙醇。

四、实验步骤〔1〕二氧化钛的制备1、室温下取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

二氧化钛

二氧化钛

一:1:纳米二氧化钛是目前应用最为广泛的一种纳米材料。

它是一种半导体材料,除了具有纳米材料共同的特点外,还具有光催化性能。

近十多年来,随着环境污染日益严重,利用半导体粉末作为光催化剂催化降解有机物的研究已成为热点。

在作为光催化剂的主要原料N 型半导体TiO2、ZnO2、CdS、WO3中,相比较而言, TiO2活性高、化学稳定性好、对人体无害,是理想的环保型光催化剂。

实验表明, TiO2至少可以经历12次的反复使用而保持光分解效率基本不变,连续580分钟光照下保持其活性,因而将其投入实际应用有着广阔的发展前景。

2:纳米二氧化钛的光催化降解机理:当二氧化钛受到波长小于387. 5nm的紫外光的照射时,价带上的电子跃迁到导带,激发电离出电子同时产生正电性的空穴,形成电子-空穴对,与吸附溶解在其表面的氧气和水反应。

分布在表面的空穴将OH -和H2O氧化成HO自由基。

HO 自由基的氧化能力是在水体中存在的氧化剂中最强的,能氧化大部分的有机污染物和无机污染物,而且对反应物几乎无选择性,在光催化氧化中起着决定性的作用。

二氧化钛的表面电子可被溶解在表面的氧俘获形成O2-。

另外表面电子具有高的还原性,可以去除水体中的金属离子。

生成的原子氧和氢氧自由基使有机物被氧化、分解,最终分解为CO2、H2O和无机物。

3:目前的研究现状:尝试对不同微生物的杀灭作用:为了考察TiO2对微生物的作用,根据不同的研究和应用背景,人们选择了细菌、病毒、藻类、癌细胞等。

目前已有报道的考察TiO2光催化作用的细菌类有: 乳杆嗜酸细胞(Lactobacil lus acidophi lus),酵母菌( Saccharomyces cerevisiae), 大肠杆菌( Es-cherichia coli), 链球菌( S treptococcus mutans , S .ratus , S .cricetus , S .sobrinus AHT)。

纳米二氧化钛的光催化特性及应用进展

纳米二氧化钛的光催化特性及应用进展

光、 敏感特性和表面稳定性等不 同于常规粒子 , 例
如 纳 米 i2 r 的强 度 、 o 韧性 和 超 塑性 与 i2 晶相 r 粗 o 比大 大提 高 , 用 于 生 产 纳 米 陶瓷 u。 纳 米 微 粒 可 】
氧化性很高的 O 自由基 , H 活泼的 O H自由基可以
把许 多难 降解 的 有 机 物 氧 化 为 C) 水 等 无 机 ( 2和
醛再 氧化 变 成 酸 , 进 一 步 氧 化 变 成 C 和 水 。 酸 O 半 导体 的光 催化 活性 主要 取决 导 带 与价 带 的氧化

还 原 电位 , 带 氧化 一还 原 电位 越 正 , 带 的 氧 价 导
能高 , 可用于磁记 录材料 l, 3 另外纳米二氧化钛 的 】
光 学性 质 使 其 用 于 高 档 轿 车涂 料 、 光 材 料 、 E 感 PC 电池 、 妆 品 、 品 包 装 、 学 纤 维 、 外 线 反 射 化 食 化 红 膜 、 身涂 料 等 - , 隐 5 纳米 二 氧化 钛 也有 较好 的化 学 J 活性 , 可用 于农 药 、 医药 、 环境 工 程 等方 面 。 从 以上 可 知 , 米 二 氧化 钛 有 区别 于 常 规 粉 纳
1 前

体 的 特殊 的物 理 、 学特 性 , 而 应 用 十 分 广 泛 。 化 因 本 文仅 从纳 米 二氧 化钛 的光催 化 性 能及 其 应 用进 Байду номын сангаас展进 行 简要 评述 。
高科技的飞速发展对高效性 能材料 的要求越 来越高 , 纳米尺寸的合成会为开发高性能新材料 和对 现 有 材料 的性 能 的改善 提供 一 条新 途 径 。纳
化一 还原 电位 越 负 , 光 生 电子 和 空 穴 的 氧 化 及 则 还原 能力 就越 强 , 而 使 光 催 化 降解 有 机 物 的效 从
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米二氧化钛光催化原理
纳米二氧化钛光催化是一种通过利用纳米二氧化钛作为催化剂,利用光照下光生电荷的特性来促进光化学反应的过程。

纳米二氧化钛催化的原理主要涉及到两个关键步骤:光吸收和电子传输。

首先是光吸收过程。

纳米二氧化钛具有广阔的能带结构,光能可以在其表面被吸收。

当光能与纳米二氧化钛相互作用时,电子将被激发至较高的能级,并产生电荷分离。

其次是电子传输过程。

激发后的电荷(电子空穴对)会被分离并迁移到纳米二氧化钛的表面。

电子通常会迁移到导电带上,而空穴则会迁移到价带上。

这种电子与空穴分离产生的电荷极化会使纳米二氧化钛具有催化活性。

纳米二氧化钛表面的催化活性可用于促进光化学反应。

光照下,纳米二氧化钛表面的电荷分离状态会引发一系列反应,例如光解水、光催化氧化有机物等。

电子和空穴分别参与氧化还原反应,从而促进了催化反应的进行。

总的来说,纳米二氧化钛光催化利用了纳米二氧化钛催化剂的特殊性质,通过光生电荷的产生和传输,促进了光化学反应的发生。

这种技术在环境净化、能源转换和有机合成等领域有着广泛的应用前景。

相关文档
最新文档