光伏并网发电电气系统设计
光伏发电并网工程电气设计方案
![光伏发电并网工程电气设计方案](https://img.taocdn.com/s3/m/362558edeefdc8d376ee32dd.png)
光伏发电并网工程电气设计方案1.1电气一次1.1.1某华安风电升压站电气主接线某华安风电升压站现安装一台115±8X1.25%/35kV50MVA主变,110kV侧单回线变组接线;35kV侧单母线接线,出线间隔从右至左分别为:电压互感器间隔、电容器间隔、接地变兼站用变消弧线圈间隔、3回风机进线间隔、预留间隔。
本期光伏电站35kV送电线路经某华安风电升压站35kV 侧预留间隔接入升压站,升压至110kV送至110kV华安变。
1.1.2接入电力系统方式某电网是隶属于某地区的县级地方电网,供电范围为某区,现有110kV、35kV、10kV、380/220V 4种电压等级。
网内有110kV负荷二次变电所(华安变)1座,主变容量2×31.5MVA。
本系统由20个1MWp的光伏发电矩阵组成,总装机20MWp。
经过直流汇流、逆变、升压接入厂区35kV配电装置。
采用一回35kV架空线路接入某华安(某)风力发电有限公司升压站,导线型号LGJ-150,长度8km。
经过某华安(某)风力发电有限公司主变压器升压至110kV,输送至华安变,接入电网。
1.1.3电气主接线1.1.3.1电气主接线初步方案本系统由20个1MWp的光伏发电矩阵组成,总装机20MWp。
经过直流汇流、逆变、升压接入厂区35kV配电装置。
采用一回35kV架空线路接入某华安(某)风力发电有限公司升压站,导线型号LGJ-150,长度8km。
经过某华安(某)风力发电有限公司主变压器升压至110kV,输送至华安变,接入电网。
1.1.3.2光伏电站电场集电线路方案本工程鉴于光伏电站中应避免阴影遮挡,场区内部的线路拟选定电缆直埋敷设方案。
依据光伏电站方阵的最终排布情况及变电站电气设备布置情况,进行电缆型号及截面的选择,具体如下:1)所有太阳电池组件串连接入至直流防雷汇流箱的电缆均采用1对1×4mm²的铝芯单芯交联聚乙烯铠装电缆(每汇流箱输入共11对);2)汇流箱的出线电缆采用1对1×70 mm²的铝芯单芯交联聚乙烯铠装电缆,接入至逆变配电室内的直流配电柜(每汇流箱输出共18对);3)直流防雷配电柜引接至逆变器的直流电缆采用2对1×300 mm²的铝铝芯单芯交联聚乙烯电缆(每直流箱共2对*3);4)逆变器至室外0.315/35KV升压变采用(3根3×300 mm²)的铝芯三芯交联聚乙烯铠装电缆。
光伏并网发电系统接入设计及电气影响分析
![光伏并网发电系统接入设计及电气影响分析](https://img.taocdn.com/s3/m/c0e142df76a20029bd642d68.png)
关 键 词 :光 伏 ;发 电;接 入 ;电气 影 响
中图 分 类 号 :TM615
文献标识码 :A
文 章 编 号 :1673—1131(2013)05.0060—02
1工程概 况
某光伏并网发电项 目总容量为 10MWp,占用面积约为 7.1 万 m ,预计 年 发 电量 为 1201万 kWh。该 光 伏 项 目选 用 了多 晶 硅电池组件 ,其单块发 电量为 280Wp,全部安装于一重型机械 设 备 制造 企业 的#l及 舵 厂 房 的屋 顶 。
水泵 电动机 的控制方法如下 :采用矿用 隔爆型双回路高 压 真 空 电磁 启 动器 ,并 内置 2台 高压 真 空 接 触 器 ,共 采 用 3台 软 启 制 器 对 8台 水 泵进 行 控 制 ,其 中 2台 软 启 动器 分 别 采 用 一 拖三 的启动控制方式,另外 1台软启动器则采用一拖二 的 方 式 。 2.2 软启 动器 选型及 相关 参数 设定
2光伏 发 电 系统 接入设 计
2.1厂 区配 电系统 现 状 目前,厂 区由 110kV甲站 (2x50MVA)的 10kV专线 F5和
110kV 乙站 (2x50MVA)的 10kV 专 线 F9供 电 。厂 区 内现 有 井1
高压室和舵 高压室共 2个 高压室,其中拌1高压室由甲站 F5供 电 ,#2高压 室 由 乙站 F9供 电,2个 高压 室 之 间通 过 1回 电 缆 联 络 ,电 缆型 号为 ZRYJV22.3x240。 2.2 接入 设计原 则
(1)选型 。出于经济、实用 的角度考虑 ,软启动器可以采 用 QBRG.400/6型矿用隔爆 交流 高压软启动器 ,同时采 用双 CPU作为控制系统,即 DSP控制和单片机 管理 ,以 RS485总 线与上位机进行通信 ,借此来 实现遥测 、遥控和联动功能 。具 体工作方式如下 :当系统接 收到起动信号后 ,控制器会根据相 应的控制 曲线给出不同晶闸管导通角 ,这样便可 以使 电动机 按照一定的斜 率增 加电压 ,进 而达 到平稳启动的 目的,当电动 机达到额定转速后,加上全电压能够使旁路真空接触器接通 , 随后关 闭晶闸管的触发信号 ,电动机便 完成整个启动过程。电
毕业设计(论文)光伏并网发电系统设计
![毕业设计(论文)光伏并网发电系统设计](https://img.taocdn.com/s3/m/1c89decf647d27284b7351ef.png)
