高一数学集合练习题及答案--新版
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<2.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}3.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,3,54.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤-C .{}3a a >D .{}1a a <-5.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞6.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 7.已知A B ⊆R ,则( ) A .A B =R B .()A B ⋃=R R C .()()A B ⋂=∅R RD .()AB =RR8.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a的取值范围是( ) A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合()(){}{}1460,7524||A x x x B x x =+--≤=-≤-≤,则A B ⋃=( )A .1|12x x ⎧⎫⎨⎬⎩⎭≤≤B .{}|26x x -≤≤C .1|52x x ⎧≤≤⎫⎨⎬⎩⎭D .{}|14x x ≤≤11.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<12.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-13.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,114.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( ) A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}--- C .{2,1,0,1,2}--D .()3,3-二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.全集U =R ,集合{}3A x x =≤-,则 UA =______.18.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 19.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.20.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”. (1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”? (2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.28.已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ; (3)若A 中至少有一个元素,求a 的取值范围.29.用描述法表示下列集合: (1)所有被3整除的整数组成的集合; (2)不等式235x ->的解集;(3)方程210x x ++=的所有实数解组成的集合; (4)抛物线236y x x =-+-上所有点组成的集合; (5)集合{}1,3,5,7,9.30.(1)集合{a, b, c, d }的所有子集的个数是多少? (2)集合{a 1, a 2, …, an }的所有子集的个数是多少?【参考答案】一、单选题 1.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 2.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤,所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭,又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=; 故选:A 4.B 【解析】 【分析】根据集合的包含关系,列不等关系,解不等式即可. 【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-. 故选:B 5.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D6.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C. 7.B 【解析】 【分析】画出韦恩图,对四个选项一一进行判断. 【详解】画出韦恩图,显然A B ≠R ,A 错误;()A B ⋃=R R ,故B 正确, ()()A B B ⋂=RR R,C 错误;()AB ≠RR ,D 错误.故选:B 8.A 【解析】 【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围. 【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z ,∵M N ⋂有且只有2个元素,∴0<a ≤1. 故选:A. 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.B 【解析】 【分析】化简集合A 和B ,根据集合并集定义,即可求得答案. 【详解】()(){}140|6A x x x =+--≤{}{}2=|310=|(5)(02)0x x x x x x ---+≤≤∴{}|25A x x =-≤≤{}{}|=75241221|B x x x x =-≤-≤-≤-≤-∴1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭∴{}{}1|25|6=|262A B x x x x x x ⎧⎫-≤⎨⎬⋃=≤≤⋃≤-≤⎩≤⎭故选:B. 11.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 12.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 13.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B. 14.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.A B C ##C B A 【解析】 【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系. 【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=,集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=,集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17.{}3x x >-【解析】 【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-, 所以UA ={}3x x >-,故答案为:{}3x x >- 18. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.19.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭20.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:1 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}22.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2623.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立,当1x =时,不等式214x ≤<成立,当2x =时,不等式214x ≤<不成立,当4x =时,不等式214x ≤<不成立,所以{}1A B ⋂=,故答案为:{}124.∅【解析】【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.25.4【解析】【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素,∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去).故答案为:4三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意;当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个.28.(1)9,8⎛⎫+∞ ⎪⎝⎭ (2)当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)9,8⎛⎤-∞ ⎥⎝⎦ 【解析】【分析】(1)利用A 是空集,则Δ00a <⎧⎨≠⎩即可求出a 的取值范围; (2)对a 分情况讨论,分别求出符合题意的a 的值,及集合A 即可; (3)分A 中只有一个元素和有2个元素两种情况讨论,分别求出参数的取值范围,即可得解.(1)解: A 是空集,0a ∴≠且∆<0,9800a a -<⎧∴⎨≠⎩,解得98a >, a ∴的取值范围为:9,8⎛⎫+∞ ⎪⎝⎭; (2)解:①当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎬⎩⎭, ②当0a ≠时,0∆=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭, 综上所求,当0a =时集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时集合43A ⎧⎫=⎨⎬⎩⎭; (3)解:A 中至少有一个元素,则当A 中只有一个元素时,0a =或98a =;当A 中有2个元素时,则0a ≠且0∆>,即9800a a ->⎧⎨≠⎩,解得98a <且0a ≠; 综上可得98a ≤时A 中至少有一个元素,即9,8a ⎛⎤∈-∞ ⎥⎝⎦ 29.(1){|3,Z}x x k k =∈ (2){}4,R x x x ∈(3)2{|10,R}x x x x ++=∈(4)()2{,|36}x y y x x =-+-(5){|21,15x x n n =-≤≤且*N }n ∈【解析】【分析】根据题设中的集合和集合的表示方法,逐项表示,即可求解.(1)解:所有被3整除的整数组成的集合,用描述法可表示为:{|3,Z}x x k k =∈(2)解:不等式235x ->的解集,用描述法可表示为:{}4,R x x x ∈.(3)解:方程210x x ++=的所有实数解组成的集合,用描述法可表示为:2{|10,R}x x x x ++=∈.(4)解:抛物线236y x x =-+-上所有点组成的集合,用描述法可表示为:()2{,|36}x y y x x =-+-.(5)解:集合{}1,3,5,7,9,用描述法可表示为:{|21,15x x n n =-≤≤且*N }n ∈. 30.(1)16;(2)2n【解析】【分析】设集合A 为集合的子集,利用分步计数原理分析每个元素出现的情况,即得解【详解】(1)由题意,若A 为集合{a, b, c, d }的子集则集合A 中的元素只能从a, b, c, d 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有222216⨯⨯⨯=种情况故集合{a, b, c, d }的所有子集的个数是16(2)由题意,若A 为集合{a 1, a 2, …, an }的子集则集合A 中的元素只能从a 1, a 2, …, an 中选择,每个元素出现或者不出现有两种可能 故集合A 的不同情形有22...22n ⨯⨯⨯=种情况故集合{a 1, a 2, …, an }的所有子集的个数是2n。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆ B .M N ⊆ C .M ND .M N ⋂=∅2.已知集合{}0,1,2,3,4,5,6,7A =,{}1,2,4,6B =,则A B =( ) A .{}2,4B .{}1,2,4C .{}1,2,4,6D .{}2,4,63.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( )A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<4.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题: ①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ). A .0个;B .1个;C .2个;D .3个.5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( ) A .{}2,3,4 B .{}1,2,3,4 C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}37.已知集合112A xx ⎧⎫=≥⎨⎬-⎩⎭,{B y y =,则A B =( ) A .∅B .(]2,3C .[]2,3D .(]2,48.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)-C .(2,2)-D .[2,2)- 9.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-10.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5 11.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( ) A .10B .9C .7D .412.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( )A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤15.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________17.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 18.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________.19.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人. 20.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________.21.若集合(){,|M x y y =,(){},|1N x y x ==,则MN =______.22.若集合{}|23A x x =-<<,{}|2B x x =>,则A B =______.23.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________ 24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 三、解答题26.定义:Leistra 序列是一个由1a ,2a ,…,1n a -,()*,2n a n n ∈≥N 组成的有限项序列,有如下性质:①每项1a ,2a ,…,1n a -,n a 都是正偶数;②每项2a ,3a ,…,1n a -,n a 通过将序列中的前一项除以一个10-50(包含10和50)之间的整数得到(对于一个特定序列,使用的除数不一定都相同);③10-50(包含10和50)之间没有整数m 使得na m是一个偶数(其中n a 为数列的最后一项).(1)试判断序列1000、100、4和序列1000、200、4是否为Leistra 序列?并说明理由;(2)是否存在以首项1216a =,末项2n a =的Leistra 序列?如果有,请写出所有的Leistra 序列;如果没有,请说明理由;(3)首项为350123a =⋅的Leistra 序列有多少个?并说明理由.27.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈. (1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.29.