第三章一元一次方程复习
第三章+一元一次方程——一元一次方程的解法复习+课件+++2023—2024学年人教版数学七年级上册

移项,得3x-4x=2+3+6.
合并同类项,得-x=11.
系数化为1,得x=-11.
(2)4x+3 2-x-2 1=2. 解:去分母,得2(4x+2)-3(x-1)=12. 去括号,得8x+4-3x+3=12. 移项,得8x-3x=12-4-3. 合并同类项,得5x=5. 系数化为1,得x=1.
16.小奇借助有理数的运算法则,定义了一种新运算“ ”,其规则如 下:a b=ab+2a.
(1)求(-3)
4
12的值;
解:根据题中的新定义,
得 4 12=4×12+2×4=2+8=10. 则原式=(-3) 10=-3×10+2×(-3)=-30-6=-36.
16.小奇借助有理数的运算法则,定义了一种新运算“ ”,其规则如
下:a b=ab+2a.
(2)若12 x=x 3,求 x 的值. 解:根据题中的新定义化简12 x=x 3,得12x+1=3x+2x.
移项,得 3x+2x-12x=1.
合并同类项,得92x=1.系数化为 1,得 x=29.
基础训练
1.下列方程中,是一元一次方程的是( C )
A.x+2 2-x
B.21x=-1x+4
A.若a=b,则a-1=b-1 B.若 a2=b2 ,则a=b C.若a=b,则-3a=-3b
D.若ac=bc,则a=b
4.下列方程变形中,正确的是( C ) A.方程 3x+4=4x-5,移项,得 3x-4x=5-4 B.方程-32x=4,系数化为 1,得 x=4×-32 C.方程 3-2(x+1)=5,去括号,得 3-2x-2=5 D.方程x-2 1-1=3x+ 3 1,去分母,得 3(x-1)-1=2(3x+1)
一元一次方程(复习)

小结与复习
要点梳理
考点讲练
课堂小结
课后作业
目标导学1
1.解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常 . 数项移到方程右边,移项注意要改变符号 (4) 合并同类项:把方程化成 ax = b (a≠0)的形式.
(5) 系数化为1:方程两边同除以 x 的系数,得 x=m 的形式.
2. 列方程解决实际问题的一般步骤: 审:审清题意,分清题中的已知量、未知量. 设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
(2) 工程问题中基本量之间的关系:
① 工作量 = 工作效率×工作时间; ② 合作的工作效率 = 工作效率之和; ③ 工作总量 = 各部分工作量之和 = 合作的工作效
率×工作时间; ④ 在没有具体数值的情况下,通常把工作总量看
做1.
例2 一项工作,甲单独做8天完成,乙单独做12天完 成,丙单独做24天完成.现甲、乙合作3天后,甲 因有事离去,由乙、丙合作,则乙、丙还要几天才 能完成这项工作?
10
解:设最多可以打 x 折,根据题意得
5001 40% x 500112%.
10 解得 x = 8.
答:广告上可写出最多打 8 折.
针对训练
7. 一家商店将某种商品按进价提高40%后标价,节假 日期间又以标价打八折销售,结果这种商品每件 仍可获利24元,问这件商品的进价是多少元?
解:设这件商品的进价是 x 元,根据题意得
第三章 一元一次方程专题复习(学生版)

第三章 一元一次方程专题复习(学生版)一.知识网络结构二.知识要点剖析知识点一.等式与方程1.等式:表示_____关系的式子.等式的基本性质(方程的同解原理):等式的性质1:等式两边加(或减)___一个数(或式子),结果仍_____。
即:若a=b ,则a ±c =b_____;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个________的数,结果仍相等。
即:若a=b ,则ac=b___, cbc a (c_____0)其它性质:若a=b ,b=c,则a=c (传递性).注意:等式的基本性质是解方程的依据,在使用时要注意式性质成立的条件. 2.方程:含有______的等式叫方程.方程的解:能使方程左右两边________的未知数的值.注意:等式、方程含有等号, 方程是含有未知数的等式; 代数式不含等号;不等式含不等号. 知识点二.一元一次方程(1)定义:只含有_____未知数,并且未知数的次数是_____(次),系数_________的整式方程.(2)一般形式:______________(其中x 是未知数,a,b 是已知数,且a ≠0). 注意:(1)一元一次方程必须满足的3个条件: 只含有一个未知数; 未知数的次数是1次; 整式方程. (2)判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点三.一元一次方程的解法思路:通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成x =a 的形式。
解一元一次方程的一般步骤: 知识点四.列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:①审题,②_______,③_________,④解方程,⑤检验,⑥________. 解应用题的书写格式:设→根据题意→解这个方程→答。
注意:(1)在一道应用题中,往往含有几个未知数量,应恰当地选择其中的一个,用字母x 表示出来,即所设的未知数,然后根据数量之间的关系,将其它几个未知数量用含x 的代数式表示。
一元一次方程专题复习