摘要随着社会生产的日益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。
地球中的化石能源是有限的,总有一天会被消耗尽。
随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。
可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。
其中太阳能资源在我国非常丰富,其应用具有很好的前景。
光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。
光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。
给出了硬件主回路并对各部分的功能进行了分析,同时选用TI公司的DSP芯片TMS320F2812作为控制CPU,阐述了芯片特点及选择的原因。
并对并网逆变器的控制及软件实现进行了研究。
文中对于光伏电池的最大功率跟踪(MPPT)技术作了阐述并提出了针对本设计的实现方法。
最后对安全并网的相关问题进行了分析探讨。
文章的主要内容如下:1.目前国内外光伏发电的现状和发展前景,并对光伏并网发电系统的功能、分类和特点作了简单介绍,对光伏并网发电系统建立了一个总体认识。
2.研究了光伏电池的基本发电原理和输出特性。
重点研究了光伏电池的输出特性和其影响因素,并得出相应的结论。
3.并网逆变器主要包括DC/DC及DC/AC两部分,文中分析了各部分设计重点,明确了选用TI公司的DSP芯片TMS320F2812作为控制CPU的原因及优点,同时给出了控制及软件实现方法。
4.光伏电池发电输出是非线性的,存在输出最大功率(CMPPT)跟踪问题。
本文阐述了常用的最大功率点跟踪方法,并结合本设计提出了改进方法。
使光伏电池工作于最大输出功率点上,获得高效功率输出。
5.在实际太阳能并网发电系统中,太阳能电池的输出及电网的电压是不断波动的,如何实现安全并网以及在运行中对各种故障的检测及报警进行了探讨,重点对“孤岛效应”进行了分析。
光伏发电并网系统设计介绍
![光伏发电并网系统设计介绍](https://img.taocdn.com/s3/m/dc4b1cb8a8956bec0875e3a8.png)
光伏发电并网系统设计介绍一、一般规定1.1 光伏系统接入方案应结合电网规划、分布式电源规划,按照就近分散接入与就地平衡消纳的原则进行设计。
1.2 光伏系统宜采用10kV及以下电压等级接入电网。
1.3 光伏系统模式可采用自发自用/余量上网和全额上网两种模式。
1.4 自发自用/余量上网模式的光伏系统并网容量不应超过所接入变压器容量。
1.5 光伏系统接入电压等级应根据装机容量选取,并满足下列要求:1 单个并网点容量为8kWp及以下宜接入220V;2 单个并网点容量为8kWp~400kWp宜接入380V;3 单个并网点容量为400kWp~6MWp宜接入10kV;4 自发自用/余量上网模式总装机容量超过1MWp,宜接入10kV;5 最终并网电压等级应综合参考有关标准和电网实际条件,通过技术经济比选论证后确定。
1.6 光伏系统在变电站低压并网时,单台变压器的并网点不应超过1个,项目规划审批范围内总并网点数量不应超过4个。
1.7 光伏系统在并网处应设置并网专用开关柜(箱),并应设置专用标识和“警告”、“双电源”等提示性文字和符号。
二、10kV并网2.1 10kV光伏系统的并网点应按如下进行选择:1 自发自用/余量上网模式的并网点可为用户开关站、配电室或箱变的10kV母线,如图2.1所示;2 全额上网模式的并网点可为公共电网10kV母线或线路,如图2.2 所示。
图2.1 10kV自发自用/余量上网模式一次系统接线示意图图2.210kV全额上网模式一次系统接线示意图2.2 10kV光伏系统的并网系统一般由光伏进线柜、压变柜、计量柜、并网柜、隔离柜、无功补偿柜及站用电等设备组成。
如图2.3所示。
图2.3 10kV并网系统方案示意图2.3 10kV自发自用/余电上网模式光伏系统的保护及计量配置应符合下列规定:1 光伏并网柜继电保护装置应具有过压、失压(欠压)保护功能,失压保护的电压信号应采集自光伏配电房隔离柜的电压互感器;2 光伏并网柜继电保护装置应具有过频率和低频率保护,保护装置的频率信号应采集自光伏配电房隔离柜的电压互感器;3 光伏并网柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与用户配电房中光伏接入柜继电保护定值相配合;4 用户配电房中的计量柜应设置双向电表,光伏配电房中的计量柜应设置单向电表;5 光伏配电房计量柜的电压互感器宜采用移动小车式安装,电流互感器宜采用固定式安装;6 计量柜应设置三相电压指示仪;7 光伏进线柜宜按一台变压器对应一个光伏接入柜进行设置;8 光伏进线柜应具有变压器的温度保护和瓦斯保护等保护跳闸功能;9 光伏进线柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与光伏配电房光伏并网柜继电保护定值相配合;10 光伏进线柜不应具有检有压合闸功能;11 变压器室和光伏进线柜不在同一箱变内的,变压器室内应设置变压器出线柜;12 容量超过800kVA的变压器出线柜内应设置断路器。
光伏发电并网工程电气设计方案