已知集合{|23}P x x =-<<,{|0}Q x x a =-≥ (1)若P Q ⊆,求实数a 的取值范围; (2)若P Q =∅,求实数a 的取值范围.30.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .【参考答案】一、单选题 1.A 【解析】 【分析】利用集合的基本关系求解 【详解】解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z ,当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆. 故选:A . 2.C 【解析】 【分析】由交集定义可直接得到结果. 【详解】由交集定义知:{}1,2,4,6A B =. 故选:C. 3.B 【解析】 【分析】解不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B. 4.D 【解析】 【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案. 【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D . 5.D 【解析】 【分析】理解集合的含义,由并集的概念运算 【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D 6.C 【解析】 【分析】由交集的定义直接求解即可 【详解】因为{}1,2M =,{}2,3N = 所以{}2M N =,故选:C 7.B 【解析】 【分析】首先解分式不等式求出集合A ,再求出集合B ,最后根据交集的定义计算可得; 【详解】 解:由112x ≥-,即1102x -≥-,即1202x x -+≥-, 等价于()()23020x x x ⎧--≤⎨-≠⎩,解得23x <≤,即{}11232A xx x x ⎧⎫=≥=<≤⎨⎬-⎩⎭,因为20x ≥,所以21616x -≤,所以04≤,所以{{}04B y y y y ==≤≤,所以{}|23A B x x ⋂=<≤.故选:B. 8.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-. 故选:D 9.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 10.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B 11.C 【解析】 【分析】利用交集的运算求解. 【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=, 所以a =2,b =5, 所以a b +=7, 故选:C 12.C 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.B 【解析】 【分析】分别解出A 、B 集合,再求交集即可.集合A :11022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈, [1,0]y ∈-所以:1(,0]2A B -=故选:B. 【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础. 14.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D. 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.[)1,+∞【解析】 【分析】先求出集合A 、B ,再求A B . 【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+,所以()[][)2,1,31,A B +∞⋃=∞⋃+=. 故答案为:[)1,+∞ 17.{2,3}##{3,2} 【解析】由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}18.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=.故答案为:{}12x x <<.19.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:520.±1【解析】 【分析】根据给定条件可得1B ∈,由此列式计算作答. 【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±. 故答案为:±121.(){}1,0【解析】 【分析】根据交运算的含义,求解方程组,即可求得结果. 【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故M N =(){}1,0.故答案为:(){}1,0. 22.{}|23x x <<##()2,3 【解析】 【分析】由交集运算可直接求解. 【详解】因为{}|23A x x =-<<,{}|2B x x =>,则{}|23A B x x =<<. 故答案为:{}|23x x << 23.5,6##{}6,5 【解析】 【分析】先求出A B ,再进行补集运算及即可求解. 【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=, 故答案为:5,6.24.13,2⎡⎫--⎪⎢⎣⎭【解析】 【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围. 【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-.故答案为:[3-,1)2-.25.9,4⎧-⎨⎩【解析】 【分析】由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x 1x =a ={1A =;若方程(*)有一个根是x =1x =a ={1A =+.综上,a 的取值集合为9{,4-.故答案为:9{,4-.三、解答题26.(1)序列1000、100、4是Leistra 序列,序列1000、200、4不是Leistra 序列,理由见解析 (2)不存在,理由见解析 (3)187个,理由见解析 【解析】 【分析】(1)看两个序列是否满足题干中的三个条件,得到1000、100、4是Leistra 序列,1000、200、4不是Leistra 序列;(2)将216拆解为3323⨯,得到{}218,12,6a ∈,故不能得到末项2n a =,从而证明出不存在;(3)首先得到{}2,6,18,4,12,8n a ∈,根据末项和除数进行分类讨论,求出不同情况下的Leistra 序列个数,相加即为答案. (1)序列1000、100、4每项都是正偶数,而除数依次为10,25,且10-50(包含10和50)之间没有整数m 使得na m是一个偶数(其中n a 为数列的最后一项),故序列1000、100、4是Leistra 序列;1000、200、4不是Leistra 序列,因为10005200=不在10-50(包含10和50)之间; (2)因为33121623a ==⨯,则216在10-50(包含10和50)之间的正约数有12,18,24,36,若1216a =,则{}218,12,6a ∈(9不是偶数,舍去),而此时不存在10-50(包含10和50)之间的正数能再进一步计算使得末项2n a =,所以不存在这样的Leistra 序列. (3)因为350123a =⋅,则在10-50(包含10和50)之间的正约数有27,18,12,36,且每一项()231,k a k n k N αβ*=⋅≤≤∈,其中1,2,3,50αβ=≤且N β∈,再结合10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),则末项20n a <,所以{}2,6,18,4,12,8n a ∈,下面根据末项和除数分别进行研究:①当382n a ==时,则5013na a =,所以每个除数只含有因子3,即全是27,当50不能被3整除,所以无法由27相乘得到,即不存在这种情况; ②当242n a ==时,则50123na a =⋅,所以除数中因子2仅出现1次,只能是21823=⨯,剩下除数全是27,又因为剩下除数乘积为()16483163327==,即有17个除数(18出现一次,27出现16次),一共有17种;③当21232n a ==⨯,则49123na a =⋅,所以除数中因子2仅出现了1次,只能是21823=⨯,剩下除数全是27,但因为剩下除数乘积为473,其中47不能被3整除,所以无法由27相乘得到,即不存在这样的情景;④当2n a =时,则250123na a =⋅,所以除数中因子2出现了2次,即18出现2次或12出现1次或36出现1次,剩下的除数全是27,而对应的剩下除数乘积依次为4549483,3,3,其中()16483163327==,其余两种情况(46和49)都不能被3整除,所以有17个除数(36出现1次,27出现16次),共有17种;⑤当632n a ==⨯时,则249123na a =⋅,所以除数中因子2出现2次,即18出现2次或12出现1次,或36出现1次,剩下除数全是27,而对应的剩下除数乘积依次为4548473,3,3,其中()15453153327==,()16483163327==,而47不能被3整除,所以第一种情况有17个除数(18出现2次,27出现15次),一共有217C 136=种,第二种情况有17个除数(12出现1次,27出现16次),一共有17种;⑥当21823n a ==⨯时,248123na a =⋅,所以除数中因子2出现了2次,即18出现了2次或12出现一次或36出现一次,剩下除数全是27,而对应 的剩下除数乘积依次为4447463,3,3三个数都不能被3整除,故无法由27相乘得到,即不存在这种情形;综上:一共有17+17+136+17=187个Leistra 序列.【点睛】对于定义新数列的问题,要能正确阅读理解题干信息,抓住关键信息,转化为我们熟悉的问题解决.27.(1)[)1,1-;(2)()(),13,∞∞--⋃+;(3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围; (3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >, 故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 28.(1)1,22⎡⎫⎪⎢⎣⎭(2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可, (2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合, 故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2) 解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题,所以R B A ≠∅,即125a +,解得2a .所以a 的取值范围[)2,+∞.29.(1)(,2]-∞-(2)[3,)+∞【解析】【分析】(1)由已知,P Q ⊆可得集合P 是集合Q 的子集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(2)由已知,P Q =∅可得集合P 和集合Q 没有交集,结合两个集合的范围,可得直接求解出实数a 的取值范围.(1)已知{|23}P x x =-<<,{|}Q x x a =≥,要满足P Q ⊆, 即P 中的任意一个元素都是Q 中的元素,则2a ≤-, 即实数a 的取值范围是:(,2]-∞-(2)当P Q =∅,即P 与Q 没有公共元素,因为P 和Q 都不可能为空集,所以要使得两个集合没有公共元素,则3a ≥, 即实数a 的取值范围:[3,)+∞.30.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.。
高一集合测试题及答案
高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={3,4,5},求A∪B。
A. {1,2,3,4,5}B. {1,2,3,4}C. {3,4,5}D. {1,2,3}2. 若集合M={x|x<0},N={x|x>0},则M∩N等于:A. {x|x<0}B. {x|x>0}C. 空集D. {0}3. 集合P={y|y=x^2, x∈R},求P的元素范围。
A. y≥0B. y>0C. y≤0D. y<04. 设集合Q={x|x^2-4=0},求Q的元素个数。
A. 1B. 2C. 3D. 45. 集合R={x|-1≤x≤1},S={x|x>0},求R∩S。
A. {x|0<x≤1}B. {x|-1≤x≤0}C. {x|-1<x≤1}D. {x|-1≤x<0}6. 集合T={y|y=2x, x∈Z},求T的元素性质。
A. 所有元素都是偶数B. 所有元素都是奇数C. 元素既有偶数也有奇数D. 元素不能确定7. 若集合U={x|x^2-4x+3=0},求U的元素。
A. {1,3}B. {-1,3}C. {1,-3}D. {-1,1}8. 设集合V={x|x^2+2x+1=0},求V的元素。
A. {-1}B. {1}C. {-1,1}D. 空集9. 集合W={x|-3≤x≤3},X={x|x>0},求W∩X。
A. {x|0<x≤3}B. {x|-3≤x≤0}C. {x|-3<x≤3}D. {x|-3≤x<0}10. 集合Y={y|y=x^2, x∈N},求Y的元素范围。
A. y≥0B. y>0C. y≤0D. y<0二、填空题(每题2分,共20分)11. 集合A={1,2,3},B={2,3,4},A∩B=______。
12. 若集合C={x|x是偶数},D={x|x是奇数},则C∪D=______。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.设集合{}2|60A x x x x =--<∈Z ,,(){}2|ln 1B y y x x A ==+∈,,则集合B 中元素个数为( ) A .2B .3C .4D .无数个2.已知集合102x A xx -⎧⎫=<⎨⎬-⎩⎭,{1}B x x =>-,则( ) A .RA B ⊆B .RA B ⊆ C .B A ⊆ D .A B ⊆3.已知集合{}220A x x x =--<,(){}3log 22B x y x ==-,则A B =( )A .{}12x x -<<B .{}12x x <<C .{}12x x ≤<D .{}02x x ≤<4.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-5.设集合{}1,0,2,3A =-,139xB x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3-6.已知集合{1,0,1}A =-,{|3x B x =≥,则A B =( )A .{0}B .{0,1}C .{0,1}-D .{1,0,1}-7.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .38.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤9.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2}B .{2,3}C .{1,2,3,4}D .{0,1,2,3,4}10.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.已知集合{}1,0,1,2M =-,{}21xN x =>,则()R M N ⋂=( )A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-12.已知集合(){}2{34},log 22A x Zx B x x =∈-≤<=+<∣∣,则A B 的元素个数为( ) A .3B .4C .5D .613.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0 B .2C .4D .815.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3-二、填空题16.若{}31,3,a a ∈-,则实数a 的取值集合为______.17.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.22.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.23.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.24.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.25.若21,2x a A x x R x ⎧⎫+==∈⎨⎬-⎩⎭为单元素集,则实数a 的取值的集合为______. 三、解答题26.