2013考研数学一真题解析

合集下载

2013年考研数一真题答案解析

2013年考研数一真题答案解析
答:(B).
考点:矩阵分块、等价向量组及逆矩阵的理论.
解 将矩阵 A, C 按列分块,令 A (a1, a2,…, an ),C (c1, c2,…, cn ),
b11, b12 …b1n
由于
AB

C
,故(
a1,
a2
…an
)

b21
,
b22
……
…b2
n

=( c1, c2 …cn )
注:此题如果作为解答题出现,使用洛必达法则来讨论严格地说是错误的.
2.曲面 x2 cos(xy) yz x 0 在点 (0,1, 1) 处的切平面方程为( )
A. x y z 2 B. x y z 0 C. x 2y z 3 D. x y z 0
解 当 x 0 时, y 1,将方程两端对 x 求导,有 y '1 (1 y)ex(1y) ,故 y '(0) 1,从而
lim n(
f
(1) 1)

lim
f
(1) n
f
(0)

f
'(0)

y '(0)
1
n
n
n
1
n
典型错误:没有发现 lim n( f (1) 1) f '(0)
n
n
10.已知 y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x 是某二阶常系数非齐次线性微分方程的 3 个解, 则该方程的通解 y= 。
答: C1ex C2e3x xe2x 考点:线性常微分方程解的结构.
解 由题意, y2 y3 ex 为该二阶常系数非齐次线性微分方程所对应的齐次方程的一个解,

2013考研数一真题及解析

2013考研数一真题及解析

【答案】1 − 1 e
【解析】
f
(y)
=
e− y, y > 0, 0, y ≤ 0,
{ { { ∫∫ P
Y
≤ a +1Y
> a} =
P
Y
> P
a,Y Y>
≤a
a}
+
1}
=
a +1
a +∞
f ( y)dy f ( y)dy
=
e−a
− e−(a+1) e−a
=1− 1 e
a
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证
1
f (x)d
0x
0
x = 2 f (x)
x
1 0
−2
1 0
x f ′(x)dx
= 2 f (1) − 2∫1 ln(x +1) xdx = −2∫1 ln(x +1) dx = −4∫1ln(x +1)d x
0x
0x
0
∫ ∫
= −4 ln(x +1)
x
1 0

1
x
dx = −4 ln 2 + 4
【答案】A
【解析】曲面在点 (0,1,-1) 处的法向量为

n =(Fx′,Fy′,Fz′) (0,1,-1) =(2x-y sin (xy)+1,-x sin (xy)+z,y) (0,1,-1) =(1,-1,1) 故曲面在点 (0,1,-1) 处的切面方程为 1⋅ (x-0)-(y-1)+(z+1)=0, 即 x − y + z = −2 ,选 A

2013年考研数学一真题及答案全集解析

2013年考研数学一真题及答案全集解析

2013考研数学一真题及答案解析目录第一章总论............................................................. 错误!未定义书签。

1.1项目提要........................................................... 错误!未定义书签。

1.2结论与建议....................................................... 错误!未定义书签。

1.3编制依据 .......................................................... 错误!未定义书签。

第二章项目建设背景与必要性............................. 错误!未定义书签。

2.1项目背景........................................................... 错误!未定义书签。

2.2项目建设必要性 .............................................. 错误!未定义书签。

第三章市场与需求预测......................................... 错误!未定义书签。

3.1优质粮食供求形势分析 .................................. 错误!未定义书签。

3.2本区域市场需求预测 ...................................... 错误!未定义书签。

3.3服务功能 .......................................................... 错误!未定义书签。

3.4市场竞争力和市场风险预测与对策.............. 错误!未定义书签。

2013年全国硕士研究生入学考试数学一真题答案及解析

2013年全国硕士研究生入学考试数学一真题答案及解析

1 a 1 2 0 0 【解析】设 A a b a ,B 0 b 0 ,因为 A与 B 为实对称矩阵, 1 a 1 0 0 0
则 A与B 相似的充要条件是 A 的特征值分别为 2,b, 0 ,
1
A的特征方程 E-A a 1
1 /2 1 2 2 1 1 /2 2 1 3 2 sin d r dr 2 2 4 cos d sin d 0 0 0 0 2 0 4 2 0 4 1!! 1 1 1!! 1 11 . 2 2 4 4 2 2!! 2 4 2 2!! 2 4 2 8 8
/2 1 1 cos 2 d sin 2 d 0 4 4
I 3 I 4 故应选 (D). .
高学网教研中心整理