![光伏发电并网工程电气设计方案](https://img.taocdn.com/s3/m/f53ba37cf011f18583d049649b6648d7c1c7089f.png)
光伏发电并网工程电气设计方案【引言】光伏发电并网工程是目前可再生能源领域中的重要组成部分,其核心是将光能转化为电能,并将所产生的电能并网供应给电力系统。
为了确保光伏发电并网工程的正常运行和高效性能,电气设计在其中起着至关重要的作用。
本文将就光伏发电并网工程电气设计方案进行详细的介绍。
【系统组成】2.逆变器:逆变器是将直流电能转化为交流电能的装置,其主要功能是将光伏组件输出的直流电能转换为电力系统所需的交流电能。
在电气设计中,需要根据光伏组件的总功率和输出电压来选择适配的逆变器。
3.电表:电表用于测量光伏发电并网工程的发电量和消纳量,以及电站的电能质量参数。
在电气设计中,需要选择合适的电表类型和安装位置。
4.汇流箱:汇流箱用于集中汇集光伏组件的电流和电压,同时起到保护和连接的作用。
在电气设计中,需要根据光伏组件的数量和布置来确定汇流箱的容量和布局。
5.电气保护设备:电气保护设备主要包括断路器、避雷器、接地装置等,用于确保光伏发电并网工程的安全稳定运行。
6.监测设备:监测设备用于实时监测光伏发电系统的运行状态和性能参数,以便进行运维和故障诊断。
在电气设计中,需要根据监测要求选配合适的监测设备。
7.高压侧配电设备:高压侧配电设备用于将逆变器输出的交流电能接入电力系统。
在电气设计中,需要根据并网点的要求选配合适的高压侧配电设备。
【设计要点】在光伏发电并网工程电气设计中,需要注意以下几个要点:1.系统可靠性:光伏发电并网工程是长期运行的设备,因此电气设计应确保系统具有较高的可靠性和稳定性。
例如,通过合理选择设备和布线方式,提高系统的抗干扰能力和电气安全性。
2.性能优化:电气设计应根据光伏发电系统的特点和运行要求,优化系统的性能。
例如,合理选择逆变器,优化电路参数,降低系统的损耗和成本。
3.安全保护:电气设计应注重系统的安全保护。
例如,合理设置断路器、避雷器和接地装置,以防止系统因雷击等异常情况而受到损坏。
光伏发电项目并网接入系统方案
![光伏发电项目并网接入系统方案](https://img.taocdn.com/s3/m/0cfe9ec24bfe04a1b0717fd5360cba1aa8118cb0.png)
光伏发电项目并网接入系统方案.光伏发电项目并网接入系统方案工作单号:项目业主:(以下简称甲方)供电企业:(以下简称乙方)根据国家和地方政府有关规定,结合中山市供用电的具体情况,经甲、乙方共同协商,达成光伏发电项目接入系统方案如下:一、项目地址:二、发电量使用情况:平均日发电量为6433kWh,**工业园每月平均用电量约40万度,白天(6:00-18:00)日均用电量约为6600度,基本满足自发自用。
三、发电设备容量:合计2260kWp。
四、设计依据和原则1、相关国家法律、法规《中华人民共和国可再生能源法》XXX《可再生能源发电有关管理规定》XXX《可再生能源发电价格和费用分摊管理试行办法》专业资料.财建[2012]21号《关于做好2012年金太阳示范工作的通知》《XXX光伏电站接入电网技术规定》(试行)国务院《关于增进光伏产业健康发展的若干看法》XXX《分布式发电管理暂行办法》财政部《关于分布式光伏发电实行按照电量补贴政策等有关问题的通知》XXX《关于开展分布式光伏发电应用示范区建设的通知》XXX《关于发挥价格杠杆作用促进光伏产业健康发展的通知》XXX《光伏电站项目管理暂行办法》财政部《关于调解可再生能源电价附加征收标准的通知》财政部《关于光伏发电增值税政策的通知》XXX《分布式光伏发电项目暂行办法》财政部《关于对分布式光伏发电自发自用电量免征政府性基金有关问题的通知》XXX《光伏发电运营监管暂行办法》2、最新政策解读:XXX于2014年7月提出《关于进一步落实分布式光伏发电有关政策的通知》,并就这两份文件向各省市能源发改委相关部门以及部分企业征求意见。
该文件针对分布式光伏电站提出了进一步完善意见,根据国内市场的特点扩大分布式光伏电站应用,在促进屋顶落实、项目融资、电网接入、备案管理和电力交易上提出进一步落实和保证性政策。
该文件的突出特点是分布式光伏电站的补贴可专为标高电价托底,同时提高补贴到位及时性,增加电站收益。
3MW屋顶分布式光伏发电项目电气一次设计方案
![3MW屋顶分布式光伏发电项目电气一次设计方案](https://img.taocdn.com/s3/m/6764f5ebb8f3f90f76c66137ee06eff9aef849f3.png)