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .27.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ; (2)若______,求实数a 的取值范围.28.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设Y 是由6的全体正约数组成的集合,写出Y 的所有子集.【参考答案】一、单选题 1.B 【解析】 【分析】先解出集合A ,再按照对数的运算求出集合B ,即可求解. 【详解】由260x x --<,解得23x -<<,故{}1,0,1,2A =-,()2222ln (1)1ln(11)ln 2,ln 010,ln(21)ln5⎡⎤-+=+=+=+=⎣⎦,故{}ln 2,0,ln5B =,集合B 中元素个数为3. 故选:B. 2.D 【解析】 【分析】首先解分式不等式求出集合A ,再根据补集的定义求出RA 、RB ,再根据集合间解得基本关系判断可得; 【详解】 解:由102x x -<-,等价于()()120x x --<,解得12x <<, 所以{}10|122x A xx x x -⎧⎫=<=<<⎨⎬-⎩⎭,{}R|12A x x x =≤≥或又{1}B x x =>-,所以{}R 1B x x =≤-, 所以A B ⊆ 故选:D 3.B 【解析】 【分析】求解不等式可得集合A ,根据对数函数的定义可得集合B ,进而求解. 【详解】因为220x x --<,所以12x -<<,则{}12A x x =-<<, 因为220x ->,所以1x >,则{}1B x x =>, 所以{}12B x A =<<, 故选:B 4.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】 因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21coscos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-,41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 5.C 【解析】 【分析】先解指数不等式得集合B ,然后由交集定义可得. 【详解】由2139xx -=⎛⎪3⎫⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =.故选:C . 6.B 【解析】 【分析】由对数的运算性质,并解指数不等式可得31{|log }2B x x =≥,再由集合的交运算求A B . 【详解】由31{|log }2B x x =≥,而311log 02-<<, 所以{0,1}A B =. 故选:B 7.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 8.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 9.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】 先求出RN ,再结合交集定义即可求解.【详解】 由{}{}R210x N x x x =≤=≤,得()R M N ⋂={}1,0-故选:D 12.A 【解析】 【分析】根据对数函数的单调性解得集合B ,再求A B ⋂即可得到其元素个数. 【详解】因为{34}A x Zx =∈-≤<∣{}3,2,1,0,1,2,3=---, ()2log 22x +<,即()22log 2log 4x +<,故024x <+<,解得22x -<<,即{|22}B x x =-<<,则{}1,0,1A B ⋂=-,其包含3个元素.13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.C 【解析】 【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解. 【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<, 又由集合{4,3,2,1,0,1,2,3,4}A =----, 所以A B ={2,1,0,1,2}--. 故选:C.二、填空题16.{}0,1,3【解析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,3 17.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.8 【解析】 【分析】先求得A B ,然后求得A B 的子集的个数. 【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:820.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1.21.{}10123-,,,, 【解析】 【分析】根据并集的定义可得答案. 【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,. 故答案为:{}10123-,,,,. 22.24a ≤≤【解析】 【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围. 【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a ax <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132aa ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤.故答案为:24a ≤≤23.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.24.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤25.9,4⎧-⎨⎩【解析】 【分析】 由方程212x ax +=-只有一解可得,注意方程增根情形. 【详解】 由题意方程212x ax +=-只有一解或两个相等的实根, 220x x a ---=(*),14(2)0a ∆=++=,94a =-,此时,方程的解为1212x x ==,满足题意,1{}2A =;若方程(*)有一个根是x 1x =a ={1A =;若方程(*)有一个根是x =1x =a ={1A =+.综上,a 的取值集合为9{,4-.故答案为:9{,4-.三、解答题26.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅ 【解析】 【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可; (2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.27.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.28.13,44⎡⎤-⎢⎥⎣⎦【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B ,再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解,对方程2210a x ax a +-+=根的情况进行分类讨论若方程2210a x ax a +-+=有两个不相等的实数根,则22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.答案见解析【解析】【分析】首先写出6的正约数,即可得到集合Y ,再用列举法列出Y 的所有子集;【详解】解:因为6的正约数有1、2、3、6,所以{}1,2,3,6Y =,所以Y 的子集有:∅、{}1、{}2、{}3、{}6、{}1,2、{}1,3、{}1,6、{}2,3、{}2,6、{}3,6、{}1,2,3、{}1,2,6、{}1,3,6、{}2,3,6、{}1,2,3,6共16个;。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合{}111,202xA x xB x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()AB =R( )A .()2,1--B .(]2,1--C .()1,0-D .[)1,0-3.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .55.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-16.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( )A .(),2-∞B .(),1-∞C .()0,1D .()0,27.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8}B .{2,3,6,8}C .{2}D .{2,6,8}8.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,49.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,210.设{}{}21,230A x x B x x x =>=--<,则()R A B ⋂=( )A .{}1x x >-B .{}11x x -<≤C .{}11x x -<<D .{}13x x <<11.正确表示图中阴影部分的是( )A .RM ∪N B .RM ∩N C .R (M ∪N )D .R(M ∩N )12.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,513.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤14.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-15.从集合{1,2,3}U =的非空子集中随机选择两个不同的集合A ,B ,则{1}A B ⋂=的概率为( ) A .421B .542C .17D .556二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.20.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.21.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.22.已知集合{}1A x x =>,{}2B x x =<,则集合A B = ________.23.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.24.若集合M 满足{}1,2,3,4M ,则这样的集合M 有______个.25.设不等式2220x ax a -++≤的解集为A ,若{}13|A x x ⊆≤≤,则a 的取值范围为________.三、解答题26.设A 为非空集合,令(){},,A A x y x y A ⨯=∈,则A A ⨯的任意子集R 都叫做从A 到A 的一个关系(Relation ),简称A 上的关系.例如{}0,1,2A =时,(){}10,2R =,2R A A =⨯,3R =∅,()(){}40,0,2,1R =等都是A 上的关系.设R 为非空集合A 上的关系.如果R 满足:①(自反性)若x A ∀∈,有(),x x R ∈,则称R 在A 上是自反的; ②(对称性)若(),x y R ∀∈,有(),y x R ∈,则称R 在A 上是对称的; ③(传递性)若(),x y ∀,(),y z R ∈,有(),x z R ∈,则称R 在A 上是传递的; 称R 为A 上的等价关系.(1)已知{}0,1,2A =.用列举法写出A A ⨯,然后写出A 上的关系有多少个,最后写出A 上的所有等价关系.(只需写出结果)(2)设1R 和2R 是某个非空集合A 上的关系,证明: (ⅰ)若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的;(ⅱ)若1R ,2R 是传递的,则12R R 也是传递的.(3)若给定的集合A 有n 个元素()4n ≥,()12,,,2m A A A m n ⋅⋅⋅≤≤为A 的非空子集,满足12m A A A A ⋅⋅⋅=且两两交集为空集.求证:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A上的等价关系.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>. (1)若A B A ⋃=,求实数m 的取值范围; (2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知集合{23}M xx =-<≤∣, {}N x x a =≤∣. (1)当1a =时,求M N ⋂,M N ⋃,()RM N ;(2)当M N ⋂=∅时,求a 的取值范围.29.设集合{}1,2,3,,M n =⋅⋅⋅,其中3n ≥,n N ∈,在M 的所有元素个数为K (K N ∈,2≤K ≤n )的子集中,我们把每个K 元子集的所有元素相加的和记为K T (K N ∈,2≤K ≤n ),每个K 元子集的最大元素之和记为K a (K N ∈,2≤K ≤n ),每个K 元子集的最小元素之和记为K b (K N ∈,2≤K ≤n ). (1)当n =4时,求3a 、3b 的值; (2)当n =10时,求4T 的值;(3)对任意的n ≥3,n N ∈,给定的K N ∈,2≤K ≤n ,KKb a 是否为与n 无关的定值?若是,请给出证明并求出这个定值:若不是,请说明理由.30.已知集合{}3A x x =<,{}2560B x x x =-+>.(1)求A B ,()RAB ;(2)若{}1C x m x m =<<+,且B C ≠∅,求实数m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可. 【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 2.C【解析】 【分析】由绝对值不等式的解法求出集合A ,再利用指数函数的单调性求解集合B ,最后根据集合的补集、交集的定义即可求解. 【详解】解:由题意,{}{}|111|20A x x x x =-<+<=-<<,{}{}|22|1xB x x x -=≥=≤-,∴{}1R B x x =>-,∴(){}()|101,0R A B x x ⋂=-<<=-. 故选:C . 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤, 所以{}12A B x x ⋂=<≤; 故选:B 4.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 5.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得13i 2213i 22a b ⎧=-+⎪⎪⎨⎪=--⎪⎩或13i 2213i 22b a ⎧=-+⎪⎪⎨⎪=--⎪⎩, 所以1a b +=-, 故选:D. 6.C 【解析】 【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案. 【详解】{}22{|02}A x x x x x =<=<<,故{|01}A B x x =<<, 故选:C. 7.A 【解析】 【分析】由已知,先有集合U 和集合A 求解出UA ,再根据集合B 求解出()UA B ⋂即可.【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8UA =,又因为{}2,6,8B =,所以(){}6,8U A B =. 故选:A. 8.B 【解析】 【分析】由Venn 图中阴影部分可知对应集合为N ()U M ,然后根据集合的基本运算求解即可.【详解】解:由Venn 图中阴影部分可知对应集合为N()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},UM ={}3,4,5,N()U M ={}3,4.故选:B .9.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 10.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据补集、交集的定义计算可得; 【详解】解:由2230x x --<,即()()310x x -+<,解得13x ,所以{}{}2230|13B x x x x x =--<=-<<,又{}1A x x =>,所以{}R1A x x =≤,所以(){}R 11A B x x ⋂=-<≤;故选:B 11.B 【解析】 【分析】根据韦恩图直接分析即可 【详解】图中阴影部分为M 的补集与集合N 相交的部分,即 R M N ⋂, 故选:B. 