第三章一元一次方程综合复习题一.选择题1.电影院第一排有m个座位,后面每排比前一排多2个座位,则第n 排的座位数为()A.m+2n B.m+2(n﹣1)C.mn+2 D.m+n+22.无论x取什么值,下列代数式中,值一定是正数的是()A.2x2﹣1 B.(2x+1)2C.|2x+1| D.2x2+13.若x2﹣3x﹣6=0,则2x2﹣6x﹣6的值为()A.﹣8 B.14 C.6 D.﹣24.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是()A.4 B.5 C.6 D.75.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5 B.若a=b,则ac=bcC.若x=y,则=D.若=,则a=b6.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)二.填空题7.如果x表示一个两位数,y也表示一个两位数,现在想用x,y来组成一个四位数且把x放在y的右边,则这个四位数是.8.已知x+2y=3,则2x+4y+1= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.已知当x=1时,3ax2+bx的值为2,则当x=3时,ax2+bx的值.11.如果a﹣3b=﹣6,那么5﹣2a+6b的值等于.12.若式子2x+y的值是﹣4,则4x+2y+8的值是.13.已知a﹣3b=3,则代数式﹣3a+9b﹣5= .14.已知2a﹣3b=﹣3,则5﹣4a+6b= .15.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m 的取值是.16.已知方程(m﹣3)x|m﹣2|+4=2m是关于x的一元一次方程,则m= .17.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).18.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.19.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)20.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.21.已知4a+3b=1,则整式8a+6b﹣3的值为.22.已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为.23.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.24.已知a2+a=1,则代数式3﹣a﹣a2的值为.25.若a﹣b=2,则代数式5+2a﹣2b的值是.26.若=,则= .27.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.28.当x=a或x=b(a≠b)时,代数式x2﹣4x+2的值相等,则当x=a+b 时,代数式x2﹣4x+2的值为.29.某商品原来价格为m元,降价20%后价格为元.30.如图,小明想把一长为a,宽为b的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个边长为x的小正方形,用代数式表示纸片剩余部分的周长.31.购买l个单价为m元的饮料和2个单价为n元的面包,所需钱数为元.32.一台洗衣机的进价是2000元,如果商店要盈利10%,则购买m台这样的洗衣机需要元.三.解答题(共8小题)33.李师傅下岗后,做起来小生意,第一次进货,他以每件a元的价格购进了30件甲种小商品,以每件b元的价格购进了40件乙种小商品,且a<b.(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a,b的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?34.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.35.已知关于x的方程(m+5)x|m|﹣4+18=0是一元一次方程.试求:(1)m的值;(2)3(4m﹣1)﹣2(3m+2)的值.36.已知:a是﹣2的相反数,b是﹣2的倒数,则(1)a= ,b= ;(2)求代数式a2b+ab的值.37.大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?38.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.39.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去一位带队老师的费用,其余游客八折优惠.(1)如果设参加旅游的老师共有x(x>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含x的代数式表示)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.40.某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?一.解答题(共40小题)1.解方程:(1)2(2x﹣3)﹣3=2﹣3(x﹣1)(2)﹣1=.2.解方程:4x﹣3=2(x﹣1)3. 2(x+8)=3(x﹣1)4.解方程:15x﹣3=3(x ﹣4)5.解方程:3(2x+3)=11x﹣6.6.解方程:x﹣1=2(x+1)7.解方程:4(x﹣2)﹣1=3(x﹣1)8.解方程:x﹣2(x+1)=﹣2.9.解方程:+1=x﹣.10.解方程:4x﹣5=.11.解方程:=.12.解方程:5x+1=3(x﹣1)+4.13.解方程:6x+1=3(x+1)+4.14.解方程:.15.解方程:=﹣1.16.解下列方程:(1)5(x+8)=6(2x﹣7)+5;(2).17.解方程:﹣=1.18.解方程:.19.m为何值时,代数式的值与代数式的值的和等于5?20.若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.21.解下列方程(1)4﹣4(x﹣3)=2(9﹣x);(2).22.解方程:(1)(2)﹣=3.23.解方程.(1)5x﹣2(3﹣2x)=﹣3 (2)24.解方程:(1)3﹣(5﹣2x)=x+2.(2).25.解方程:(1)2x﹣(x+10)=6x;(2)=3+26.解方程:x﹣=2﹣. 27..28.解方程:=,29.解方程:(x+15)=﹣(x﹣7)30.解方程=﹣131.解方程:①2(2x﹣2)+1=2x﹣(x﹣3)②﹣=1.32.解方程:(1)=1﹣(2)=.33.解方程:.34.解方程:(1)(2).35.解下列方程:(1)2(x+1)﹣6=3(x﹣2)﹣4(x﹣5);(2).36.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发相向而行,并以各自的速度匀速行驶.1.5小时后两车相距70km;2小时后两车相遇.相遇时快车比慢车多行驶40km.(1)甲乙两地之间相距km;(2)求快车和慢车行驶的速度;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,快车出发多长时间,两车相距35km?.37.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C 到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x(x大于0)秒.(1)点C表示的数是;(2)当x= 秒时,点P到达点A处?(3)运动过程中点P表示的数是(用含字母x的式子表示);(4)当P,C之间的距离为2个单位长度时,求x的值.38.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.39.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?40.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?1.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.2.学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3.某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?4.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?5.某校七年级社会实践小组去某商场调查商品的销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.(1)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?(2)在(1)的条件下,某公司给员工发福利,在该商场促销钱购买了20件该品牌的衬衫发给员工,后因为有新员工加入,又要购买5件该衬衫,购买这5件衬衫时恰好赶上该商场进行促销活动,求该公司购买这25件衬衫的平均价格.6.一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.7.已知一个长方形的周长为60cm.(1)若它的长比宽多6cm,这个长方形的宽是多少cm?(2)若它的长与宽的比是2:1,这个长方形的长是多少cm?8.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?9.小赵和小王交流暑假中的活动,小赵说:“我们一家外出旅行了一个星期,这7天的日期数之和是84天,你知道我们几号出去的么?”小王说“我暑假去舅舅家住了7天,日历数再加月份数也是84,你能猜出我是几月几号回的家?试试看列出方程,解决小赵、小王的问题.(提示:7月1日﹣9月1日暑假)10.我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师人数各多少人?11.A、B两城相距600千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为毎小时100千米,设客车出时间为t.探究若客车、出租车距B城的距离分别为y1、y2,写出y1、y2关于t 的函数关系式,并计算当y1=200千米时y2的値.发现设点C是A城与B城的中点,(1)哪个车会先到达C?该车到达C后再经过多少小时,另一个车会到达C?(2)若两车扣相距100千米时,求时间t.决策己知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:方案一:继续乘坐出租车,到达A城后立刻返回B城(设出租车调头时间忽略不计);方案二:乘坐客车返回城.试通过计算,分析小王选择哪种方式能更快到达B城?12.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h 经过B地,A、B两地间的路程是多少?13.春节期间,甲、乙两商场有某品牌服装共450件,由于甲商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服装的数量是乙商场的2倍,求甲、乙两商场原来各自有该品牌服装的数量.14.某校九年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?15.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?16.现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.17.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?18.一队学生从学校出发去骑行,整个队伍以30千米/时的速度前进.(1)骑行了半小时,突然发现有东西遗忘在学校,一名队员马上以50千米/时的速度返回学校,取到东西后仍以50千米/时的速度追赶队伍,求这名队员从掉头返校到追上队伍,经过了多长时间?(取东西的时间忽略不计)(2)突然前方有事需要接应,派出一名队员前往,如果这名队员以40千米/时的速度独自行进7千米,接应后掉转车头,仍以40千米/时的速度往回骑,直到与其他队员会合.问这名队员从离队开始到与队员重新会合,经过了多长时间?(接应时间忽略不计).解:设这名队员从离队开始到与队员重新会合,经过了x小时,根据题意,可得方程.(本小题只需要列出方程,不用解)19.小明想从“天猫”某网店购买计算器,经查询,某品牌A型号计算器的单价比B型号计算器的单价多12元,5台A型号的计算器与7台B 型号的计算器的价钱相同,问A,B两种型号计算器的单价分别是多少元?20.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.21.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?22.小明在商店里看中了一件夹克衫,店家说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得店家的说法不可信,请你通过计算,说明店家是否诚信?23.公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?24.把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?25.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)26.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?27.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?28.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.29.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.30.为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计费:当用水量不超过10吨时,每吨的收费标准相同;当用水量超过10吨时,超出10吨的部分每吨收费标准也相同.下表是小明家1﹣4月份用水量和交费情况:请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为20吨,则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?31.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?32.某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).33.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t 秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?34.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?35.列方程解应用题:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛?36.某校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.37.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?38.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?39.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?40.某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行;受气温限制这批牛奶必须4天内全部销售或加工完毕.为此该厂设计了三种方案:方案一:将鲜奶全部制成酸奶销售;方案二:尽可能地制成奶片,其余的直接销售鲜奶;方案三:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?。
人教版七年级数学上册第3章一元一次方程 期末综合复习题 (1)