3MW屋顶分布式光伏发电项目电气一次设计方案1.1设计依据(1)《光伏系统并网技术要求》GB/T19939-2005(2)《电力工程电缆设计规范》GB50217-2016(3)《火力发电厂和变电站照明设计技术规定》D1/T5390-2007(4)《导体和电器选择设计技术规定》D1/T5222-2005(5)《火力发电厂厂用电设计技术规定》D1/T5153-2014(6)《建筑物防雷设计规范》GB50057-2010(7)《电气装置安装工程接地装置施工及验收规范》GB50169-2006(8)《交流电气装置接地设计规范》GB∕Γ50065-2011(9)《交流电气装置的过电压保护和绝缘配合》GB/T50064-2014(10)《电子计算机场地通用规范》GB2887-2011(11)《电力系统二次回路控制、保护屏及柜基本尺寸系列》GB/T7267-2003(12)《电子设备雷击保护导则》GB/T7450-1987(13)《电力系统继电器、保护及自动装置通用技术条件》JB/T 9568-2000(14)《微机继电保护装置运行管理规程》GB/T587-2007(15)《静态继电保护及安全自动装置通用技术条件》D1/T478-2001(16)《火力发电厂、变电所二次接线设计技术规定》D1/T5136-2001(17)《电测量及电能计量装置设计技术规程》D1/T5137-2001(18)《电力系统安全自动装置设计规范》GB/T50703-2011(19)《信息技术设备(包括电气事务设备)的安全》GB4943-96(20)《监控、数据采集和自动控制系统所采用的定义规范和系统》采用的定义规范和系统》本项目总装机容量为3∙135MWp,分为3个1045MWp光伏系统。
考虑到本项目装机容量相对较大,电网短路容量水平相对较低,因此建议本项目以相对较高的电压等级接入电网,因此建议本项目以IOkV电压并入电网。
本项目将通过1回IOkV线路并入电网。
光伏发电并网工程电气设计方案
![光伏发电并网工程电气设计方案](https://img.taocdn.com/s3/m/c520dc866037ee06eff9aef8941ea76e58fa4a3e.png)
光伏发电并网工程电气设计方案一、设计目标及技术要求1.设计目标:本电气设计方案适用于光伏发电并网工程,旨在确保光伏发电系统的正常运行和并网接入。
具体设计目标如下:-提供安全、可靠的电气系统,保障光伏发电系统的平稳运行;-保证光伏发电系统和电网之间的无缝连接,并满足电网对光伏发电功率的要求;-减少功率损失,提高光伏发电系统的发电效率;-节约能源,减少对传统电力资源的依赖。
2.技术要求:-光伏发电系统应满足国家相关标准和规范的要求;-电气系统应采用先进、可靠的设备和技术,确保系统的安全性和稳定性;-并网接入应符合电网接入条件要求,包括频率、电压谐波、功率因数等;-设计应充分考虑系统的可扩展性和智能化控制。
二、总体方案设计1.接线方案:根据光伏发电系统的布置和容量,采用集中式或分布式的接线方案。
集中式接线方案适用于容量较大的光伏发电系统,通过将所有光伏组件串联在一起,再并联到直流汇流箱。
分布式接线方案适用于容量较小的系统,每个光伏组件单独并联到直流汇流箱。
2.直流汇流箱设计:直流汇流箱应考虑容量、防护等级和防雷等因素。
箱体采用耐腐蚀材料制作,配备完善的温度、电流和电压监测装置,以确保光伏组件的安全运行。
箱体内部应合理布置开关设备和保护设备,便于维护和管理。
3.逆变器设计:逆变器是将直流电转换为交流电的关键设备,选择逆变器应考虑容量、效率和可靠性等因素。
逆变器应能满足电网的要求,输出的交流电质量应符合相关标准和规范。
逆变器应具备自动切换至电网模式的功能,以便在光伏发电不足时自动由电网补充电力。
4.电网接入:电网接入应满足电网接入条件要求,包括频率、电压谐波、功率因数等。
设计应考虑光伏发电系统和电网之间的互动关系,确保光伏发电系统平稳接入电网,并能受控地输出电力。
三、详细设计方案1.光伏发电系统的电气设备应按照国家相关标准进行选择,并具备过电压、过电流和短路保护等功能。
2.按照光伏发电系统的容量和布局,合理规划电缆布线和光伏组件串并联的方式,减少电缆损耗和输电损失。
20MW光伏发电系统与电气一次设计
![20MW光伏发电系统与电气一次设计](https://img.taocdn.com/s3/m/6f3785065e0e7cd184254b35eefdc8d376ee1469.png)
20MW 光伏发电系统与电气一次设计摘要:为了保证太阳能资源在光伏发电系统中的有效应用,笔者针对20MW 光伏发电系统以及电气一次设计展开研究,使其能够充分发挥太阳能光伏资源的作用。
关键词:20MW;光伏发电系统;电气一次设计1电气一次系统及光伏发电系统的概述1.1电气一次系统电气一次系统是指由一次设备相互连接,构成发电、输电、配电或进行其他生产过程的电气回路,也被称作一次接线系统或一次回路。
1.2光伏发电系统光伏发电系统是指直接利用太阳能电池将太阳能转换成电能的发电系统。
在其组成上主要包括蓄电池、太阳能电池逆变器和控制器,具有不污染环境、使用寿命长、可独立发电并且能并网发电的特点。
2案例情况分析本文以某县区域建设的光伏发电站为例,该光伏发电站主要供电范围为市电网,其总面积为0.3km2。
20MW光伏发电系统主要运用集中并网、分块发电方案。
该系统共有17个光伏发电单元,每个光伏发电单元51台双分裂箱式变压器对应相连,1台双分裂箱式变压器又分接2台500kW并网逆变器,即1MW作为1个子系统,若干个1MW子系统共同组成整个电站。
在光伏场区中,容量为1000kVA的3570.315-0.315kV双分裂武箱式变压器共设有17台,500kW并网逆变器共设有34台,输出电压为315V。
本文主要对20MW光伏发电系统的光伏组件、光伏组件万阵、光伏方阵、逆变器等进行设计,并计算光伏发电系统的年上网电量。