【点睛】本题主要考查了韦恩图分析交并补集的问题,属于基础题 12.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-,得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 13.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 14.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 15.A 【解析】 【分析】写出集合{1,2,3}U =的非空子集,求出总选法,再根据{1}A B ⋂=,列举出集合,A B 的所有情况,再根据古典概型公式即可得解. 【详解】解:集合{1,2,3}U =的非空子集有{}{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,1,2,3共7个,从7个中选两个不同的集合A ,B ,共有2742A =种选法,因为{1}A B ⋂=,当{}1A =时,则B 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2A =时,{}1,3B =共1种,同理当{}1B =时,则A 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2B =时,{}1,3A =共1种, 则符合{1}A B ⋂=的共有31318+++=种, 所以{1}A B ⋂=的概率为844221=.故选:A.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭,故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}18.5【解析】 【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果. 【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =, 所以同时参加数学和化学小组有5人. 故答案为:5. 19.[1-,6) 【解析】 【分析】直接利用并集运算得答案. 【详解】[2A =,6),[1B =-,4), [2AB ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).20.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.21. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1 【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}22.{}12x x <<【解析】 【分析】根据集合的交集运算,即可求出结果. 【详解】因为集合{}1A x x =>,{}2B x x =<, 所以{}{}{}1212x x x x x x A B ><=<<=.故答案为:{}12x x <<. 23.{}0y y >##()0,∞+【解析】 【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解. 【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭,所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>, 故答案为:{}0y y >. 24.15 【解析】 【分析】结合真子集公式可直接求解. 【详解】 因为{}1,2,3,4M,故集合M 有42115-=个.故答案为:1525.1115a -<≤【解析】 【分析】根据给定条件按集合A 是否是∅分类讨论,再借助一元二次方程根的情况列式求解作答. 【详解】因不等式2220x ax a -++≤的解集为A ,且{}13|A x x ⊆≤≤,则当A =∅时,244(2)0a a ∆=-+<,解得:1a 2-<<,此时满足{}13|A x x ⊆≤≤,即1a 2-<<,当A ≠∅时,不妨令12{|}A x x x x =≤≤(12x x ≤),则一元二次方程2220x ax a -++=在{}|13x x ≤≤上有两个根12,x x,于是有222Δ44(2)012203232013a a a a a a a ⎧=-+≥⎪-++≥⎪⎨-⋅++≥⎪⎪≤≤⎩,解244(2)0a a -+≥得1a ≤-或2a ≥,解2212203232013a a a a a ⎧-++≥⎪-⋅++≥⎨⎪≤≤⎩得:311513a a a ≤⎧⎪⎪≤⎨⎪≤≤⎪⎩, 则有1125a ≤≤,综合得:1115a -<≤, 所以a 的取值范围为1115a -<≤. 故答案为:1115a -<≤三、解答题26.(1)答案见解析(2)(ⅰ)证明见解析;(ⅱ)证明见解析 (3)证明见解析 【解析】 【分析】(1)由A A ⨯的定义可直接得到结果;根据A A ⨯中元素个数可得其子集个数,即为A 上的关系个数;根据等价关系定义列举出所有满足的R 即可; (2)(ⅰ)由()1,x x R ∈,()2,y y R ∈可知()(){}()12,,,x x y y R R ⊆,自反性得证;由()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,根据并集定义可知()()()(){}()12,,,,,,,x y y x s t t s RR ⊆,对称性得证;(ⅱ)采用反证法,可知1R 或2R 不是传递的,假设错误,传递性得证;(3)采用假设的方式,分别假设s s a A ∈,可知(){}(),s s s s a a A A R ⊆⨯⊆,自反性得证;假设,s t t a a A ∈,可知()(){}(),,,s t t s t t a a a a A A R ⊆⨯⊆,对称性得证;假设(),,1s t q q a a a A q m n ∈≤≤≤,可知()()(){}(),,,,,s t t s s q q q a a a a a a A A R ⊆⨯⊆,传递性得证;由此可得结论. (1)由题意得:()()()()()()()()(){}0,0,0,1,0,2,1,0,1,1,1,2,2,0,2,1,2,2A A ⨯=;A A ⨯共有9个元素,A A ∴⨯共有92个子集,即A 上的关系有72512=个;所有等价关系有:()()(){}10,0,1,1,2,2R =,()()()()(){}20,0,1,1,2,2,0,1,1,0R =,()()()()(){}30,0,1,1,2,2,0,2,2,0R =,()()()()(){}40,0,1,1,2,2,1,2,2,1R =, ()()()()()()()()(){}50,0,1,1,2,2,1,2,2,1,0,2,2,0,0,1,1,0R =. (2)(ⅰ)若任意,x y A ∈,12,R R 在A 上是自反的,令()1,x x R ∈,()2,y y R ∈,()(){}()12,,,x x y y R R ∴⊆,则12R R 是自反的;若12,R R 在A 上是对称的,则()1,x y R ∀∈,有()1,y x R ∈;()2,s t R ∀∈,有()2,t s R ∈,()()()(){}()12,,,,,,,x y y x s t t s R R ∴⊆,则12R R 是对称的;综上所述:若1R ,2R 是自反的和对称的,则12R R 也是自反的和对称的.(ⅱ)假设12R R 不是传递的,则()()12,x y R R ∃∈,()()12,y z R R ∈,()()12,x z R R ∉,即()1,x z R ∉或()2,x z R ∉,此时1R 或2R 不是传递的,与已知矛盾, ∴若1R ,2R 是传递的,则12R R 也是传递的.(3)令{}123,,,,n A a a a a =⋅⋅⋅, 12m A A A A ⋅⋅⋅=且两两交集为空集,设s s a A ∈()1s m n ≤≤≤,则除s A 外,其余集合不包含元素s a ; 则(){}(),s s s s a a A A ⊆⨯,又()()()()1122s s m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s s a a R ∴∈,则R 在A 上是自反的;设,s t t a a A ∈()1t m n ≤≤≤,则除t A 外,其余集合不包含元素,s t a a ; 则()(){}(),,,s t t s t t a a a a A A ⊆⨯, 又()()()()1122t t m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,则R 在A 上是对称的;设(),,1s t q q a a a A q m n ∈≤≤≤,则除q A 外,其余集合不包含元素,,s t q a a a ; 则()()(){}(),,,,,s t t s s q q q a a a a a a A A ⊆⨯, 又()()()()1122q q m m A A A A A A A A ⨯⊆⨯⨯⋅⋅⋅⨯,(),s t a a R ∴∈,(),t s a a R ∈,(),s q a a R ∈,则R 在A 上是传递的; 综上所述:()()()1122m m R A A A A A A =⨯⨯⋅⋅⋅⨯为A 上的等价关系.【点睛】关键点点睛:本题考查集合的自反性、对称性和传递性的证明,解决此问题的关键是能够充分理解已知中所说的性质的含义;解题基本思路是采用假设的方式和反证的方式,通过说明元素与集合、集合与集合之间关系证得结论. 27.(1)(0,3] (2)[5,)+∞ 【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解. (1)解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩,解得03m <≤,所以实数m 的取值范围是(0,3]; (2)因为x A ∈是x B ∈的充分条件, 所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞. 28.(1){}|21MN x x =-<≤,{}|3MN x x =≤,()(]1,3R M N ⋂=(2)(]2-∞-, 【解析】 【分析】(1)由集合的交集运算和并集运算、补集元素概念可得答案; (2)由集合间的关系可求得a 的取值范围. (1)当1a =时,{}|1N x x =≤,又{}|23M x x =-<≤, 所以{}|21MN x x =-<≤,{}|3MN x x =≤;()1,RN =+∞,则()(]1,3R M N ⋂=(2)当M N ⋂=∅时,则需2a ≤-,所以a 的取值范围(]2-∞-,. 29.(1)315a =,35b =; (2)4620 (3)K K b a 与n 无关,为定值1K,证明过程见解析. 【解析】 【分析】(1)将3元子集用列举法全部列举出来,从而求出3a 、3b 的值;(2)用组合知识得到每个元素出现的次数,进而用等差数列求和公式进行求解;(3)用组合及组合数公式先求出K a ,再求出K a 与k b 的和,进而求出k b 及比值.(1)当4n =时,{}1,2,3,4M =,则3元子集分别为{}{}{}{}1,2,3,1,2,4,1,3,4,2,3,4,则3344415a =+++=,311125b =+++=.(2)当n =10时,4元子集一共有410210C =个,其中从1到10,每个元素出现的次数均有3984C =次,故()410118412108446202T ⨯=⨯+++=⨯= (3)K K b a 与n 无关,为定值1K,证明过程如下: 对任意的n ≥3,n N ∈,给定的K N ∈,2≤K ≤n , 集合{}1,2,3,,M n =⋅⋅⋅的所有含K 个元素的子集个数为Kn C ,这Kn C 个子集中,最大元素为n 的有11K n C --个,最大元素为()1n -的有12K n C --个,……,最大元素为()n m -的有11K n m C ---个,……,最大元素为1n K -+的有11K K C --个,则()()()()1111112311121K K K K K K n n n n m K a nC n C n C n m C n K C -----------=+-+-++-++-+①,其中()11K K n m n m n m C KC -----=,所以()12K K K K KK n n n n m K a K C C C C C ---=++++++()111211K K KKK K n n n n m K n K C C C C C KC ++---++=++++++=,这Kn C 个子集中,最小元素为1的有11K n C --个,最小元素为2的有12K n C --个,最小元素为3的有13K n C --个,……,最小元素为(m +1)的有11K n m C ---个,……,最小元素为K 的有11K K C --个,则()1111112311231K K K K K K n n n n m K b C C C m C KC -----------=+++++++②,则①+②得:()()()()111111123111111K K K K K K K K K n n n n m K n n a b n C C C C C n C K C -----+------++=+++++++=+=+,所以()1111111K K K K n n n b K C KC C ++++++=+-=,故1K K b a K=,证毕. 【点睛】集合与组合知识相结合,要能充分利用组合及组合数的公式进行运算,当然在思考过程中,可以用简单的例子进行辅助思考.30.(1){}3A B x x ⋃=≠,(){}23R A B x x ⋂=≤< (2){}2m m ≠ 【解析】 【分析】(1)解出集合B ,利用并集、补集以及交集的定义可求得结果;(2)由已知条件可得出关于m 的不等式,即可解得实数m 的取值范围. (1)解:因为{}3A x x =<,{}{25602B x x x x x =-+>=<或}3x >,所以{}3A B x x ⋃=≠,{}23R B x x =≤≤,(){}23R A B x x ⋂=≤<. (2)解:因为B C ≠∅,所以2m <或13m +>,解得2m <或2m >, 所以m 的取值范围为{}2m m ≠.。
高一数学集合练习题含答案
高一数学集合练习题含答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}0,1,2 B .{}1,2 C .{}0,2 D .{}23.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3- 5.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}05x x <≤6.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-7.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1- 8.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5}9.已知集合{}220A x x x =-≤,{}0,1B =,则A B =( ) A .[]0,1 B .{}0,1 C .[]0,2 D .{}0,1,210.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( ) A .()1,2 B .()1,5 C .()2,4 D .()4,5 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂= 12.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1613.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .514.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞15.已知集合{}2230A x x x =--≤,{}22B x x =-≤<,则A B ⋃=( ) A .{}12x x -≤< B .{}12x x -≤≤ C .{}22x x -<< D .{}23x x -≤≤二、填空题16.集合A =[1,6],B ={x |y ,若A ⊆B ,则实数a 的范围是________________.17.将集合{220s t A t s =-≤<且,}s t Z ∈中所有的元素从小到大排列得到的数列记为{}n a ,则50a =___________(填数值).18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.19.已知集合{}{}0,1,2,1P Q xx ==∣,则P Q 的非空真子集的个数为__________. 