人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)一、选择题1.下列方程是一元一次方程的是()A.x﹣2=3B.1+5=6C.x2+x=1D.x﹣3y=02.x=﹣2是下列哪个方程的解()A.x+1=2B.2﹣x=0C.x=1D.+3=13.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d4.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x+2x=1﹣2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程3t=2,未知数系数化为1,得t=D.方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣45.解方程﹣=1时,去分母后,正确的结果是()A.15x+3﹣2x﹣1=1B.15x+3﹣2x+1=1C.15x+3﹣2x+1=6D.15x+3﹣2x﹣1=66.小马虎做作业,不小心将方程中一个常数污染了,被污染方程是2(x﹣3)﹣•=x+1,怎么办呢?他想了想便翻看书后答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是()A.70千米/小时B.75千米/小时C.80千米/小时D.85千米/小时9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.当x=﹣1时,式子ax3+bx+1=0,则关于x方程+=的解是()A.x=B.x=﹣C.x=1D.x=﹣1二、填空题11.若方程x|a|+3=0是关于x的一元一次方程,则a=.12.已知2a﹣3和4a+6互为相反数,则a=.13.若方程x+2m=8与方程的解相同,则m=.14.方程|x﹣3|=6的解是x=.15.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了场.16.一个两位数,个位上的数字与十位上数字之和是7,将十位和个位对调后的新数比原数的2倍还大2,则原两位数是.17.学校开设兴趣班,建模组有16人,本学期新来的学生小丽加入了已有x人的航模组,这样建模组的人数比航模组的人数的一半多5人,根据题意,可列方程.18.若关于x的方程2x﹣(3x﹣a)=1的解为负数,则a的取值范围是.三、解答题19.解下列方程:(1)3x﹣5x﹣2x=0(2)3(5x﹣6)=3﹣20x(3)2x+3[x﹣2(x﹣1)+4]=8(4)﹣=120.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为倒数,求k的值.21.某瓷器厂共有120个工人,每个工人一天能生产200个茶杯或50个茶壶,如果8个茶杯和一个茶壶为一套,问如何安排生产工人可使每天生产的产品配套?22.某件商品的进价为800元,标价为1150元,因库存积压需降价出售,若每件商品仍想获得15%的利润,需几折出售?23.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?24.数学课上,小华把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD,若中间小正方形的边长为1,求正方形ABCD的边长.25.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.26.“水是生命之源”,我国是一个严重缺水的国家.为倡导节约用水,某市自来水公司对水费实行分段收费,具体标准如下表:每月用水量第一档(不超过10立方米)第二档(超过10立方米但不超过15立方米部分)第三档(超过15立方米部分)收费标准(元/立方米)2.5元?元比第二档高20%已知某月市民甲交水费17.5元,市民乙用水13立方米,交费34元,市民丙交水费61.6元,求:①市民甲该月用水多少立方米?②第二档水费每立方米多少元?③市民丙该月用水多少立方米?27.数轴上,点A、点B所表示的数分别是a和b,点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,点P从点A以每秒3个单位长度的速度沿数轴正方向运动,点Q从点B以每秒1个单位长度的速度沿数轴负方向运动,两点同时出发.①求a、b的值.②设x秒后点P、点Q相遇,求x的值.③数轴上点C到点A和到点B的距离之和是30,求点C所表示的数.④设t秒后点P、Q相距6个单位长度,求t的值.参考答案一、选择题1.解:A、x﹣2=3是一元一次方程,故此选项正确;B、1+5=6不是方程,故此选项错误;C、x2+x=1是一元二次方程,故此选项错误;D、x﹣3y=0是二元一次方程,故此选项错误;故选:A.2.解:A、解方程x+1=2得:x=1,所以x=﹣2不是方程x+1=2的解,故本选项不符合题意;B、解方程1﹣x=0得:x=2,所以x=﹣2不是方程2﹣x=0的解,故本选项不符合题意;C、解方程x=1得:x=2,所以x=﹣2不是方程x=1的解,故本选项不符合题意;D、当x=﹣2时,左边=+3=1,右边=1,即左边=右边,所以x=﹣2是方程的解,故本选项符合题意;故选:D.3.解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、方程3t=2,未知数系数化为1,得t=,不符合题意;D、方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣4,符合题意,故选:D.5.解:﹣=1,去分母得:3(5x+1)﹣(2x﹣1)=6,去括号得:15x+3﹣2x+1=6.故选:C.6.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.7.解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选:C.8.解:设乙车的速度为x千米/小时,则甲车的速度为(x+10)千米/小时,根据题意得:4(x+x+10)=600,解得:x=70.故选:A.9.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.10.解:把x=﹣1代入得:﹣a﹣b+1=0,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,解得:x=1,故选:C.二、填空题11.解:∵方程x|a|+3=0是关于x的一元一次方程,∴|a|=1,解得:a=±1,故答案为:±112.解:∵2a﹣3和4a+6互为相反数,∴(2a﹣3)+(4a+6)=0,∴6a+3=0,解得a=﹣0.5.故答案为:﹣0.5.13.解:由解得x=1,将x=1代入方程x+2m=8,解得m=,故答案为:.14.解:由题意得:x﹣3=6或x﹣3=﹣6,x=9或﹣3,故答案为:9或﹣3.15.解:设该队共平x场,则该队胜了16﹣x﹣5=11﹣x,胜场得分是3(11﹣x)分,平场得分是x分.根据等量关系列方程得:3(11﹣x)+x=27,解得:x=3,故平了3场,故答案为:3.16.解:设原来个位数字是x,十位数字是(7﹣x),2[10(7﹣x)+x]+2=10x+7﹣x,x=2.7﹣x=7﹣2=5.原数为25.故答案是:25.17.解:设航模组已有x人,则学生小丽加入后航模组共有(x+1)人,∵建模组有16人且建模组的人数比航模组的人数的一半多5人,∴(x+1)+5=16,故答案为:(x+1)+5=16.18.解:解方程2x﹣(3x﹣a)=1得,x=a﹣1,∵x为负数,∴a﹣1<0,解得a<1.故答案为a<1.三、解答题19.解:(1)3x﹣5x﹣2x=0合并同类项,可得:﹣4x=0,系数互为1,可得:x=0;(2)3(5x﹣6)=3﹣20x去括号,可得:15x﹣18=3﹣20x,移项,可得:15x+20x=3+18,合并同类项,可得:35x=21,系数互为1,可得:x=0.6;(3)2x+3[x﹣2(x﹣1)+4]=8,去括号,可得:2x+3x﹣6x+6+12=8移项,可得:2x+3x﹣6x=﹣6﹣12+8,合并同类项,可得:﹣x=﹣10,系数互为1,可得:x=10;(4)﹣=1,去分母,可得,4(2x﹣1)﹣3(2x﹣3)=12,去括号,可得:8x﹣4﹣6x+9=12,移项,可得:8x﹣6x=4﹣9+12,合并同类项,可得:2x=7,系数互为1,可得:x=.20.解:解方程2﹣3(x+1)=0得:x=﹣,﹣的倒数为x=﹣3,把x=﹣3代入方程﹣3k﹣2=2x得:﹣3k﹣2=﹣6,解得:k=1.21.解:设x人生产茶杯,则(120﹣x)人生产茶壶.50(120﹣x)×8=200x解得:x=80.所以120﹣80=40(人)答:80人生产茶杯,40人生产茶壶.22.解:由题意可知:设需要按x元出售才能获得15%的利润则:=15%解得:x=920,按n折出售,则n=×10=8故每件商品仍想获得10%的利润需八折出售.23.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.24.解:设小长方形的长为xcm,则宽为x,由题意,得:2×x﹣x=1,解得:x=5,则x=3,所以正方形ABCD的边长是:x+2×x=×5=11.答:正方形ABCD的边长是11.25.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.26.解:①∵2.5×10=25>17.5,∴甲用水量不超过10立方米,∴17.5÷2.5=7立方米,答:甲市民该月用水7立方米.②设超出的部分x元/立方米,由题意得,2.5×10+(13﹣10)x=34,解得,x=3,答:第二档水费每立方米3元.③∵2.5×10+3×(15﹣10)=40<61.6,∴丙的用水量超过15立方米,设丙用水y立方米,由题意得,2.5×10+3×5+3×(1+20%)(y﹣15)=61.6,解得,y=21,答:市民丙该月用水21立方米.27.解:①∵点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,∴a=﹣(24+6)÷2=﹣15,b=(24﹣6)÷2=9;②依题意有3x+x=24,解得x=6.故x的值为6;③(30﹣24)÷2=3,点C在点A的左边,点C所表示的数为﹣15﹣3=﹣18;点C在点A的右边,点C所表示的数为9+3=12.故点C所表示的数为﹣18或12;④相遇前,依题意有:3t+t=24﹣6,解得t=;相遇后,依题意有:3t+t=24+6,解得t=.故t的值为或.。
第三章一元一次方程复习