2013年考研真题
高学网权威发布
(5)设 A, B, C 均为 n 阶矩阵,若 AB C ,且 B 可逆,则( ). (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价. 【答案】B. 【解析】将 A, C 按列分块,若 A=(1 ,..., n ),C=( 1 ,..., n ) 由于 AB C ,故
a
1

a
1
b
a
a 0 b a 1 0 2a 2
[( b)( 2) 2a 2 ]
因为 0, 2,b 是 A 的特征值,所以 2a 0,即a 0 .
2
当a 0时

2013年考研数学一真题及答案解析(完整版)

2013年考研数学一真题及答案解析(完整版)

2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c x kx kx x k x ---→→→→--+-+====+ 因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

2013年考研数学一真题及答案解析

2013年考研数学一真题及答案解析

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →-=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==-(B )12,2k c ==(C )13,3k c ==-(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( )(A )34 (B )14(C )14-(D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α- (C )2α (D )12α-二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e--=确定,则1lim (()1)n n f n→∞-= .(10)已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。

2013年考研数学一真题与解析完整版

2013年考研数学一真题与解析完整版

2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan limkx x xc x→-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( )A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

2013考研数一真题及解析

2013考研数一真题及解析

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)已知极限0arctan limkx x xc x→-=,其中,c k 为常数,且0c ≠,则( ) (A )12,2k c ==- (B )12,2k c == C )13,3k c ==- (D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9()4S -=( ) (A )34 (B )14 (C )14- (D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33()(2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰Ñ,则= ( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价(C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( )(A )α (B )1α- (C )2α (D )12α-二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设函数()f x 由方程(1)x y y x e --=确定,则1lim (()1)n n f n→∞-= . (10)已知321x x y e xe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d ydx π== .(12)21ln (1)xdx x +∞=+⎰ .(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。

2013年考研数学一真题及答案解析

2013年考研数学一真题及答案解析

2013考研数学一真题及答案解析目录第一章总论........................................................... 错误!未定义书签。

1.1项目提要......................................................... 错误!未定义书签。

1.2结论与建议..................................................... 错误!未定义书签。

1.3编制依据 ........................................................ 错误!未定义书签。

第二章项目建设背景与必要性........................... 错误!未定义书签。

2.1项目背景......................................................... 错误!未定义书签。

2.2项目建设必要性 ............................................ 错误!未定义书签。

第三章市场与需求预测....................................... 错误!未定义书签。

3.1优质粮食供求形势分析 ................................ 错误!未定义书签。

3.2本区域市场需求预测 .................................... 错误!未定义书签。

3.3服务功能 ........................................................ 错误!未定义书签。

3.4市场竞争力和市场风险预测与对策............ 错误!未定义书签。

第四章项目承担单位情况................................... 错误!未定义书签。

2013年考研数学一真题与解析完整版

2013年考研数学一真题与解析完整版

2013硕士研究生入学考试数学一真题及解析来源:文都教育1. 已知极限0arctan lim k x x xc x→-=,其中k ,c 为常数,且0c ≠,则() A. 12,2k c ==- B. 12,2k c == C. 13,3k c ==- D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=- 切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

2013考研数一真题答案及详细解析

2013考研数一真题答案及详细解析

—勹 B = fxy (1,
= e-½'
—勹 C = fyy (1,
= e-½
(1.-f) 因为 A>o,AC — B2 =2e气>O, 所以
是极小值点,极小值为
(-+ !(1, —:片) =
+½)e··½ = -e勹 .
(18) 证 CI)设F(x)= f(x)-.1::, xE[—1,l].
·; f(x) 是奇函数,:. f(O)=0.
解 记A�[�: �'考察矩阵A的特征值为2,b,O的条件.
首先,显然1At�:, 因L是A的特征值.
其次,矩阵A的迹tr(A) =2 -t-b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个 特征值于是 “ 充要条件 ” 为2是A的特征值.由
lzE —Al = — a 2-b —a = — 4a 2 =O气=O.
故应选C.
二、填空题
(9) 1
解 把 X = O代入方程有八0)=1 . 方程y-X = exO-y)两端同时对x求导有 f'(工)-1= e[l-f(x)] [1-f(x)-xf'(x)J.
把 X =O代入上式得厂(0)=2 - f(O)=l.
f 又 lim 釭) - ]-= f'(O)=l,
x-o
厂 +厂 1
O
lnx +x)
2
dx=
_
lnx l+x
+=
1
1
dx
=O+ln
x
+=
1 =O — ln_l= ln2
O+x)x
l+x 1
2
(13) -1