20.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个24.若a ∈R ,集合A ={1,a ,a +2},B ={1,3,5},且A =B ,则a =___________.25.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知{|S x x =是小于9的正整数},{}4,5,6,7A =,{}3,5,7,8B =,求(1)A B(2)A B(3)()S C A B28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}|33A x a x a =-≤≤+,{}2|40B x x x =-≥. (1)当2a =时,求A B ,A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.30.已知集合{|211},{|01}A x a x a B x x =-<<+=≤≤.(1)在①1a =-,②0a =,③1a =这三个条件中选择一个条件,求A B ;(2)若R ()A B A ⋂=,求实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A2.C【解析】【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果.【详解】 因为集合{}24A x N x =∈≤化简可得{0,1,2}A = 又{}1,B a =,B A ⊆,所以0a =或2a =,故实数a 的取值集合为{0,2},故选:C.3.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】理解集合的含义,由并集的概念运算【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D6.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B7.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.8.B【解析】【分析】由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B9.B【解析】【分析】先求出集合A ,再根据交集运算求出A B 即可.【详解】 由题意知:{}02A x x =≤≤,又{}0,1B =,故A B ={}0,1.故选:B.10.B【解析】【分析】先求出集合,A B ,再求A B 即可.【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B.11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.B【解析】【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得.【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集.故选:B13.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.14.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C15.D【解析】【分析】先解一元二次不等式求出集合A ,再按集合的并集运算即可.【详解】 由题意得{}13A x x =-≤≤,因为{}22B x x =-≤<,所以{}23A B x x ⋃=-≤≤. 故选:D.二、填空题16.(,1]-∞【解析】【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞17.992【解析】【分析】列举数列的前几项,观察特征,可得出50a .【详解】由题意得10212032313012345622,22,22,22,22,22,,a a a a a a =-=-=-=-=-=-观察规律可得22s t -中,以2s 为被减数的项共有s 个,因为123945++++=,所以50a 是1022t -中的第5项,所以1055022992a =-=.故答案为:992.18.7【解析】【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果.【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个. 故答案为:719.2【解析】【分析】先求P Q 后再计算即可.【详解】{}1,2,P Q P Q ⋂=∴⋂的非空真子集的个数为2222-=.故答案为:220.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.21.24a ≤≤【解析】【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围.【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a a x <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132a a ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤. 故答案为:24a ≤≤22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=,故答案为:{}1.23.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:724.3【解析】【分析】根据集合相等的概念得到方程组,解之即可求出结果.【详解】∵A B =,∴325a a =⎧⎨+=⎩,解得3a =,或523a a =⎧⎨+=⎩,无解所以3a =.故答案为:3.25.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】 集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}.27.(1){}5,7A B =(2){}3,4,5,6,7,8A B =(3)(){}1,2,3,5,7,8S C A B =【解析】【分析】(1)根据交集概念求解即可.(2)根据并集概念求解即可.(3)根据补集和并集概念求解即可.(1){}4,5,6,7A =,{}3,5,7,8B =,{}5,7A B =.(2){}4,5,6,7A =,{}3,5,7,8B =,{}3,4,5,6,7,8A B =.(3){}1,2,3,4,5,6,7,8S =,{}1,2,3,8S C A =,{}3,5,7,8B =, (){}1,2,3,5,7,8S C A B =.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 29.(1){|45}A B x x ⋂=,{|0A B x x ⋃=或1}x ;(2)(0,1).【解析】【分析】(1)当2a =时,求出集合A ,B ,由此能求出A B ,A B ; (2)推导出0a >,R A B 是的真子集,求出{|04}R B x x =<<,A ≠∅,列出不等式组,能求出实数a 的取值范围.(1)2{|40}{|0B x x x x x =-=或4}x , 当2a =时,{|15}A x x =,{|45}A B x x ∴⋂=,{|0A B x x ⋃=或1}x ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件, 0a ∴>,R A B 是的真子集,{|04}R B x x =<<,A ≠∅,∴3034a a ->⎧⎨+<⎩,解得01a <<. ∴实数a 的取值范围是(0,1).30.(1)答案见解析(2)11a a ≤-≥或【解析】【分析】(1)分别对a 赋值,利用集合的并集进行求解; (2)先根据题意得到R A B ⊆,再利用集合间的包含关系进行求解,要注意A =∅的情形.(1)解:若选择①:当1a =-时,(3,0)A =-, 因为[0,1]B =,所以(]3,1A B ⋃=-. 若选择②:当0a =时,(1,1)A =-, 因为[0,1]B =,所以(1,1]A B ⋃=-. 若选择③:当1a =时,(1,2)A =, 因为[0,1]B =,所以[)0,2A B ⋃=.(2)解:因为[0,1]B =,所以R (,0)(1,)B =-∞+∞.因为R ()A B A ⋂=,所以R A B ⊆, 当A =∅时,2112a a a -≥+≥,即;当A ≠∅时,2210211a a a a <<⎧⎧⎨⎨+≤-≥⎩⎩或, 即112a a ≤-≤<或;综上,11a a ≤-≥或.。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e -D .()2,e - 3.已知集合{}42A x x =-<<,{}29B x x =≤,则A B ⋃=( ) A .(]4,3-B .[)3,2-C .()4,2-D .[]3,3-4.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1} B .{0,1}C .{0,1,2}D .∅5.已知集合{}1,2,3,4A =,{}25B x x =<,则A B =( )A .{}1B .{}1,2C .{}1,2,3D .{}1,2,3,46.若集合{A y y ==,{}3log 2B x x =≤,则A B =( )A .(]0,9B .[)4,9C .[]4,6D .[]0,9 7.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2) B .{1,2} C .{0,1,2} D .{0,1,2,3} 8.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3 B .{}0,2 C .{}0,2,3 D .{}1,0,2,3-9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤<B .{}|15x x ≤<C .{}|15x x -≤<D .{}|13x x ≤≤10.已知全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U A B =( ) A .{1} B .{4} C .{0,5} D .{0,1,4,5} 11.设集合{}1,2,3M =,{|21,}.N y y x x M ==-∈下列表示正确是( ) A .{}1,2N ⊆, B .{}2M ⊇ C .M N ⋃ {}1,2,3,5 D .{}1,3M N ⋂=12.已知集合{}1,0,1,2M =-,{}21x N x =>,则()R M N ⋂=( ) A .{}1-B .{}0x x ≤C .{}10x x -<≤D .{}1,0-13.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( ) A .(1,3)- B .(2,)-+∞ C .(2,1)-- D .(,2)-∞- 14.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .215.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( )A .AB .BC .(5,1]-D .[4,0)-二、填空题16.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________.17.已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________. 18.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.19.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},则a =_______;已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},U B ={-1, 0, 2},则B =_____.20.已知(1,2)A =-,(1,3)B =,则A B =________21.若{}231,13a a ∈--,则=a ______.22.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.23.若集合(){,|M x y y =,(){},|1N x y x ==,则M N =______.24.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______. 25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R 这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由.已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值;(2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).27.已知集合{|lg(3)A x y x ==-+,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<.(1)若2a =-,求()R A B ⋃;(2)若A B A =,求a 的取值范围.30.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.3.A【解析】【分析】先求B ,再求并集即可【详解】易得{}3|3B x x =-≤≤,故(]4,3A B ⋃=-故选:A4.A【解析】【分析】首先列举表示集合A ,再求A B .【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=.故选:A5.B【解析】【分析】求出集合B,根据集合的交集运算求得答案.【详解】 因为{}5252B x x x x ⎧⎫=<=<⎨⎬⎩⎭ ,所以{}1,2A B =, 故选:B6.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .7.B【解析】【分析】求得集合{|03}A x x =<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B =-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B =.故选:B.8.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】 由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .9.D【解析】【分析】求解分式不等式的解集,再由补集的定义求解出A R ,再由交集的定义去求解得答案.1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R .故选:D10.B【解析】【分析】 由补集、交集的概念运算【详解】{0,4,5}U A =,则(){4}U A B ⋂=.故选:B11.D【解析】【分析】根据题意求得集合N ,结合集合的交运算和并运算,以及集合之间的包含关系,即可判断和选择.【详解】因为{}1,2,3M =,{}{}|21,1,3,5N y y x x M ==-∈=,则{}{}1,3,1,2,3,5M N M N ⋂=⋃=, 对A :因为{}1,2不是N 的子集,故A 错误;对B :因为{}1,2,3不是{}2的子集,故B 错误;对C :{}1,2,3,5M N ⋃=是{}1,2,3,5的非真子集,故C 错误;对D :{}1,3M N ⋂=.故D 正确.故选:D .12.D【解析】【分析】 先求出R N ,再结合交集定义即可求解.【详解】由{}{}R 210x N x x x =≤=≤,得()R M N ⋂={}1,0- 故选:D13.B【解析】【分析】先计算出集合,A B ,再计算A B 即可.【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞.14.B【解析】【分析】先求得A B ,再根据()Z M 的定义求解.【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x , 所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x , 所以()4=Z A B ,故选:B15.C【解析】【分析】根据集合并集的概念及运算,正确运算,即可求解.【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-.故选:C.二、填空题16.