4.列方程(组)的应用题的一般步骤 审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案(包括单位).
[注意] 审题是基础,列方程是关键.
5.常见的几种方程类型及等量关系
zxxk
(1)行程问题中的基本量之间的关系:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;
②追及问题:若甲为快者,则被追路程=甲走的路程-乙
走的路程; ③流水问题:v顺=v静+v水,v逆=v静-v水.
(2)工程问题中的基本量之间的关系: 工作总量 工作效率= . 工作时间 ①甲、乙合作的工作效率=甲的工作效率+乙的工作效率; ②通常把工作总量看做“1”.
考点攻略
►考点一 等式的基本性质
当堂测试
张欣和李明相约到图书城,根据问题情境,你 能算出汤姆有多少本书吗?
16本
李明: “我买 的书比汤姆的 书的3倍少5 本”。
张欣: “你买的 书还是汤姆的书 的2倍多1本呢”。
►考点 例7
工程问题 一项工作,甲单独做8天完成,乙单独做12天完成,丙
单独做24天完成.现甲、乙合作3天后,甲因有事离去,由乙、
例 1 下列说法正确的是( ) A.x+1=2+2x 变形得到 1=x B.2x=3x 变形得到 2=3 3 4 C.将方程 2x= 系数化为 1,得 x= 2 3 D.将方程 3x=4x-4 变形得到 x=4
►考点二
例2 A .0
方程的解
1 如果 x=2 是方程 x+a =- 1 的解, 那么 a 的值是 ( 2 B .2 C.-2 D .- 6 )
解得x =100.
人教版七年级上册第三章一元一次方程全章小结复习说课稿

(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.理论讲解:以简明扼要的语言讲解一元一次方程的定义、一般形式,让学生明确学习目标。
2.案例分析:通过具体实例,演示一元一次方程的解法,让学生在实际操作中理解并掌握解法步骤。
2.生生互动:通过小组合作学习,学生之间将进行讨论、交流和分工合作,共同解决实际问题。在小组活动中,我会设置明确的任务和评价标准,确保每个学生都能参与到互动中来。
3.课堂讨论:组织全班范围的讨论,让学生分享各自小组的解题过程和答案,鼓励他们相互提问、质疑和补充,以提高课堂氛围和学生思维的深度。
四、教学过程设计
2.情境教学法:将一元一次方程的知识点融入到生活情境中,让学生在具体情境中感受数学的应用价值。这种方法的理论依据是情境学习理论,认为知识需要在真实情境中通过活动和实践来获得。
3.分组合作学习法:将学生分成小组,鼓励他们在小组内进行讨论、交流和合作解决问题。这种教学方法基于社会建构主义理论,强调学习是一个社会互动的过程。
3.教师评价:针对学生的表现,给予积极的评价和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些基础的一元一次方程题目,目的是巩固课堂所学知识,提高解题技能。
2.提高作业:设计一些综合性的题目,让学生运用所学知识解决实际问题,培养他们的应用能力和创新思维。
4.游戏化学习:设计一些与一元一次方程相关的数学游戏,让学生在轻松愉快的氛围中学习,提高他们的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用问题驱动法、情境教学法和分组合作学习法为主要教学方法。
人教版 七年级数学上册 第3章 一元一次方程 综合复习题(含答案)