2013年考研数学一真题完整版【带答案word版】

2013年考研数学一真题完整版【带答案word版】

2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则2221121000011arctan 1111limlimlim lim (1)kk k k x x x x x xx x x c x kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( ) A .34 B. 14 C. 14- D. 34- 答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

2013年考研数一真题答案解析

2013年考研数一真题答案解析

一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则|A|=

【考点分析】:伴随矩阵。
【求解过程】:-1
从题目条件 aij + Aij = 0 得知 Aij = −aij ,根据 A 和它的伴随矩阵之间的关系得知
A* = −AT (1)
再根据公式 AA* =| A | E = −AAT ,两边取行列式 − | A |2 =| A |3 解得:
| A |= 0 或| A |= -1
得 y(0)=1,因此极限的值为 1.
【方法总结】: lim n[ f ( 1) −1] 为 0* 型的极限,此类极限求法为先将其化作 0 型或者
n→
n
0

型,然后使用洛必达法则,等价无穷小代换或者泰勒公式求得。
10.已知 y1=e3x –xe2x,y2=ex –xe2x,y3= –xe2x 是某二阶常系数非齐次线性微分方程的 3 个解, 则该方程的通解 y= 。 【考点分析】:二阶常系数微分方程求解。
【求解过程】:1− 1 。 e
PY a +1 Y a
dy dx
=
dt dx
=
sin t
+ t cos t cos t
− sin t
=t,
dt
d2y dx2
=
d (dy ) dx dx
=
d(dy ) dx dt

dt dx
=
sec t
,带入
t
的值,原式=
2。
【方法总结】:对于参数方程求导和反函数求导的题目,需要掌握求导的过程,特别对于其
中二阶倒数甚至更高阶导数的求法,更需认真对待。
x→ 1+ x
1
= 0 − 0 + 0 − (− ln 2)
= ln 2
【方法总结】:分部积分法的应用是本题的关键,对于常见函数的微分积分公式的记忆也是 不可或缺的。
13.设 A=(aij)是 3 阶非零矩阵,A 为 A 的行列式,Aij为 aij的代数余子式.若 aij+Aij=0(i,j=1,2,3),
【考点分析】:相似矩阵。 【求解过程】:B 两个矩阵相似,他们拥有相同的特征值,分别为 2,b,0.设
−1 −a −1 + a b − a −
1 a 1
A=

a
b
a

,则
E

A
=
−a
−b
−a = −a
−b
−a =
1 a 1
−1 −a −1 −1 −a c2
= P X 2 c2
= PX c + PX −c
= 2
【方法总结】: 牢记三大分布的形式和性质是解决本题的关键。
二、填空题(9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.)
9.设函数 y=f(x)由方程 y-x=ex(1-y) 确定,则 lim n[ f ( 1 ) −1] = 。
0 − 0 0
−a − b −a = −a − b −2a = ( − b)( − 2) − 2a2
−1 −a −1 −1 −a − 2
很明显只要满足 a=0 即可使 A 的特征值满足上述条件。 【方法总结】: 本题考察列相似矩阵的定义。
7. 设 X1, X2, X3 是 随 机 变 量 , 且 X1 N(0,1) , X2 N(0, 22 ) , X3 N(5,32 ) ,
P Y c2 = ( )
A.
B. 1−
【考点分析】:数理统计三大分布。
【求解过程】:C
C. 2
D.1− 2
X t(n) , Y F(1, n) ,设 Z1 N(0,1), Z2 2 (n) ,因此 Z12 2 (1) 。
X = Z1 ,Y = Z1 / 1 ,因此,可以得知
A. x − y + z = −2 B. x + y + z = 0 C. x − 2y + z = −3 D. x − y − z = 0
【考点分析】:切平面方程求法。 【求解过程】:A
一个曲面在某个点的切平面方程,核心就是该点处的法向量。法向量为( F x , F y , F z ) F x = 2x − y sin(xy) +1=1
向量线性表示。 【方法总结】: 本题考察列向量组等价的定义。
1 a 1 2 0 0
6.矩阵