{2,3}##{3,2}【解析】【分析】由交集的运算求解【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}17.0或4【解析】【分析】由题意得A 只有一个元素,对m 分类讨论求解【详解】当0m =时,1{}4A =-,满足题意 当0m ≠时,由题意得1640m ∆=-=,4m =综上,0m =或4m =故答案为:0或418.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.19. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1【解析】【分析】利用补集的定义,依次分析即得解【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8};若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},U A ={4},故{1,3,4}U U A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},U A ={-1, 1},故{1,0,1,2,4}U U A A =⋃=-,U B ={-1, 0, 2},故B ={1, 4} 故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}20.(1,2)##{}12,x x x R <<∈【解析】【分析】根据集合交集的定义可得解.【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=.故答案为:(1,2)21.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.22.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.23.(){}1,0【解析】【分析】根据交运算的含义,求解方程组,即可求得结果.【详解】根据题意M N ⋂中的元素是方程组1y x ⎧=⎪⎨=⎪⎩求解方程组可得:1,0x y ==,故MN =(){}1,0.故答案为:(){}1,0. 24.2【解析】【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案.【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根,所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍;当2m =时,{}{}224201B x x x =-+==,满足条件. 故答案为:225.[)2020,∞+【解析】【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围.【详解】由2202120200x x -+<,解得:12020x <<,∴()1,2020A =,又A B ⊆,且{}|B x x a =<,∴2020a ≥,故a 的取值范围为[)2020,∞+.故答案为:[)2020,∞+三、解答题26.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b a b a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.27.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)()R A B ⋃{|2x x =≤-或1}x ≥ (2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1)解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.30.(1)2,13⎡⎤⎢⎥⎣⎦ (2)[]2,3【解析】【分析】(1)解不等式得到解集,根据题意列出不等式组,求出a 的取值范围;(2)先解不等式,再根据充分不必要条件得到(,3)a a 是[]2,9的真子集,进而求出a 的取值范围.(1)因为0a >,由22430x ax a -+<可得:3a x a <<, 因为“()1,2x ∀∈,22430x ax a -+<”为真命题,所以()()1,2,3a a ⊆,即1,32,a a ≤⎧⎨≥⎩,解得:213a ≤≤. 即a 的取值范围是2,13⎡⎤⎢⎥⎣⎦. (2)因为0a >,由22430x ax a -+<可得:3a x a <<, 21118029x x x -+≤⇔≤≤,因为p 是q 的充分不必要条件,所以(,3)a a 是[]2,9的真子集,所以2,39,a a ≥⎧⎨≤⎩(等号不同时取),解得:23a ≤≤, 即a 的取值范围是[]2,3.。
高一数学集合练习题及答案(5篇)
高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
完整版)高一数学集合试题及答案
完整版)高一数学集合试题及答案1.已知集合M={-1,1,-2,2},N={y|y=x,x∈M},则M∩N是{1,-1}。
2.设全集U=R,集合A={x|x^2≠1},则C U A={-1,1}。
3.已知集合U={x|x>0},C U A={x|0<x<2},那么集合A={x|x≤0或x≥2}。
4.设全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则(I-M)∩N={-3,-4}。
5.已知集合M={x∈N|4-x∈N},则集合M中元素个数是3.6.已知集合A={-1,1},则如下关系式正确的是AA∈,AB∈,AC{}∈,AD∅。
7.集合A={-2<x<2},B={-1≤x<3},那么A∪B={-2<x<3}。
8.已知集合A={x|x^2-1=0},则下列式子表示正确的有①1∈A,②{-1}∈A,③∅⊆A,④{1,-1}⊆A。
9.已知U={1,2,a^2+2a-3},A={|a-2|,2},C U A={0},则a的值为-3或1.10.若集合A={6,7,8},则满足A∪B=A的集合B的个数是7.11.已知集合M={x≤-1},N={x>a},若MN≠∅,则有a<-1.12.已知全集U={0,1,2,4,6,8,10},A={2,4,6},B={1},则(C U A)∪B={0,1,8,10}。
13.设U={三角形},A={锐角三角形},则C U A={直角三角形,钝角三角形}。
14.已知A={0,2,4},C U A={-1,1},C U B={-1,2},则B={1,2}。
15.已知全集U={2,4,a^2-a+1},A={a+1,2},C U A={7},则a=3.16.集合{}是空集。
1.集合B= {-1,0,2}2.已知全集U=R,集合A={x|1≤2x+1<9},则C UA={x|x<1或x≥5}3.实数a的取值范围为a≥419.因为AB=A,所以5∈B,即5²+5m+n=0,代入A={3,5}得到两个方程:9+15m+n=0,25+25m+n=0,解得m=-2,n=-39或m=-2,n=-23.因此,m=-2,n=-39或m=-2,n=-23.20.A={1,2},因此,B的两个根都必须是1或2,即(m-1)²-2(m-1)+m-2=0,解得m=2或m=4.因此,实数m的取值范围为m=2或m=4.21.A∩B={x|a-1<x<1},因此,若AB=∅,则A与B的交集为空集,即a-1≥1或2a+1≤-1,解得a≤0或a≤-1.因此,实数a的取值范围为a≤-1.22.A={a。
(完整版)高一数学-集合练习题有答案
高一数学会合练习题(答案)一、选择题1.若会合X{ x | x 1},以下关系式中建立的为()A .0 XB .0 XC .XD .0X2. 50 名同学参加跳远和铅球测试,跳远和铅球测试成绩分别为及格40 人和 31人, 2 项测试成绩均不及格的有4 人, 2 项测试成绩都及格的人数是()A .35B .25C .28D .153.已知会合A x | x 2mx 1 0 , 若 A I R,则实数m的取值范围是()A .m 4B .m4C . 0 m 4D . 0 m 44.以下说法中,正确的选项是( )任何一个会合必有两个子集;若AI B ,则A,B中起码有一个为任何会合必有一个真子集;若S 为全集,且AI B S,则A B S,5.若U为全集,下边三个命题中真命题的个数是()(1)若 A B,则C U AC U B U(2)若AB U,则C U AC U B(3)若AB,则A BA .0个B . 1个C .2个D . 3个M { x | xk 1, k Z} N { x | xk 1, k Z }6.设会合2 4,4 2,则()A .M NB .MC N MD MI N7.设会合A{ x| x 2x 0}, B { x | x 2x 0} ,则会合 A IB ()A .C .D . 1,0,1B .二、填空题1.已知My | yx 24x3, x R , Ny | yx 2 2x 8, xR则 M N __________ 。
M{ m|10Z, mZ}2.用列举法表示会合:m 1=。
3.若Ix | x 1, x Z,则 C I N =。
4.设会合A1,2 , B1,2,3 , C 2,3,4 (A I B )U C。
则U(x, y) x, yRM( x, y)y2 1N( x, y) y x 45.设全集x2,,会合,那么(C UM)I(C UN )等于 ________________ 。
(完整版)高一数学集合练习题及答案(人教版)
一、选择题(每题 4 分,共 40 分)1、以下四组对象,能组成会合的是()A 某班全部高个子的学生B有名的艺术家C全部很大的书D倒数等于它自己的实数2、会合 {a , b,c } 的真子集共有个()A 7B 8C9D103、若 {1 , 2}A{1 , 2, 3,4, 5} 则知足条件的会合 A 的个数是()A. 6B. 7C.8D. 94、若 U={1, 2, 3, 4} ,M={1, 2} , N={2,3} ,则 C U( M∪ N) =()A. {1,2, 3}B. {2}C. {1, 3, 4}D. {4}x y15、方程组x y 1 的解集是( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:0 0 ,0,0.3Q ,0 N ,a, b b, a,x | x2 2 0, x Z 是空集中,错误的个数是()A4 B 3 C 2 D 17、点的会合M={ (x,y)|xy≥0}是指( )A. 第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D.不在第二、第四象限内的点集8、设会合 A=B= x x a A B1 x 2,则 a 的取值范围是,,若()A a a 2B a a 1C a a 1D a a29、知足条件 M1 = 1,2,3的会合 M的个数是()UA 1B 2C 3D 410、会合P x | x2k, k Z, Q x | x 2k 1, k Z ,R x | x4k1, k Z ,且a P, b Q ,则有()A a b PB a b QC a b RD a b 不属于P、Q、R中的随意一个二、填空题(每题 3 分,共 18 分)11、若A { 2,2,3,4},B {x|x t2,t}BA ,用列举法表示12、会合 A={x| x 2+x-6=0}, B={x| ax+1=0},若 B A,则 a=__________13、设全集 U= 2,3, a22a3, A= 2,b, C U A= 5,则a =, b =。
(完整版)高一数学集合测试题及答案
高一数学集合测试题一、选择题(每小题 5分,共60分) 1 .下列八个关系式① {0}= ② =0③{ }④ 0⑦{0} ⑧{ }其中正确的个数()(A) 4 (B) 5(C) 6(D) 72 .集合{1 , 2, 3}的真子集共有()(A) 5 个(B) 6 个(C) 7 个(D)8 个3 .集合 A={x x 2k, k Z } B={ xx 2k 1, k Z } C={ a A,b B,则有()(A) (a+b)A (B) (a+b)B (C)(a+b)C (D) (a+b)4 .设A 、B 是全集U 的两个子集,且 A B,则下列式子成立的是( (C) A C U B= (D) C U A B=_ _ 2_ 一 一一 _2 0} B={ xx 4x3 0}则 A B =((A) R(C) { xx 1或x 2}(D) { xx 2或x 3}(E) U={0, 1, 2, 3, 4} , A={0, 1, 2, 3}, B={2, 3, 4},则(C U A)(A) {0} (B) {0,1}(A) C U A C U B (B) C U A C J B=U 6.设 f(n) = 2n + 1(nC N), P = {1 , 2, 3, 4, 5} , Q = {3 , 4, 5, 6, 7},记 P ={nC N|f(n)CP}, Q={n€ N|f(n)C Q},则(P n 5 Q)U(Q n 5 P )=() (A) {0 , 3} (B){1 , 2} (C) (3, 4, 5} (D){1 , 2, 6, 7} 7.已知 A={1, 2, a 2-3a-1},B={1,3},A B {3,1}则a 等于() (A) -4 或 1 (B) -1 或 4 (Q -1 (D) 4{ } ⑤{0}⑥xx 4k 1,k Z }又A 、B 、C 任一个 )5.已知集合A={ x x2(CUB)=()(C) {0,1, 4} (D) {0, 1, 2, 3, 4} 10.设 A={x Zx 2px 15 0},B={x一 2 一 一 ,一 …Zx 5x q 0},若 A B={2,3,5},A 、B 分别为()(A) {3, 5}、{2, 3}(C) {2, 5}、{3, 5}(B) {2, 3}、{3, 5} (D) {3, 5}、{2, 5}11 .设一元二次方程ax 2+bx+c=0(a<0)的根的判别式 一 2b 4ac 0 ,则不等式ax 2+bx+c 0的解集为()14.已知集合乂=6|口-1)(盅-#)>0},集合目二小||工+ 1| + |工-2 531,且(q02£・兄则实数a的取值范围是(A.S"[-1,2]「一 LA-F L 二 1则X O 的取值范围是((A) R (B)(C) { xxb2a }(D) { —}2a12 .已知 P={ m 4 0}, Q={m|mx 2 mx 1 0 ,对于一切x R 成立},则下列关系式中成立的是( (A) (B)(C) P=Q(D)Q 二13 .若 M={xn Z }, N={xnx 1…, …一——n Z},则M N 等于( (A) (B) { (Q {0}(D) ZB.C. D. 15.设 U={1 , 2, 3, 4, 5}, A, B 为 U 的子集, 若 A B={2} , (C U A) B={4} , (C U A) ( C U B)={1, (A) (C) 5},则下列结论正确的是(3 A,3 3 A,3(B) (D))A,3 A,316. 设集合A,r2,1 ,函数1,x A 四 2 ,右 X O x ,x BA,且 f f x 0 A ,A.10,- 4B.D- o,817. 在R 上定义运算 e : ae b ab 2a b ,则满足xe x 2 0的实数x 的取值范围为A. (0,2)B. (-1,2)C. 2 U 1,D. (-2,1).18.集合P={x|x 2=1} , Q={x|mx=1},若值P,则m等于( )A . 1B . -1C . 1 或-1 D , 0,1 或-119.设全集 U={(x,y) x, y R},集合 M={(x,y) -_2 1}, N={(x,y) I y x 4},x 2那么(QM) (CND等于( )(A) { (2,-2) } (B) { (-2, 2) }(C) (D) (C U N)20.不等式x2 5x 6 <x2-4的解集是( )(A) {x x 2,或x 2} (B) {x x 2}(C) { x x 3} (D) { x 2 x 3,且x 2}二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为2,若 A={1,4,x},B={1,x 2}且 A B=B,则 x=3.若人=仅x2 3x 10 0} B={x I |x 3 },全集 U=R 则 A (C U B)=4.如果集合T = {大卜=/ +上l+ I = 0}中只有一个元素,则 a的值是5.集合{a,b,c}的所有子集是真子集是;非空真子集是6.方程x2-5x+6=0的解集可表示为2x 3y 13方程组2x 3y的解集可表示为3x 2y 07.设集合A={x 3 x 2},B={x 2k 1 x 2k 1},且A B,则实数k的取值范围是__________________ o8.设全集 U={x x 为小于 20 的正奇数},若 A (C U B) ={3, 7, 15}, (CA) B={13, 17,19},又(GA) (QB)=,贝U A B=9.已知集合 A= {xC R | x2+2ax+2a2-4a+4 = 0},若5A,则实数a的取值是10.设全集为U,用集合A、日C的交、并、补集符号表图中的阴影部分。