人教版 七年级数学上册 第3章 一元一次方程综合复习题一、选择题1. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是( ) A .350元 B .400元 C .450元D .500元2. 解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1. A .①②③ B .③②① C .②①③D .③①②3. 下列方程是一元一次方程的是()A .2237x x x +=+B .3435322x x -+=+C .22(2)3y y y y +=--D .3813x y -=4. 下列变形中,不正确的是()A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x y aa=,则ax ay =.5. 2019·阜新某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;如果按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元6. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米7. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -378. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x 人,那么下面所列方程正确的是( )A .(1+8%)x +(1+11%)(4200-x )=4200×10%B .8%x +11%(4200-x )=4200×(1+10%)C .8%x +(1+11%)(4200-x )=4200×10%D .8%x +11%(4200-x )=4200×10%9. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .盈利 B .亏损C .不盈不亏D .与售价a 有关10. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题11. 甲、乙两架飞机同时从相距750 km 的两个机场相向飞行,飞了12 h 到达中途同一机场,如果甲飞机的速度是乙飞机速度的 1.5倍,则乙飞机的速度是________.12. 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .13. 在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,依题意可列方程为__________________.14. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 地区的物资比发往B 地区的物资的1.5倍少1000件,则发往A 地区的生活物资为________件.15. 甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,两人都沿同一公路匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距35 km ,到中午12时,两人又相距35 km ,则A ,B 两地的距离为________km.16. 2018·呼和浩特文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢!”根据两人的对话可知,小华结账时实际付款________元.17. 在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是________.18. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题19. 解方程:0.130.4120 0.20.5x x+--=20. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.21. 有某种三色冰激凌50克,咖啡色、红色和白色配料的比是2∶3∶5,这种三色冰激凌中咖啡色、红色和白色配料分别是多少克?22. 求解题为“李白沽酒”的诗:李白无事街上走,提壶去打酒.遇店加一倍,见花喝一斗.三遇店与花,喝光壶中酒.试问壶中原有多少酒.诗的大意是李白提着没装满酒的酒壶在街上走,遇见酒店就把壶中的酒增加一倍,遇见桃花就喝一斗酒.这样三次先后遇见酒店和桃花,恰好把壶中的酒喝完.则壶中原有多少斗酒?人教版七年级数学上册第3章一元一次方程综合复习题-答案一、选择题1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】A5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】D9. 【答案】B 10. 【答案】A二、填空题11. 【答案】600 km/h 12. 【答案】2a =-,1x =13. 【答案】30x +8=31x -26 14. 【答案】320015. 【答案】105 则x -352=x +354, 解得x =105.故A ,B 两地的距离为105 km. 解法二:设两人的速度之和为x km/h , 则2x +35=4x -35,解得x =35.所以A ,B 两地的距离为2x +35=105(km).16. 【答案】486设小华购买了x 个笔袋,根据题意,得18(x -1)-18×0.9x =36, 解得x =30.则18×0.9x =18×0.9×30=486. 故小华结账时实际付款486元.17. 【答案】5218. 【答案】250 三、解答题19. 【答案】-1020. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.21. 【答案】解:设这种三色冰激凌中咖啡色配料为2x克,那么红色和白色配料分别为3x 克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5.于是2x=10,3x=15,5x=25.答:这种三色冰激凌中咖啡色、红色和白色配料分别是10克,15克,25克.22. 【答案】解:设李白壶中原有x斗酒,依题意可得下表:由此可列方程2[2(2x-1)-1]-1=0.解得x=0.875.答:壶中原有0.875斗酒.。
一元一次方程复习讲义

第三章一元一次方程复习讲义知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.例1(1)怎样从等式x-5=y-5得到等式x=y?(2)怎样从等式3+x=1得到等式x=-2?(3)怎样从等式4x=12得到等式x=3?例2利用等式的性质解下列方程:(1)x+7=26(2)-5x=203.方程:只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、匕是已知数,且aW0).8.一元一次方程解法的一般步骤:化简方程分数基本性质去分母同乘(不漏乘)最简公分母去括号先去小括号,再去中括号,最后去大括号.依据是去括号法则和乘法分配律,注意符号变化移项把含有未知数的项移到一边,常数项移到另一边.“过桥变号”,依据是等式性质一合并同类项将未知数的系数相加,常数项相加.依据是乘法分配律合并后注意符号系数化为1在方程的两边除以未知数的系数.依据是等式性质二.例1解下列方程[1]用合并同类项的方法解一元一次方程(1)2x-£%=6-8;(2)7x—2.5x+3x-1.5x=-15x4—6x3.[2]用移项的方法解一元一次方程(1)7-2x=3-4x(2)4x+10=6x[3]利用去括号解一元一次方程去括号法则:去掉“+()”,括号内各项的符号不变.去掉“-()”,括号内各项的符号改变.用三个字母a、b、c表示去括号前后的变化规律:a+(b+c)=a+b+ca-(b+c)=a—b—c(1)2x-(x+10)=5x+2(x—1)(2)3x—7(x—1)=3—2(x+3)[4]利用去分母解一元一次方程(总结:像上面这样的方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使解方程中的计算更方便些.)2x+2x+7x+x=33(2)3x+x-1=3-2x-1(1)^要点归纳1.去分母时,应在方程的左右两边乘以分母的最小公倍数;2.去分母的依据是等式性质2,去分母时不能漏乘没有分母的项;3.去分母与去括号这两步分开写,不要跳步,防止忘记变号.10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出 未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程(组)的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).[注意]审题是基础,找等量关系是关键.11.解实际应用题:知识点1:市场经,^、打折销售问题(1)商品利润=商品售价一商品成本价(3)商品销售额=商品销售价X 商品销售量(4)商品的销售利润=(销售价一成本价)X 销售量例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?变式1.某琴行同时卖出两台钢琴,每台售价为960元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?例2一件服装先将进价提高25%出售,后进行促销活动,又按标价的8折出售,此时售价为60元.请问商家是盈是亏,还是不盈不亏?例3.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出 售,但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?(2) 商品利润率= 商品利润 商品成本价X 100%例4.某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元但不超过500元的优惠10%,超过500元,其中500元按9折优惠,超过的部分按8折优惠。
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)

2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
第三章 一元一次方程期终复习

一场记 0 分 , 北京国安队所负场数是
所胜场数的 安队共平了多少场?
1 ,结果共得14分,求国 2
六.『调配问题』 例:在甲处劳动的有27人,在乙处劳动 的有19人,现在另调20人去支援,使在 甲处的人数为在乙处的人数的2倍,应 调往甲、乙两处各多少人?
•
为鼓励节约用水,某地按以下规定收 取每月的水费:如果每月每户用水不 超过20吨,那么每吨水按1.2元收费; 如果每月每户用水超过20吨,那么超 过的部分按每吨2元收费。若某用户五 月份的水费为平均每吨1.5元,问,该 用户五月份应交水费多少元?
销 售 中 的 等 量 关 系
●售价×件数=总金额 ●售价、进价、利润的关系式: 商品利润 = 商品售价—商品进价 ●进价、利润、利润率的关系: 利润率= 商品利润 ×100% 商品进价 ●标价、折扣数、商品售价关系 : 折扣数 商品售价= 标价× 10
商品售价= 商品进价 ×(1+利润率)
我国政府为解决老百姓看病难的问题,决定 下调药品的价格,某种药品在2005年涨价 30%后,2007降价70%至a元,则这种药品 在2005年涨价前价格为 元.
3 [ x 1 ( x 1)] 2( x 1) 2 2
用适当的方法解下列方程
3 2 x (1) [ ( 1) 2] x 2 2 3 4 2 x 1 2(2 x 1) 5(2 x 1) (2) 40 2 3 6
变式训练
3
0.1x 0.2 x 1 3 0.02 0.5
如图是一张有4人参加的某项棋类循环比 赛额定积分表,每场比赛胜者得3分,负者 得-1分,和局两人各得1分。
甲 乙 丙 1 -1 3 丁 总分 5 -3
《点拨》 第三章 一元一次方程 基础复习