320MW光伏发电系统设计3.1光伏组件由于单晶硅太阳能电池和多晶硅太阳能电池产品性能较稳定,使用时间较长,具有较高的光电转化效率和较成熟的制作计算,所以当前的并网光伏电站多使用这两种类型。
通过对本电站周围环境、施工条件、光伏电站年发电量、光资源状况等进行深入分析后发现20MW光伏发电系统设计主要选用多晶硅太阳能电池组件。
20MW光伏发电系统需安装较多组件,且这些组件要占用较多用地面积。
为有效减少占地面积,降低组件安装量,需要将单位面积功率高的光伏组件作为首选对象。
5KW家用并网光伏发电系统设计-毕业论文-毕业论文
![5KW家用并网光伏发电系统设计-毕业论文-毕业论文](https://img.taocdn.com/s3/m/ab1dcfc20722192e4536f6f5.png)
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要我国是发展中大国,工业发展与国民用电对能源的依赖性非常大,太阳能不仅清洁无污染而且是可无限再生的一种能源,对太阳能的利用推动了光伏发电产业的发展,小型的家用光伏发电能直接惠利于民在今年来受到广泛关注。
本文设计了装机容量为5KW的光伏并网发电系统,足以满足一般家庭的生活用电。
针对光伏发电产业的现状和前景进行了简单介绍,对光伏并网发电系统的各个模块进行了设计。
包括光伏电池的原理与电池组件的设计、主电路设计、控制系统设计,主电路是由DC/DC变换部分和DC/AC变换部分组成,DC/DC包括电源电路、稳压电路,用于提升光伏电池的输出电压并使之稳定不变;DC/AC包括逆变电路及其驱动信号发生电路;控制系统包含主控芯片、控制电路,控制策略包含最大功率点跟踪算法、spwm驱动信号产生等。
该设计简单可靠,经济实惠,清洁无污染。
关键词:光伏并网,最大功率点跟踪控制,单相全桥逆变电路5KW home photovoltaic grid-connected power generation systemdesignabstractChina is a large developing country. Industrial development and national electricity are very dependent on energy. Solar energy is a clean and renewable energy source. The use of solar energy has promoted the development of the photovoltaic power generation industry. Small domestic photovoltaic power generation can directly benefit Beneficial to the people this year has received widespread attention. This article designed a photovoltaic grid-connected power generation system with an installed capacity of 5KW, which is enough to meet the daily electricity consumption of ordinary families.The current situation and prospect of the photovoltaic power generation industry are briefly introduced, and the modules of the photovoltaic grid-connected power generation system are designed. Including the principles of photovoltaic cells and battery module design, main circuit design, and control system design, the main circuit is composed of two parts: DC / DC conversion and DC / AC conversion. DC / DC includes power supply circuit, voltage stabilization circuit, DC / AC Including the inverter circuit and its driving signal generating circuit, the control system includes the main control chip, control circuit, maximum power point tracking algorithm, spwm driving signal generation, etc. The design is simple, reliable and economical. Keywords:grid-connected photovoltaic; maximum power point tracking control; single-phase full-bridge inverter circuit目录1绪论1.1课题研究背景随着社会发展,对能源的需求越来越大,化石能源在可预见的将来中会枯竭,因此研究新能源对人类社会的发展具有重要意义,太阳能是一种清洁而且可再生的新型能源,而光伏发电不仅能合理利用太阳能,也能带动相关产业的发展,对我国新能源战略具有重要意义。