a
b
a



0
b
0

相似的充分必要条件为(

1 a 1 0 0 0
A. a = 0,b = 2 B. a = 0,b 为任意常数
C. a = 2,b = 0 D. a = 2,b 为任意常数
【方法总结】:二阶常系数微分方程求解方法重在记忆,其出题形式不多变,多多练习熟悉 即可。关于其求法详解见高数(同济版上册)325,332 页
11.设

x y
= =
sin t t sin
t
+
cos
t
(t为参数),则
d2y dx2
t=
=

4
【考点分析】:参数方程求导。
【求解过程】: 2
dy
先求一阶导数,
P2
=
P(−1
X2 −0 2
1)
=
2(1) −1
P3
=
P


7 3

X3 −5 3

−1
=


7 3


(1)
通过观察标准正态分布图像可知, P1 P2 P3 。
【方法总结】: 本题考察标准正态分布的定义和性质。
8.设随机变量 X t(n) ,Y F(1, n) ,给定 a(0 a 0.5) ,常数 c 满足 PX c = ,则
)(i
= 1, 2,3, 4)
,其中
Di
表示
Li
所围成的部分。如下图,红色部分( D4

内部被积函数均为正值
可以发现被积函数在 D4 内均为正值,且 D4 面积大于 D1 ,因此 I4 I1 。
同时 D2 的面积大于 D4 ,并且包括 D4 所有部分,而除去 D4 的其他部分被积函数均为负值,
x−1 2
, bn
=2
1 0
f (x)sin n xdx(n = 1, 2,

)
,令
S(x)
=

n=1
bn
sin n
x
,则
S(− 9) = ( 4
3
A.
4

1
B.
4
C. − 1 4
【考点分析】:傅里叶级数,收敛定理。
D. − 3 4
【求解过程】:C
注意观察本题目,和函数 S(x) 形式为正弦级数,因此 f (x) 是奇函数,同时观察 bn 的形式,
2
2
3
3
【考点分析】:无穷小的比较,同阶无穷小,洛必达法则的应用。
【求解过程】:D
lim
x→0
x

arctan xk
x
=
lim
x→0
1
−1 1+ x kx k −1
2
x2
(洛必达法则)=
lim
x→0
1+ x2 kxk −1
1
=
lim
x→0
1+ x2 kx k −3
=
lim
x→0
1 kx k −3
由于 c 为常数,则 k-3=0,即 k=3,因此 c = 1 。 3
5.设 A,B,C 均为 n 阶矩阵,若 AB=C,且 B 可逆,则( ) A.矩阵 C 的行向量组与矩阵 A 的行向量组等价 B 矩阵 C 的列向量组与矩阵 A 的列向量组等价 C 矩阵 C 的行向量组与矩阵 B 的行向量组等价 D 矩阵 C 的列向量组与矩阵 B 的列向量组等价 【考点分析】:向量组等价定义。 【求解过程】:B 两个向量组等价,那说明他们列向量可以互相表示。
4.设 L1 : x2 + y2 = 1 , L2 : x2 + y2 = 2 , L3 : x2 + 2y2 = 2 , L4 : 2x2 + y2 = 2 为四条逆时针
方向的平面曲线,记 Ii
=
Li
(y
+
y3 )dx + (2x − 6
x3 )dy(i 3
= 1, 2,3, 4) ,则 maxI1, I2, I3, I4 =
因此 I4 I2 。
并且 D1 的面积小于 D3 ,而 D3 包括 D1 所有部分,而除去 D1 其他部分被积函数均为负值,
因此 I1 I3 。
综上,最大为 I4 。
【方法总结】: 本题考察格林公式的使用,转化为二重积分后亦可直接算出四个积分的值然 后比较,但明显增加了计算量。关于格林公式的定义见高数(同济版下册)202 页。
得知周期为 2, S(− 9) = S(− 1) = −S(1) , 1 为连续点,因此 −S(1) = − f (1) = − 1
4
4
44
4
44
【方法总结】:傅里叶级数的题目类型比较单一,多数是考查和函数的求法和收敛定理的使
用,收敛定理内容见高数(同济版下册)306 页,和函数求法见 316 页。
而对于 A 对应的行列式如果为 0,由(1)得知与非零阵的条件矛盾。
因此| A |= -1。
【方法总结】: AA* =| A | E ,该公式的使用极为广泛,需要熟练掌握。
相关文档
最新文档