第三章一元一次方程复习一、自主检测1.(2008·温州)方程3x的解是( )-4=1A.1-x D.2=x==x B.1=x C.2-2.(2010·泸州)若23=-m的解,则m的值为( )1=20x是关于x的方程+x1A.-1 B.0 C.1 D.33.(2009·吉林)A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元.如果设B种饮料为x元/瓶,那么下面所列方程正确的是( ) A.13(2=)1+xx3+)13(2=+-xx B.13C.132=(3-+xx)1+xx D.13)12=(3+*4.(2009·张家界)对于正实数a,b作新定义:b-a+*,在此定义下,若9 *=bbaax=55,则x的值为______.5.(2010·泸州)由于电子技术的飞速发展,计算机的成本不断降低,若每隔3年计算机的1,现价为2400元的某款计算机,3年前的价格为______元.价格降低36.(2008·济南)解方程:0-+x.1(2=)17.(2008·北京)京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同,如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?二、考点典例考点1:方程的相关概念及等式的性质典例1 下列各式不是方程的是( )A .1373=+xB .014=--m xC .532=+D .35=+y x考点2:一元一次方程的解法(重点)典例2 (2010·泰安模拟)解方程:151423=+--x x考点3:-元一次方程的应用(重点,热点)典例3 (2009·北京)列方程或方程组解应用题:北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次,在此期间,地面公交和轨道交通日均客运量各为多少万人次?三、课标新题课标新型题一:最佳方案设计题【例1】(热点题)为庆祝新中国成立六十周年,甲、乙两个班统一组织文艺演出(每名学生都参加),甲和乙两个班共92人(其中甲班人数多于乙班人数,且甲班人数不够90人),现准备统一购买演出服装,下面是某服装厂给出的演出服装的价格表:如果两个班单独购买服装,一共应付5000元.(1)甲、乙两个班各有多少学生?(2)如果甲班有10名学生被抽调去参加书法绘画比赛以致不能参加演出,请你为两个班设计一种最省钱的购买服装的方案.课标新型题二:计算评估题【例2】学习了一元一次方程后,甲、乙、丙、丁四位同学解方程x x 535.044.2=--, 他们的解法分别如下: 甲的解法:把小数化为整数,得x x 65424=--,去分母,得x x 30)4(120=--,去括号,得x x 304120=+-,移项,合并同类项,得12431-=-x ,系数化为1,得4=x . 乙的解法:原方程化为x x 5354010512=--,去分母,得12-x x 3)4010(=-,去括号,得x x 3401012=+-,移项,合并同类项,得5213-=-x ,系数化为l ,得4=x . 丙的解法:原方程化为x x 5354010512=--,去分母,得12+x x 34010=-,移项,合并同类项,得287=x ,系数化为1,得x =4.丁的解法:原方程化为x x 6.02)4(4.2=⨯--,去括号,得x x 6.0824.2=+-,移项,合并同类项,得4.106.2-=-x ,系数化为1,得x =4.以上四位同学的结果都相同,能说明他们的解法是正确的吗?若他们的解法有问题,请指出来.四、易错专攻1.(易混点,2010·河北)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是( )A .48)12(5=-+x xB .48)12(5=-+x xC .48)5(12=-+x xD .48)12(5=-+x x2.(易误点)方程512+-=-x x 的解为______.3.(易混点)已知2是关于x 的方程02=-a x 的解,则a 的值为______.4.(易混点,2009·重庆)某公司销售A ,B ,C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A ,B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加______%.5.(易漏点)解方程:246231x x x -=+--五、过关测试一、选择题1.(2010·宁波模拟)方程012=+x 的解是( )A .21=xB .21-=x C .2=x D .2-=x 2.下列方程是一元一次方程的是( )A .8=xyB .752=+C .2312+=+x x D .623=+y x 3.已知等式mb ma =,下列变形正确的是( )A .b a =B .11-=+mb maC .mb ma -=D .mb ma -=-114.(2010·长沙模拟)关于x 的方程032312=--=+x a x 与的解相同,则a 的值是( ) A .7 B .O C .1 D .-15.解方程6)]12()1[(2)23(=+--++x x x ,得x 等于( )A.2B.4C.6D.8二、填空题6.(2010·苏州)若代数式73+x 的值为-2,则x =______.7.如果312=-x ,823=+y ,那么y x 32+=______.8.某商店销售一批服装,每件售价150元,打8折出售后,每件仍可获利20元,设这种服装的成本价为每件x 元,则x 满足的方程是____________________.三、解答题9.解方程:(1))1()23(21--=-x x (2)12.01.023.03-=+--x x四、课标新型题10.(定义新运算)a ,b ,c ,d 为实数,现规定一种新的运算:bc ad d c b a-=,那么当185)1(42=-x 时,x =______.。
第三章一元一次方程复习课件

十 位 原 数 个 位 表 示
新 数
x 2x
2x x
10x+2x 10×2x+x
有一些相同的房间需要粉刷墙面. 一天3名一级技工粉刷8个房间,结果其中
有50m2墙面,没有来得及刷;
同样时间内,5名二级技工粉刷了10个房间 之外,还多刷了另外的40m2墙面. 每名一级技工比二级技工多粉刷10m2墙面,
西安站和武汉站相距1500km,一列慢车从西 安开出,速度为68km/h,一列快车从武汉开出, 速度为85km/h,若两车相向而行,慢车先开0.5 小时,快车行使几小时后两车相遇?
西安(慢车) 慢车先行路程 慢车后行路程
(快车)武汉
相遇
快车路程
西安
武汉
(慢车先行路程+慢车后行路程)+快车路程=总路程
习跑步,小王每秒跑5米,叔叔每秒跑7.5米。
分 析:
叔叔 小王
小王的路程 + 叔叔的路程 = 400
5x 7.5x 400
小王、叔叔在400米长的环形跑道上练 (2)若两人同时同地同向出发, 多长时间两人首次相遇? 分 析:
叔叔
小王
习跑步,小王每秒跑4米,叔叔每秒跑7.5米。
环形跑道问题
叔叔的路程 - 小王的路程 = 400
解这个方程得 x = 48 进 价 盈利的衣服
60 y 25% y
y = 80
解这个方程得 利润率 25% -25% 售价
亏损的衣服
x y
60
60
128 两件衣服的进价是 x + y =_____元,
而两件衣服的售价是_____元, 120
利润=售价-进价
第三章《一元一次方程》知识点汇总