80kWWp光伏并网系统设计方案
![80kWWp光伏并网系统设计方案](https://img.taocdn.com/s3/m/63f1d61fb52acfc789ebc953.png)
80KWp光伏并网系统设计方案80KWp的光伏并网发电项目,采用分块发电、集中并网方案,最终接入10KV/35KV 中压交流电网进行并网发电。
该80KWp 的光伏并网发电系统,采用逆流型,负荷远小于太阳电池发电量,向电网输送电能,白天,负荷从光伏并网发电系统获得一部分能量,大部分电能输出到中压交流电网。
一、系统设计方案1、80KWp 的光伏并网发电系统:(1)设计原则:安装组件时原则上要在同一日照条件下使用串联的组件,否则,其它组件会受输出量最低的组件影响导致整体输出严重下降,斜屋面安装的组件在每天的不同时间段,其光照将会受到不同方向建筑的一定影响。
为了将组件串接后的热斑效应损耗降到最低,将受到不同方向建筑物影响的组件进行分组。
将受到相同方向建筑物影响的组件归为一组。
并且在系统中采用多组串逆变器(在后面的逆变器中详述)。
为了平衡逆变器的功率,每台多组串逆变器都接入了多组的组件。
由多组串逆变器的每路MPPT(最大功率跟踪)电路对每路组件进行最大功率点跟踪,从而使因挡光引起的组件功率损失降低到最低限度。
(2)总体配置:共用200W太阳电池组件416块,一个太阳电池方阵列单元,为晶体硅太阳电池组件10.4KW(52块分13串,4并),配置1台 10KW光伏功率调节器 , 总共分成8个并网单元,太阳电池组件83.2KWp,8台10KW逆变器,其原理框图如下(图一):图一80KWp的光伏并网发电系统原理框图2、 80KW晶体硅太阳电池组件阵列布置安装:将太阳能光伏发电应用于屋顶时,与建在边远地区、荒漠地区的光伏电站有很多不同点,不能简单地将太阳能电池方阵按最佳倾角的要求布置,必须要充分考虑与周围环境的协调和美观。
根据建设方提供的屋面图以及现场考察情况,电池方阵布置方案如下:斜屋面可安装太阳能组件,总面积(斜面)40*361m2,与斜屋面平行安装组件416块,功率为:200W ×416=83.2KWp。
某100KW并网光伏发电系统设计方案
![某100KW并网光伏发电系统设计方案](https://img.taocdn.com/s3/m/12664f660622192e453610661ed9ad51f01d54e3.png)
某IOOKW并网光伏发电系统设计方案1 .系统的主要构成IOOKW并网光伏发电系统的主要由电池组件方阵、电池方阵支架及基础、直流汇流箱及直流防雷配电箱、光伏并网逆变器、交流防雷配电系统(配电柜、配电室)、监控测量和计量系统、整个系统的连接线以及防雷接地装置等构成。
2 .系统的主要配置说明⑴电池组件系统选用功率为180W的电池组件,其峰值输出电压为34.5V z 开路电压为42V,共配置576块。
采用16块电池组件组串联为一个光伏方阵,共配置36个光伏方阵(要求方阵朝向一致),电池组件总功率为103.68kW0(2)光伏并网逆变器系统设计分成2个50kW并网发电单元,总设计功率IOW 选用合肥阳光电源有限公司SG50K3并网逆变器两台。
(3)直流汇流箱及直流防雷配电箱为了减少电池组件与逆变器之间连接线,以及日后的维护方便,在直流侧配直流汇流箱,该汇流箱为6进1出,即将6路光伏阵列汇流成1路直流输出,每个50kW逆变器需要配置汇流箱3台。
光伏阵列经过汇流箱汇流输出后通过电缆接至配电室,经直流防雷配电柜分别输入到SG50k3逆变器中,系统需要配置两台直流防雷配电柜,每个配电柜按照1个50kW直流配电系统进行设计,直流输出分别接至SG5OK3逆变器。
两台逆变器的交流输出再经交流开关配电柜接至电网,实现并网发电功能。
(4)监控测量和计量系统。
此外,该系统配置1套通信监控测量装置,通过RS485或Ethernet(以太网)通信接口可实时监测并网发电系统的工作状态和运行数据,内部保存的数据记录可供给专业技术人员进行系统的分析。
(5)防雷接地装置根据整个系统情况合理设计接地装置及防雷措施3 .系统设计说明Q)电池组件的串并联设计根据并网逆变器的MPPT电压范围,经过计算,逆变器的串并联数量设计如表所示。
逆变器每个电池串按照16块电池组件串联设计而成,如图所示。
(2)光伏并网系统电气设计框图光伏并网系统电气设计框图,如图8-13所示。
光伏发电站电气设计
![光伏发电站电气设计](https://img.taocdn.com/s3/m/0ce0a3a8dbef5ef7ba0d4a7302768e9951e76e1e.png)
光伏发电站电气设计一、电气(一)一般规定1、并网光伏发电站系统电气设计应在保证人身和财产安全的前提下,本着提高系统效率、技术先进、功能完善、经济合理、供配电可靠和安装运行方便的原则进行。