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.设集合{|,log (1)}xa A a x R a x a =∃∈=>,{|0,B y x xy =∀≥≥,下列说法正确的是( ) A .A B ⊆B .B A ⊆C .B A ⋂=∅D .BA ≠∅2.已知集合{}1,2,3,4A =,{}25B x x =<,则A B =( ) A .{}1B .{}1,2C .{}1,2,3D .{}1,2,3,43.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2)B .{1,2}C .{0,1,2}D .{0,1,2,3}4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.设集合{}2{|1N 9|}A x x B x x =>=∈<, ,则A B = ( )A .(13),B .(31)(13)--⋃,,C .{2}D .{-2,2}6.已知集合{}2cos ,A y y x x R ==∈,满足BA 的集合B 可以是( )A .[]22-,B .[]2,3-C .[]1,1-D .R7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 9.已知集合{}21A x x =-≤,2024x B xx ⎧⎫+=≤⎨⎬-⎩⎭.则A B =( ) A .[6,2]- B .(,1][2,)-∞⋃+∞ C .[1,2] D .[1,2)10.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,511.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .812.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( )A .{}1B .{}01,C .{}123,,D .{}0123,,,13.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .1514.已知集合{}ln ,1A y y x x ==>,1,12xB y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( )A .102y y ⎧⎫<<⎨⎬⎩⎭B .{}01y y <<C .112y y ⎧⎫<<⎨⎬⎩⎭D .∅15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________. 19.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.20.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 21.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.22.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.23.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.24.若{}231,13a a ∈--,则=a ______.25.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______.三、解答题26.已知函数()0)>f x a 的定义域为M . (1)若M R =,求实数a 的取值范围; (2)求{}x x a M ≥⋂.27.已知函数()f x =A,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .29.已知集合1282xA x ⎧⎫=≤≤⎨⎬⎩⎭,()(){}210B x x a x a =---≤.(1)当2a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 的充分不必要条件,求实数a 的取值范围.30.(1)已知全集U =R ,集合{}2A x x =≤,{}2|60B x x x =--<,求()U A B ⋂. (2)已知0a >,0b >,且21a b +=,若不等式21m a b+≥恒成立,求实数m 的最大值.【参考答案】一、单选题 1.D 【解析】 【分析】利用因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,得到x a x ≤,进而得出集合A 的范围;对于集合B ,化简得y ≥()g x =()g x 的最值,得出集合B 的范围,即可求解 【详解】对于集合{},log (1)xa A a x R a x a =∃∈=,因为x y a =与log a y x =互为反函数,所以,互相关于y x =对称,而,log x a x R a x ∃∈=,所以,只需要x a x ≤即可,因为1a >,所以, ln ln x a x ≤,得ln ln x a x ≤,设ln ()xf x x=,得21ln ()x f x x -'=,所以, (0,)x e ∈,()0f x '>,()f x 单调递增;(,)x e ∈+∞,()0f x '<,()f x 单调递减,所以,1()()Maxf x f e e ==,得到11e a e <≤,所以,11,e A e ⎛⎤= ⎥⎝⎦;对于集合{|0,B y x xy=∀≥≥,化简得y≥()g x=()g x'20x>,可设()h x=,()h x'=<,()h x∴单调递减,又(0)0h=,所以,当0x>时,()0h x'<,()0h x<,()0g x∴'<,()g x单调递减,利用洛必达法则,x→时,000x x x→→→===所以,()y g x=≥)B=+∞;由于1(1,)Ae=,)B=+∞,所以,D正确故选:D2.B【解析】【分析】求出集合B,根据集合的交集运算求得答案.【详解】因为{}5252B x x x x⎧⎫=<=<⎨⎬⎩⎭,所以{}1,2A B=,故选:B3.B【解析】【分析】求得集合{|03}A x x=<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B=-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B=.故选:B.4.C【解析】【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B=⊆=,若A B⋂≠∅,且A B⊆/,所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.C 【解析】 【分析】解一元二次不等式,求出集合B ,解得集合A ,根据集合的交集运算求得答案. 【详解】由题意解29x <得:33x -<< ,故2N 9{|}{0,1,2}B x x =∈=<,{}||11{A x x x x ==>>或1}x <- , 所以{2}A B =, 故选:C 6.C 【解析】 【分析】先求出集合A ,再根据B A 求解即可.【详解】由题意知:{}22A y y =-≤≤,要满足B A 即[]22B-,,结合选项可知:[]1,1B =-.故选:C. 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.C 【解析】 【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确; 故选:C. 9.D 【解析】 【分析】 解不等式后求交集 【详解】|2|1x -≤,解得13x ≤≤,故[1,3]A =,2024x x +≤-,解得22x -≤<,故[2,2)B =-, [1,2)A B ⋂=故选:D 10.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 11.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 12.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 13.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B. 14.A 【解析】 【分析】根据题意求出,A B 后运算 【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B =故1(0,)2A B =故选:A 15.D 【解析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.{}1,2,3,4,5【解析】 【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,5 18.{x |x >-1} 【解析】 【分析】利用集合的并集运算求解.解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}. {x |x >-1} 19.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.20.±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得a =±故答案为:± 21.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.22.{}0y y >##()0,∞+【解析】【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解.【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭, 所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>,故答案为:{}0y y >.23.35,88⎡⎤⎢⎥⎣⎦ 【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】因为()()294sin 32311644x x x f x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦. 因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --.依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦ 24.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.25.0,1或1-【解析】【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可.【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =- 故答案为:01,或-1.三、解答题26.(1)405a <≤; (2)答案见解析.【解析】【分析】(1)根据绝对值的性质,结合二次根式的性质进行求解即可;(2)根据绝对值的性质、交集的定义, 结合42,3a a -之间的大小关系分类讨论进行求解即可.(1) 32,,2222,2232,2a x a x a x x a a x x x a x ⎧+-≥⎪⎪⎪++-=+--<<⎨⎪-+-≤-⎪⎪⎩所以|2||2|++-x x a 的最小值为32222⨯+-=+a a a ,因此232+≥a a , 所以405a <≤; (2)因为0a >,所以当x a ≥时,|2||2|32++-=-+x x a x a ,4232303a x a a x --+-≥⇒≥; 当2a ≥时,423a a -≥,此时{}42,3a x x a M ∞-⎡⎫≥⋂=+⎪⎢⎣⎭;②当02a <<时,423a a -<,此时{}[),x x a M a ∞≥⋂=+. 27.(1)1{|03A B x x ⋂=-<≤或1}x =; (2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.29.(1){}23A B x x ⋂=≤≤(2)a ≤【解析】【分析】(1)首先解指数不等式得到{}13A x x =-≤≤,再求A B 即可.(2)首先根据题意得到{}21B x a x a =≤≤+,再根据充分不必要条件求解即可. (1),2a =时,{}25B x x =≤≤,{}23A B x x ⋂=≤≤(2){}2221310124a a a B x a x a ⎛⎫+-=-+>⇒=≤≤+ ⎪⎝⎭, p 是q 的充分不必要条件,则且A B ≠, 所以2a ≤-30.(1)()2,3U A B ⋂=;(2)9.【解析】【分析】 (1)先求不等式解集,再利用集合的补集、交集运算即可(2)转化为最值问题,由基本不等式求解【详解】(1)由已知{}()2602,3B x x x =--<=- ()2,U A =+∞,所以()()2,3U A B ⋂=,(2)()2121222225259b a b a a b a b a b a b a b⎛⎫+=+⋅+=++≥⋅= ⎪⎝⎭, 且仅当13a b ==时取等号, 不等式21m a b +≥恒成立,则9m ≤,故m 的最大值为9.。
高一数学集合练习题及答案(新版)
高一数学集合练习题及答案(新版)一、单选题1.已知集合{}24A x x =<,{}2log 0B x x =>,则A B =( )A .{}22x x -<<B .{}02x x <<C .{}21x x -<<D .{}12x x <<2.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( )A .{}1,0-B .{}1,2C .{}1,0,1-D .{}0,1,23.设集合{}13A x x =-<<,集合{}32B x x =-≤≤,则A B =( ) A .{0,1,2} B .{1,2} C .{}33x x -≤<D .{}12x x -<≤4.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2) B .(-1,2)C .(-2,3)D .(-1,3)5.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]6.已知集合{}28xA x =≤,{}16B x x =-≤≤,则A B ⋃=( )A .(,6]-∞B .[1,6]-C .[1,3]-D .(0,6]7.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3) B .[-1,3) C .[-2,3] D .[-1,3] 8.已知集合22{(,)|3,Z,Z}A x y x y x y =+≤∈∈,则A 中元素的个数为( )A .9B .8C .5D .49.已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围是( ) A .()2,+∞ B .{}()12,∞⋃+ C .{}[)12,+∞D .[)2,+∞10.已知集合{|4}A x x =<,{0,1,2,3,4}B =,则A B =( ) A .{0,1,2}B .{1,2,3}C .{2,3}D .{0,1,2,3}11.设集合{}2,3,4,5A =,{}3,4,6B =,则A B =( ). A .{}2B .{}2,3C .{}3,4D .{}2,3,412.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞ D .(],3-∞ 13.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( ) A .10B .9C .7D .414.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 15.已知集合{}{}220,1A x x x B x x =+-<=<-,则()UAB =( )A .{}11x x -<<B .{}11x x -≤<C .{}21x x -<<-D .{}12x x -≤<二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则AB =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________.21.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.22.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 23.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.24.若集合{}1A x x a =-≤,{}2540B x x x =-+>,A B =∅,则实数a 的取值范围是______.25.用描述法表示被4除余3的自然数全体组成的集合A =______.