第三章《一元一次方程》知识点汇总.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”。
5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:????多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:????多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:路程=速度·时间速度?路程路程时间?;时间速度工作量工作量工时?;工时工效(2)工程问题:工作量=工作效率·工作时间工效?工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价几折售价?成本?100%;,利润率?成本10利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题第四章图形初步认识(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形???平面图形:三角形、四边形、圆、多边形等.主视图---------从正面看?2、几何体的三视图左视图---------从左边看??俯视图---------从上面看(1)会判断简单物体(棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段12经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的长短比较方法(1)度量法(2)叠合法(3)圆规截取法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:AmB符号:若点m是线段AB的中点,则Am=Bm=6、线段的性质1AB,AB=2Am=2Bm.2两点的所有连线中,线段最短.简单地:两点之间,线;7、两点的距离;连接两点的线段的长度叫做两点的距离(距离是线段的;8、点与直线的位置关系;(1)点在直线上(或者直线经过点)(2)点在直线;(三)角;1、角:有公共端点的两条射线所组成的图形叫做角.;1?=60?=3600?,1?=60?;1?=?,1?=?=?60603600;(1)度量两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段的长度叫做两点的距离(距离是线段的长度,而不是线段本身).8、点与直线的位置关系(1)点在直线上(或者直线经过点)(2)点在直线外(或者直线不经过点).(三)角1、角:有公共端点的两条射线所组成的图形叫做角.1?=60?=3600?,1?=60?;1?=?,1?=?=?60603600(1)度量法(2)叠合法6、角的四则运算角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线(若oB是?Aoc的平分线,则?AoB=?Boc=1?Aoc,?Aoc=2?AoB=2?Boc).29、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)∠1的余角可以用90°-∠1表示;∠1的补角可以用180°-∠1表示.(4)余角的性质:同角的余角相等;北西北东北补角的性质:同角的补角相等.10、方向角北偏西(1)正方向(2)南或北写在前面,东或西写在后面东西西南南。
第三章 一元一次方程 复习资料

第三章 一元一次方程一、知识梳理 1.方程(1)方程的定义:含有未知数的等式叫做方程.(2)方程的解:能够使方程左、右两边的值相等的未知数的值叫做方程的解. (3)解方程:求方程解的过程叫做解方程. 2.一元一次方程:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程. 3.解一元一次方程的步骤:①去分母,在方程的两边都乘以各分母的最小公倍数,注意不要漏乘不含分母的项,分子为多项式的要加上括号;②去括号,一般先去小括号,再去中括号,最后去大括号,注意不要漏乘括号里的项,当括号前是“-”时,去掉括号时注意括号内的项都要变号;③移项,将含有未知数的项移到方程的一边,不含未知数的项移到方程的另一边,注意移项要变号,移项和交换位置不同;④合并同类项,将同类项合并成一项,把方程化为ax=b (a ≠0) 的形式,注意只合并同类项的系数;⑤系数化为1,在方程ax=b 的两边都除以a ,求出方程的解x=ab ,注意符号,不要把方程ax=b 的解写成x=ba 。
4.列方程解应用题的步骤:(1)读题找相等关系:认真读题,理解题意,分清已知与未知,找出相等关系.(2)设出适当的未知数:根据问题的实际情况,设未知数可以直接设未知数,也可以间接设未知数.(3)列方程:根据问题中的一个相等关系列出方程. (4)解方程:解所列的方程,求出未知数的值.(5)写出所求解的答案:求到方程的解,要检验它是否符合实际意义,如果符合实际意义,要写出完整的答案. 5.实际问题的常见类型(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税);②相等关系:本息=本金+利息.(2)利润问题:①相关公式:利润率=利润÷进价;②相等关系:利润=售价-进价.(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高. ②相等关系:变形前的体积=变形后的体积. (4)工程问题①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系: (相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程. 二、思想方法总结1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。
第三章一元一次方程复习

B D
3a 1 2b 6
2 5 a b 3 3
1、已知 2 x
2 n 1
2 7是一元一次方程,则 n
2n-1=1
m 1
1
2、若 (m 2) x
m 2,(m - 2) 0m 2
a-2=0,即a=2, 原方程为2x+1=0
5 0是一元一次方程,则 m -2
每一项都要乘以最小公倍数
4、关于 x的一元一次方程 2 x a x 1的解是 4,则方程 ay 1 3的解为 y
2 y 5
1、当x 16 时,代数式 x 2与2x 3的差是 3 11
2 2、若代数式 x 7与4x 9是互为相反数,则 9 5 x
10(x+5)+x=8[(x+5)+x]+5
61
希望工程募捐组织了一场义演,共售出 500张票,筹得票款3475元。其中成人票 每张8元,儿童票每张5元。 成人票和儿童票各售出多少张?
解:设儿童票x张,则成人票(500-x)张。根据题意可列方程 5x+8(500-x)=3475 解得x=175 符合题意,则成人票500-x=500-175=325(张) 答:儿童票175张,成人票325张
答:可以得到42,但不可以得到52 设中间的数位x,则它上一个数为(x-7),下一个数为(x+7) 即(x-7)+x+(x+7)=3x, 可知和为3的倍数
1、三个连续奇数的和为75,求这三个数为(
23 25 27
)
(x+2)+x+(x-2)=75
2、一个两位数,十位数 字比个位数字大 , 5 且这个两位数比两个数 位上数字之和的 8 倍还大5,求这个两位数。
人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
第三章一元一次方程归纳复习