2、并网光伏发电站系统的电气设计应满足区域电网的设计要求。
(二)电气主接线1、应依据并网光伏发电站的容量、光伏方阵的布局、光伏组件的类别和逆变器的技术参数等条件,经技术经济比较确定逆变器与就地升压变压器的接线方案;就地升压变压器连接两台不自带隔离变压器的集中式逆变器时,可选用更具优势的双绕组变压器。
2、并网光伏发电站母线上的短路电流超过所选择的开断设备允许值时,可在母线分段回路中安装电抗器。
母线分段电抗器的额定电流应按其中一段母线上所联接的最大容量的电流值选择。
3、并网光伏发电站内各单元发电模块与光伏发电母线的连接方式,由运行可靠性、灵活性、技术经济合理性和维修方便等条件综合比较确定,可采用辐射式连接方式或“T”接式连接方式。
4、并网光伏发电站母线上的电压互感器和避雷器应合用一组隔离开关,并组装在一个柜内。
5、并网光伏发电站内6kV-35kV系统中性点可采用不接地、经消弧线圈接地或小电阻接地方式。
经汇集形成的并网光伏发电站,其站内汇集系统宜采用经消弧线圈接地或小电阻接地的方式。
就地升压变压器的低压侧中性点是否接地应依据逆变器的要求确定。
采用经消弧线圈接地或小电阻接地的方式,宜结合400V 站用电系统,设立满足接地阻抗要求和站用电容量需求的站用接地变。
6、当采用消弧线圈接地时,应装设隔离开关。
消弧线圈的容量选择和安装要求应符合DL/T620的规定。
7、并网光伏发电站llOkV及以上电压等级的升压站接线方式,应根据并网光伏发电站在电力系统的重要性、地区电力网接线方式要求、负荷等级、出线回路数、设备特点、本期和规划容量等条件确定。
(三)站用电系统1、应采用动力与照明网络共用的中性点直接接地方式。
2、站用电工作电源引接方式宜符合下列要求:(1)当并网光伏发电站有发电母线时,从发电母线引接供给自用负荷;(2)当技术经济合理时,由外部电网引接电源供给发电站自用负荷;(3)当技术经济合理时,就地逆变升压室站用电也可由各发电单元逆变器变流出线侧引接,但升压站(或开关站)站用电推荐本条上两条款的引接方式。
分布式光伏发电系统的电气设计
![分布式光伏发电系统的电气设计](https://img.taocdn.com/s3/m/76ab57e2f424ccbff121dd36a32d7375a417c6a6.png)
分布式光伏发电系统的电气设计随着可再生能源发电技术的不断发展,分布式光伏发电系统逐渐成为一个重要的能源供应方式。
光伏发电系统通过光伏电池板吸收太阳能的辐射转化为直流电,并通过逆变器将其转化为交流电以供电网使用。
本文将着重探讨分布式光伏发电系统的电气设计方面的内容。
1. 系统结构设计分布式光伏发电系统的电气设计首先从整体系统结构设计入手。
根据实际需求,确定系统的并网方式,即选择与电网并网还是独立发电系统。
同时,需要考虑系统的并网容量和接口设计,确保系统的安全可靠性和稳定性。
2. 逆变器选择与配置逆变器是分布式光伏发电系统中至关重要的组件之一。
逆变器的选择与配置应根据光伏电池板的输出功率、电压和电流等参数进行合理匹配,确保光伏发电系统的输出性能和效率。
此外,还需要考虑逆变器的维护和保养要求,以及其对系统安全与稳定性的影响。
3. 电网接入与保护分布式光伏发电系统需要与电网进行连接,并实现双向电能流动。
因此,电网接入和保护是电气设计中不可忽视的重要环节。
合理设计电网接入装置和保护装置,确保系统与电网的稳定互联,并安装必要的过压、过流和接地保护装置,以保障系统的运行安全。
4. 直流电源系统设计分布式光伏发电系统中,直流电源系统的设计对系统的整体性能和运行稳定性具有重要影响。
应根据光伏电池板的特性和系统负载的需求,合理设计直流配电系统,包括直流电缆的选择、电流和电压的计算等。
同时,考虑到系统的可靠性,还需要配置适当的电池组,以提供备用电力。
5. 接地系统设计在电气设计中,接地系统的设计是分布式光伏发电系统中的一项重要任务。
良好的接地系统设计可以保障系统的电气安全性和可靠性。
确保系统各个组件和设备的接地能够有效地排除故障电流,减少触电危险,并防止系统受到雷击和电磁干扰等。
6. 控制与保护系统设计分布式光伏发电系统的电气设计还需要考虑控制与保护系统的设计。
通过合理配置控制与保护设备,可以实现对系统的监测、控制和保护。
光伏发电站电气设计
![光伏发电站电气设计](https://img.taocdn.com/s3/m/37f0d1f364ce0508763231126edb6f1aff00719f.png)
光伏发电站电气设计光伏发电站电气设计是指对光伏发电站的电力系统进行设计,包括光伏组件、逆变器、电缆、变压器等电气设备的选型和布局,以及电气系统的连接方式和保护措施等。
下面将从电气设备选型和布局、电气系统连接方式以及电气系统保护措施等方面对光伏发电站电气设计进行详细说明。
首先,对于光伏发电站电气系统的设备选型和布局,需要考虑的主要因素包括发电功率、逆变器类型、光伏组件类型以及电缆和变压器的容量等。
根据实际情况选择合适的设备,确保电气系统的稳定运行。
例如,对于发电功率较大的光伏发电站,逆变器的选型应考虑其输出功率和效率,以及逆变器的并网能力等。
对于电缆的选型,要考虑其额定电压和额定电流等参数,以保证电缆的安全运行。
变压器的选型应考虑发电站的容量和线路电压等因素,确保变压器具有足够的容量。