三、解答题26.设集合{|34}{|211}A x x B x m x m =-≤≤=-<<+, (1)当 1m =时,求A B ; (2)若,B A ⊆求实数m 的取值范围.27.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.28.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.29.已知函数()f x A ,不等式1()402x->的解集是集合 B ,求集合 A 和R ()B A ⋂ .30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.D 【解析】 【分析】先求得集合A 、B ,根据交集运算的概念,即可得答案. 【详解】由题意得集合{22}A x x =-<<, 因为22log 0log 1x >=,所以1x >, 所以集合{1}B x x =>, 所以{12}A B x x ⋂=<<. 故选:D 2.B 【解析】 【分析】解出B 集合,得到B 的补集的范围,再与A 取交集. 【详解】解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B. 3.D 【解析】 【分析】对两个集合直接求交集即可. 【详解】集合{}13A x x =-<<,集合{}32B x x =-≤≤, 则A B ={}12x x -<≤, 故选:D4.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 5.C 【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C. 6.A 【解析】 【分析】先解出集合A ,再计算A B 即可. 【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞.故选:A. 7.B 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 8.A 【解析】 【分析】根据x ,y 满足的关系式求得x ,y 的可能值,从而求得集合元素个数.【详解】由223x y +≤,得x ≤≤y ≤ 又Z x ∈,Z y ∈,所以{1,0,1}x ∈-,{1,0,1}∈-y ,易知x 与y 的任意组合均满足条件,所以A 中元素的个数为339⨯=. 故选:A. 9.C 【解析】 【分析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a 或211a +-解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭,,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a 或211a +-,即 2.a 综上,实数a 的取值范围为{}[)12,+∞.故选:C. 10.D 【解析】 【分析】根据集合交集运算方法计算即可. 【详解】因为{|4}A x x =<,{0,1,2,3,4}B =,∴A B ={0,1,2,3}. 故选:D. 11.C 【解析】 【分析】依据交集定义即可求得A B 【详解】{}{}{}2,3,4,53,4,63,4A B ⋂=⋂=故选:C 12.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 13.C 【解析】 【分析】利用交集的运算求解. 【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=, 所以a =2,b =5, 所以a b +=7, 故选:C 14.B 【解析】 【分析】分别解出A 、B 集合,再求交集即可. 【详解】 集合A :11022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈, [1,0]y ∈-所以:1(,0]2A B -=故选:B. 【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础. 15.B 【解析】 【分析】先化简集合A ,在求集合A 与集合B 补集的交集 【详解】220x x +-<()()210x x ⇒+-<21x ⇒-<<所以{}|21A x x =-<<{}|1B x x =<-{}U|1B x x ⇒=≥-所以(){}U|11AB x x =-≤<故选:B二、填空题16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.28【解析】 【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数. 【详解】6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人; ∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.18.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案. 【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.{}0y y >##()0,∞+ 【解析】 【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解. 【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭,所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>, 故答案为:{}0y y >.22.{}|10x x -<≤【解析】 【分析】求出集合A ,B ,依据交集的定义求出A B . 【详解】集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10AB x x ∴=-<≤.故答案为:{}|10x x -<≤. 23.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论.【详解】{1P =,2}, {|P P x x a b ∴+==+,aP ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2,∴元素之和为323234122++++=, 故答案为:232. 24.[]2,3【解析】 【分析】先根据不等式的解法化简两个集合A 、B ,再根据A B =∅确定a 的取值范围. 【详解】因为{}1{|11}{|11}A x x a x x a x a x a =-≤=-≤-≤=-≤≤+, {}2540{|(4)(1)0}{|4B x x x x x x x x =-+>=-->=>或1}x <,因为A B =∅,所以1114a a -≥⎧⎨+≤⎩,解得23a ≤≤,即实数a 的取值范围是[]2,3. 故答案为:[]2,3.25.{}|43,N n n k k =+∈【解析】 【分析】用数学式子表示出自然语言即可. 【详解】被4除余3的自然数即为4的整数倍加3, 因此{|43,N}A n n k k ==+∈. 故答案为:{}|43,N n n k k =+∈.三、解答题26.(1){}12A B x x ⋂=<< (2)1m ≥- 【解析】 【分析】(1)直接写出集合B ,再计算A B 即可; (2)分B =∅和B ≠∅列出不等式求解即可. (1)当 1m =时,{}12B x x =<<,{}12A B x x =<<;(2)若B =∅,211m m -≥+,解得2m ≥,符合题意;若B ≠∅,由B A ⊆得21121314m m m m -<+⎧⎪-≥-⎨⎪+≤⎩,解得12m -≤<, 综上:1m ≥-.27.13,44⎡⎤-⎢⎥⎣⎦ 【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B , 再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解,对方程2210a x ax a +-+=根的情况进行分类讨论若方程2210a x ax a +-+=有两个不相等的实数根,则22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦. 28.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解; (2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+, 所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 29.(,1][4,)A =-∞-⋃+∞; ()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.【解析】【分析】先解出不等式2340x x --≥得到集合A ,再根据指数函数单调性解出集合B ,然后根据补集和交集的定义求得答案.【详解】由题意,()()2340140x x x x --≥⇒+-≥,则(,1][4,)A =-∞-⋃+∞, 又2111()40()222x x -⎛⎫->⇒> ⎪⎝⎭,则(),2B =-∞-,R [2,)B =-+∞, 于是()][)R 2,14,B A ∞⎡⋂=--⋃+⎣.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合全面知识点练习题及答案有详解一、、知识点:本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。
在进行集合间的运算时要注意使用Venn图。
本章知识结构1、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N*、N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}●注意a与{a}的区别●注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系●注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn 图描述集合之间的关系是基本要求。
●注意辨清Φ与{Φ}两种关系。
5、集合的运算集合运算的过程,是一个创造新的集合的过程。
在这里,我们学习了三种创造新集合的方式:交集、并集和补集。
一方面,我们应该严格把握它们的运算规则。
同时,我们还要掌握它们的运算性质:A B A B A A A AA A AB B A =⇔⊆Φ=Φ=Φ==B B A B A AA A AA A AB B A =⇔⊆=Φ=Φ== U AC B B C A B A AA C C A C A UA C A U U U U U U =⇔Φ=⇔⊆=Φ== )(还要尝试利用Venn 图解决相关问题。
二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
解:∴∈A 1 根据集合元素的确定性,得:133,11,1222=++=+=+a a a a 或)或( 若a +2=1, 得:1-=a , 但此时21332+==++a a a ,不符合集合元素的互异性。
若1)1(2=+a ,得:2-,0或=a 。
但2-=a 时,22)1(133+==++a a a ,不符合集合元素的互异性。
若,1332=++a a 得:。
或-2,1-=a1)1(-2a 1;2a ,-1a 2=+==+=a 时,时但,都不符合集合元素的互异性。
综上可得,a = 0。
【小结】集合元素的确定性和互异性是解决问题的理论依据。
确定性是入手点,互异性是检验结论的工具。
例2. 已知集合M ={}012|2=++∈x axR x 中只含有一个元素,求a 的值。
解:集合M 中只含有一个元素,也就意味着方程0122=++x ax 只有一个解。
(1)012,0=+=x a 方程化为时,只有一个解21-=x (2) 只有一个解若方程时012,02=++≠x ax a1,044==-=∆a a 即需要.综上所述,可知a 的值为a =0或a =1【小结】熟悉集合语言,会把集合语言翻译成恰当的数学语言是重要的学习要求,另外多体会知识转化的方法。
例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
解:由已知,得:A ={-3,2}, 若B A ,则B =Φ,或{-3},或{2}。
若B =Φ,即方程ax +1=0无解,得a =0。
若B ={-3}, 即方程ax +1=0的解是x = -3, 得a = 31。
若 B ={2}, 即方程ax +1=0的解是x = 2, 得a = 21-。
综上所述,可知a 的值为a =0或a =31,或a = 21-。
【小结】本题多体会这种题型的处理思路和步骤。
例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。
解:由B C C B C ⊆⇒= , 那么集合C 中必定含有1,4,7,10中的2个。
又因为Φ=C A ,则A 中的1,3,5,7,9都不在C 中,从而只能是C ={4,10} 因此,b =-(x 1+x 2 )=-14,c =x 1 x 2 =40【小结】对C B C C A =Φ= ,的含义的理解是本题的关键。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。
解:(1)若Φ=B A ,则B =Φ,或m +1>5,或2m -1<-2 当B =Φ时,m +1>2m -1,得:m<2 当m +1>5时,m +1≤2m -1,得:m>4当2m -1<-2时,m +1≤2m -1,得:m ∈Φ 综上所述,可知m<2, 或m>4 (2)若A B A = , 则B ⊆A , 若B =Φ,得m<2若B ≠ Φ,则⎪⎩⎪⎨⎧-≤+≤--≥+12151221m m m m ,得:32≤≤m综上,得 m ≤ 3【小结】本题多体会分析和讨论的全面性。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
解:因为x ⊆A ,所以x = Φ, 或x = {0}, 或x = {1}, 或x = A , 于是集合B = { Φ, {0}, {1}, A}, 从而 A ∈B三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈B. M a ∉C. a = MD. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( )A.}21,2,3{- B. {-3} C. }21,3{- D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a 的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R 8. 已知A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________ 9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____ 10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
13. 已知}065|{},019|{222=+-==-+-=x x x B a ax x x A ,且A ,B 满足下列三个条件:① B A ≠ ② B B A = ③ ΦB A ,求实数a 的值。
四、练习题答案1. B2. A3. D4. C5. A6. B7. C8. {0,1,2}9. 2,或310. {1,2,3}或{1,2,3,4}或{1,2,3,5}或{1,2,3,4,5}11. 解:依题意,得:⎩⎨⎧==22b b a a 或⎩⎨⎧==a b b a 22,解得:⎩⎨⎧==00b a ,或⎩⎨⎧==10b a ,或⎪⎩⎪⎨⎧==2141b a结合集合元素的互异性,得⎩⎨⎧==10b a 或⎪⎩⎪⎨⎧==2141b a 。
12. 解:B ={x|x<-1, 或x>2}① 若A = Φ,即 0416≤-=∆p ,满足A ⊆B ,此时4≥p② 若Φ≠A ,要使A ⊆B ,须使大根142-≤-+-p 或小根242≥---p (舍),解得:43≤≤p所以 3≥p13. 解:由已知条件求得B ={2,3},由B B A = ,知A ⊆B 。
而由 ①知B A ≠,所以A B 。
又因为ΦB A ,故A≠Φ,从而A ={2}或{3}。
当A ={2}时,将x =2代入01922=-+-a ax x ,得019242=-+-a a 53或-=∴a经检验,当a = -3时,A ={2, - 5}; 当a =5时,A ={2,3}。
都与A ={2}矛盾。
当A = {3}时,将x =3代入01922=-+-a ax x ,得019392=-+-a a 52或-=∴a经检验,当a = -2时,A ={3, - 5}; 当a =5时,A ={2,3}。