北峰中学13-14学年七(上)数学第三章的知识点归纳知识点1 方程的概念方程必须具备两个条件:(1)是等式;(2)含有未知数 例1:下列格式哪些方程?①833=-x ;②314+=;③23-x ;④32=-n m ;⑤21232=--x x ; ⑥02≠-x ;⑦212=-x ;⑧342xx =-;⑨21>+x .知识点2 一元一次方程的概念一元一次方程必须同时具有如下三个特点:(1)只含有一个未知数;(2)所含未知数的项的最高次数为1; (3)方程是由整式组成;例2:下列各式哪些是一元一次方程?①213=-;②1053=-x ;③0=x ;④32=+y x ;⑤0122=+-x x ; ⑥12)(2=+-y y x ;⑦21111=--+x x .例3:已知:0421=+-m x是一元一次方程,则=m _________.例4:已知321)2(1=---k x k 是关于x 的一元一次方程,求k 的值及方程的解.知识点3 解方程与方程的解(1)解方程就是求出使方程等号左右两边相等的未知数的值,这个值就是方程的解;(2)判断一个数是不是方程的解,可把这个数分别代入方程的两边,若方程的两边相等,则该数是方程的解;反之,则不是方程的解;(3)方程的解和解方程是不同的概念,方程的解是一个结果,是具体的数值,而解方程是一个变形的过程.例5:检验下列各数是不是方程的3234+=-x x 的解: (1)3=x ;(2)3-=x知识点4 等式的性质性质1 如果b a =,那么c b c a ±=±.性质2 如果b a =,那么bc ac =;如果b a =)0(≠c ,那么cbc a =. 注:等式两边变形必须是完全相同,等式才成立,否则就会破坏相等关系. 例6:用适当的数或式子填空(1)若853=+x ,则-=83x ____;(2)若414=-x ,则=x _____; (3)若732=-n m ,则+=72m ___;(4)若6431=+x ,则=+12x ____. 例7:利用等式的性质解方程 (1)21=+x ; (2)33=-x; (3)45-=x ; (4)10)1(5=-y知识点5 解一元一次方程——合并同类项把方程中的同类项合并,使方程变得简单,更接近“a x =”的形式.合并时要牢记合并同类项的法则:同类项的系数相加,字母连同它的指数不变.特别要注意系数是负数时,符号不要出错. 例8: 解方程:1531-=-x x知识点6 解一元一次方程——移项移项:把等式一边的某项变号后移到另一边,叫做移项. 移项与假发交换律的区别:移项是把某些项从等式的一边移到等式的另一边,移动的项要变号;而加法交换律中加数交换位置只是改变排列的顺序,不改变符号. 例9:判断下列移项是否正确(1)512-=-x ,移项,得x =-512;(2)21337---=+x x ,移项,得23713--=-x x ; (3)4332+=+x x ,移项,得3342-=-x x ; (4),11275-=--x x 移项,得x x 52711-=-. 例10:解一元一次方程(1)162=+x ; (2)7233+=+x x ; (3)32141+-=x x例11:列一元一次方程求值 (1)若25与x 的差是-8,求x 的值.(2)已知1-=m 是方程n mn n -=-353的解,求n 的值. (3)若式子13-x 与x 2互为相反数,求x 的值.知识点7 解一元一次方程——去括号 注:1.牢记去括号法则;2.运用乘法分配律时,不要漏乘括号内的任何一项;3.按照小、中、大括号的顺序.例12:解下列方程(1))1(26)32(42+-=-+x x x ; (2)x x 4)]1(31[21=--+知识点8 解一元一次方程——去分母注:1.各项都要乘各分母的最小公倍数,不要漏乘没有分母的项;2.如果分子是一个多项式,去分母时要将分子作为一个整体加上括号;3.当分母是小数时,要先利用分数的性质把小数转化为整数,然后再去分母. 例13:解方程:1213=--x x知识点9 解一元一次方程的步骤解一元一次方程步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用变形名称具体做法根据注意事项 去分母在方程两边乘各分母的最小公倍数,当分母是小数时,要先利用分数的性质把小数转化为整数,然后去分母 等式的性质21.不要漏乘不含分母的项;2.分子是一个多项式,去分母后应加上括号.去括号按照小、中、大括号的顺序进行.乘法分配律; 去括号法则 1.不要漏乘括号里的任何一项;2.不要弄错符号.移项把含有未知数的项移到方程的一边,其他项移到方程的另一边等式的性质1 1.注意移向的变号法则;2.不要丢项合并同类项把方程化为)0(≠=a b ax 的形式合并同类项的法则字母及其指数不变系数化为1在方程的两边都除以未知数的系数a,得到方程的解)0(≠=a abx 等式的性质2不要把分子、分母搞颠倒例14:解方程 (1)1426110312-+=+--x x x ; (2)103.02.017.07.0=--xx例15:一元一次方程综合应用(1) m 取何值时,)43(2-m 的值比)7(5-m 的值大8?(2)若4=y 是方程)(538m y m y -=-+的解,解关于x 的方程05)23(=-+-m x m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)一元一次方程的应用
方程,在解决问题中有着重要的作用,依据题目中的信息将问题转化为解方程的问题。
三、课堂展练
1、选项中是方程的是()
A.3+2=5B.a-1>2C.a2+b2-5D.a2+2a-3=5;
2、下列各数是方程a2+a+3=5的解的是()
A.2B.-2C.1D. 1和-2;
3、下列方程是一元一次方程的是()
A. +1=5B. 3(m-1)-1=2;C.x-y=6D.都不是
4、若 。
5、若 是同类项,则m=,n=。
6、代数式x+6与3(x+2)的值互为相反数,则x的值为。
7、解方程:(1) (2)
x=a
方法:把x=a分别代入原方程的两边,分别计算出结果。
①若左边=右边,则x=a是方程的解;②若左边≠右边,则x=a不是方程的解。
注:当题目要求时,此步骤必须表达出来。
说明:
1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;
2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;
3
移项
把未知项移到议程的一边(左边),常数项移到另一边(右边)
移项一定要改变符号
4
合并同类项
分别将未知项的系数相加、常数项相加
单独的一个未知数的系数为“±1”
5
系数化为“1”
在方程两边同时除以未知数的系数(方程两边同时乘以未知数系数的倒数)
不要颠倒了被除数和除数(未知数的系数作除数——分母)
*6
检根
- =1.6
(三)、解一元一次方程的一般步骤
步骤
名称
方法
依据
注意事项
1
去分母
在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)
.
1、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来。
2
去括号
去括号法则(可先分配再去括号)
.
注意正确的去掉括号前带负数的括号
8、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和生票各几张?
四、课堂检测
1、下列变形中,正确的是()
2、若关于x的方程2x-3m=5的解是x=1,则m的值是( )
A.-1 B.1 C.-4 D.4
3、若关于x的方程2x-4=3m的解满足方程x+2=m,则m的值为( )
第三章一元一次方程复习
【复习目标】:1.使学生对本章所学知识及其间的关系有一个总体认识,对数学建模思想和解方程中的化归思想有较深刻的认识;
2.熟练掌握一元一次方程的解法,能列方程解应用题。
【重点难点】:一元一次方程的解法,列方程解应用题。
【导学指导】
一、知识结构(师生共同完成---课件显示)
二、知识要点回顾
即:如果a=b,那么a±c=b;
等式的性质2:等式的两边同时乘,或除以数,结果仍相等。
即:如果a=b,那么ac=bc;或如果a=b,那么 (c≠0)
2、分数的基本的性质
分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即: = = (其中m≠0)
分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如下面的方程: - =1.6,将上方程化为下面的形式后,更可用习惯的方法解了。
A.10 B.8 C.-10 D.-8
4、已知xm-2+1=0是关于x的一元一次方程,那么m=。
5、解方程:(1) ;(2) ;
6、一架飞机在两城之间飞行,顺风需要4小时,逆风需要4.5小时;测得风速为45千米/时,求两城之间的距离。
五、拓展与延伸
1、解方程:
(1)y- =3- ;(2) ;
2、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%,问这种鞋的标价是多少元?优惠价是多少?
3、甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来甲、乙两个水池各有多少吨水?
4、已知关于x的方程9x-3=kx+14有整数解,求满足条件的所有整数k的值。
(一)方程的概念
1.方程:含的等式叫做方程。
2.方程的解:使方程的等号左右两边相等的,就是方程的解。
3.解方程:求的过程叫做解方程。
4.一元一次方程:只含有未知数(元),未知数的最高次数是的方程叫做一元一次方程。
(二)方程变形——解方程的重要依据
1、等式的基本性质
等式的性质1:等式的两边同时加(或减)(),结果仍相等。