其次,对于光伏发电站电气系统的连接方式,常见的方式有串联和并联两种。
串联方式是将光伏组件依次连接起来,电流相同,电压相加。
并联方式是将光伏组件并联在一起,电流相加,电压相同。
选择合适的连接方式可以根据发电站的具体情况和要求来确定。
例如,对于需要较高电压输出的发电站,可以选择串联方式,以提高输出电压。
而对于需要较高电流输出的发电站,则选择并联方式,以提高输出电流。
最后,对于光伏发电站的电气系统保护措施,主要包括过电流保护、接地保护和避雷保护等。
过电流保护是通过安装过电流保护装置,对电气系统中可能出现的短路、过载等故障进行及时切断,以保护电气设备的安全运行。
接地保护是通过对电气系统进行接地,确保电气设备和人员的安全。
避雷保护是通过安装避雷装置,对电气系统进行保护,防止雷击等自然灾害对设备造成损坏。
总之,光伏发电站电气设计是光伏发电站建设中的重要环节,通过合理选型和布局电气设备,选择合适的连接方式以及实施有效的保护措施,可以确保光伏发电站的电气系统稳定运行,提高发电效率,减少故障发生,并保障设备和人员的安全。
浅谈10kV光伏并网发电系统设计
![浅谈10kV光伏并网发电系统设计](https://img.taocdn.com/s3/m/60ce29418762caaedc33d40b.png)
浅谈10kV光伏并网发电系统设计摘要:本文主要对10kV光伏并网发电系统设计进一步分析了解。
光伏产业是未来新能源领域中最为重要的产业,将占据电力市场不容小聚的一席之地,并成为电力的主要来源之一。
关键词:10kV;光伏并网;发电;系统引言:在生态环境恶化、气候变暖、人们环保意识日益增强和全球资源消费日益紧张的大环境下,人类在不断尝试寻找新的可代替能源,光伏发电必将成为可再生能源领域的一支主力军。
作为分布式发电的一种,光伏并网系统区别于离网光伏发电系统其工作特点是将光伏电池组件产生的直流电经并网逆变器及相关滤波设备的逆变、滤波等转换成符合电网要求的交流电,然后通过中低压配网直接进入大电网或公共电网。
一、并网光伏系统的技术简述光资源分布及光箱射所具有的波动性、间歇性、不均衡性、随机性等特点导致光伏电站可调可控能力差,因此,不同容量、不同电压等级、不同并网方式的光伏电源接入不同配电网的要求是不同的。
光伏发电相比较常规发电具有天然的局限性,其发电特性有别于常规发电方式,从并网的角度常规发电的并网技术条件和接入的计算方法是不适用于光伏并网的;另一方面,目前对光伏电源并网和电网么间的相互影响还没有进行系统深入的研究,没有形成全面、明确、可操作的管理标准和技术规范,相关的电力部口、公司难以从电能质量、稳定性、可靠性、安全性和规范管理的角度对并网光伏电源进行全面可信的评估,从而增加了光伏电源并网的复杂性和困难性。
二、并网光伏发电系统的特点:(1)光伏发电系统输出功率、输出电力等受天气影响很大,尤其在多云、阴雨等光照不足的天气时发电功率等发电指标会出现较大的变化;(2)现有的光伏系统输出功率的功率因数一般为1,为纯有功功率,并网逆变器的控制采用控制输出电流、跟踪并网电压的方式,但随着光伏技术的发展和相关规定和标准的颁布,越来越多的光伏逆变器产品己经具备无功控制、调频、调压功能;(3)光伏电池阵列的输出功率随太阳照射和温度的变化会有一定的变化,但是通过一定的控制机制干预会有一个最大功率点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏并网发电电气系统设计
随着能源危机日益突显和对可再生能源的迫切需求,光伏发电作为一
种清洁、可持续的能源形式,受到了广泛关注。
光伏并网发电系统是将太
阳光转化为电能,然后通过逆变器将电能与电网连接,实现电力的供给和
销售。
在光伏并网发电电气系统设计中,以下几个方面需要考虑:
1.光伏组件选择和布置:根据工程的需求和现场条件,选择合适的光
伏组件,并合理布置。
光伏组件的选取要考虑其性能特点、品质和可靠性,以取得最佳的发电效果。
2.逆变器选择和配置:逆变器是将光伏组件产生的直流电转换成交流
电的关键设备。
在选择逆变器时,要考虑其负载容量、效率、功率因数等
技术指标,以满足系统的要求。
逆变器的配置要根据发电功率和并网容量
确定,以保证系统的稳定运行。
3.并网点和电缆线路设计:并网点是光伏发电系统与电网相连的关键
部分。
在设计并网点时,要考虑电流、电压和功率的传输特性,选择适当
的电缆规格、电缆敷设方式和连接方式,以确保电能的有效传输和系统的
安全运行。
4.保护控制设备选型和布置:光伏并网发电系统需要设置过电压、过流、短路和接地等多种保护装置,以确保系统的安全可靠。
在选型和布置上,要根据系统的容量和运行特点,选择恰当的装置类型和布置位置,以
提高系统的安全性和可靠性。
5.监测与管理系统设计:为了实时监测发电系统的运行状态和发电功率,需要设计和配置监测与管理系统。
监测与管理系统可以实现对光伏组
件、逆变器和电网等关键设备的实时监测和故障报警,以及发电功率的统计和分析,帮助运维人员及时发现和处理问题,提高系统的维护效率和发电效益。
总之,光伏并网发电电气系统设计需要充分考虑发电功率、逆变器工作特性、并网点设备、保护控制设备、监测与管理系统等多个方面因素的影响。
只有合理设计和配置,才能确保系统的安全、稳定和高效运行,使光伏发电成为一种可靠的清洁能源供应方式。