立体几何三大公理-的应用
立体几何公理定理推论汇总
立体几何公理定理推论立体几何公理、定理推论汇总一.公理及其推论公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:Ael,Bel,Aea.Bea^>l<^a作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的勺公理2|如果两个平面有_个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一务冬直线)〉 --- - 7符号语言:= \作用:①用来证明两个平面是相交关系;②用來证明多点共线,多线共点。
/ / 公酮经过不在同一条直线上的三点,有且只有一个平面。
X ;/符号语言:A.B.C不共线确定一个平面推论1|经过一条直线和这条直线外的一点,有且只有一个平面符号语言:A^a=>有且只有一个平面a,使Aw a, aua推论2|经过两条相交直线,有且只有一个平面。
符号语言:ar\b = Pd有且只有一个平面a,使aua, bua经过两条平行直线,有且只有一个平面。
符号沽•言:a//b=>有且只有一个平面a,使aua, bua公理3及其推论的作用:用来证明多点共面,多线共面。
平行于同一条直线的两条直线平行(平行公理)。
a // b符号语言:di b作用:用来证明线线平行。
二.平行关系面面平行的性质1如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。
(7)公理4 平行于同一条直线的两条直线平行(平行公理)。
(1) --------- ------------all b\ 符号语詁cllb\^allC线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这 个平面平行。
(2) a cc 符号语言:bua >=> a//a allb 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3) all a 符号语言:QU0 ‘ = allb a[}p = b图形语乍 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面 平行.(4) (a u a 、b u = 0、符号语言: d//0blip图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。
立体几何的性质,公理及定理
立体几何的性质,公理及定理下面是解立体几何一些简单的公式定例:公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线。
(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。
(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。
(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是0度的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。
立体几何公理、定理推论汇总
立体几何公理、定理推论汇总一、公理及其推论公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l作用:①用来验证直线在平面内;②用来说明平面是无限延展的。
公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l且作用:①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。
公理3 经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C 不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。
符号语言:a b P a b有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。
符号语言://a b a b有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
公理4 平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b 图形语言:作用:用来证明线线平行。
二、平行关系公理4 平行于同一条直线的两条直线平行(平行公理)。
(1)符号语言://////a ba c cb 图形语言:线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a ba ab 图形语言:线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////a ba ab 图形语言:面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b Oa a 图形语言:面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
如果两个平行平面同时和第三个平面相交,则交线平行。
8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
1.立体几何中基本概念、公理、定理、推论
立体几何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.这是判断直线在平面内的常用方法.(2)公理2:如果两个平面有一个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上.这是判断几点共线(证这几点是两个平面的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的方法之一.(3)公理3:经过不在同一直线上的三点有且只有一个平面.推论1:经过直线和直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.公理3和三个推论是确定平面的依据.2. 直观图的画法(斜二侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平面表示水平平面.(2)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度和平行性不变,平行于y 轴的线段平行性不变,但在直观图中其长度为原来的一半.3. 公理4:平行于同一直线的两直线互相平行.(即平行直线的传递性)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等. (此定理说明角平移后大小不变) 若无“方向相同”,则这两个角相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有一个公共点.(2)平行直线――在同一平面内,没有公共点.(3)异面直线――不在同一平面内,也没有公共点.5. 异面直线⑴异面直线定义:不同在任何一个平面内的两条直线叫做异面直线.⑵异面直线的判定:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.⑶异面直线所成的角:已知两条异面直线a 、b ,经过空间任一点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐角(或直角)叫做异面直线a 、b 所成的角(或夹角).⑷异面直线所成的角的求法:首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为900;若不垂直,则利用平移法求角,一般的步骤是“作(找)—证—算”.注意,异面直线所成角的范围是π0,2⎛⎤⎥⎝⎦;求异面直线所成角的方法:计算异面直线所成角的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,以便易于发现两条异面直线间的关系)转化为相交两直线的夹角. ⑸两条异面直线的公垂线:①定义:和两条异面直线都垂直且相交的直线,叫做异面直线的公垂线;两条异面直线的公垂线有且只有一条.而和两条异面直线都垂直的直线有无数条,因为空间中,垂直不一定相交.②证明:异面直线公垂线的证明常转化为证明公垂线与两条异面直线分别垂直.⑹两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度.6. 直线与平面的位置关系:(1)直线在平面内;(2)直线与平面相交.其中,如果一条直线和平面内任何一条直线都垂直,那么这条直线和这个平面垂直.注意:任一条直线并不等同于无数条直线;(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.平面与平面的位置关系:(1)平行――没有公共点;(2)相交――有一条公共直线.7.线面平行、面面平行⑴直线与平面平行的判定定理: 如果不在一个平面(α)内的一条直线(l )和平面(α)内的一条直线(m )平行,那么这条直线(l )和这个平面(α)平行.,,////l m l m l ααα⊄⊂⇒ (作用:线线平行⇒线面平行)⑵直线与平面平行的性质定理:如果一条直线(l )和一个平面(α)平行,经过这条直线(l )的平面(β)和这个平面(α)相交(设交线是m ),那么这条直线(l )和交线(m )平行.//,,//l l m l m αβαβ⊂⋂=⇒ (作用: 线面平行⇒线线平行)⑶平面与平面平行的判定定理:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α),那么这两个平面(,βα)平行.,,,//,////a b a b P a b ββααβα⊂⊂⋂=⇒ (作用:线面平行⇒面面平行)推论:如果一个平面(β)内有两条相交直线(,a b )分别平行于另一个平面(α)内的两条直线(,a b ''), 那么这两个平面(,βα)平行.,,,,,//,////a b a b P a b a a b b ββααβα''''⊂⊂⋂=⊂⊂⇒(作用: 线线平行⇒面面平行) ⑷平面与平面平行的性质定理:如果两个平行平面(,αβ)同时与第三个平面(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平行.//,,//a b a b αβαγβγ⋂=⋂=⇒ (作用: 面面平行⇒线线平行)推论:如果两个平面(,αβ)平行,则一个平面(α)内的一条直线(a )平行于另一个平面(β). //,//a a αβαβ⊂⇒ (作用: 面面平行⇒线面平行)8.线线垂直、线面垂直、面面垂直⑴直线与平面垂直的判定定理:如果一条直线(l )和一个平面(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平面(α).,,,,l m l n m n m n P l ααα⊥⊥⊂⊂⋂=⇒⊥ (作用: 线线垂直⇒线面垂直)⑵直线与平面垂直的性质定理:如果一条直线(l )和一个平面(α)垂直,那么这条直线(l )和这个平面(α)内的任意一条直线(m )垂直.,l m l m αα⊥⊂⇒⊥ .⑶三垂线定理: 其作用是证两直线异面垂直和作二面角的平面角①定理: 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平面内的一条直线,如果它和这个平面的一条斜线,那么它也和这条斜线在平面内的射影垂直.(作用: 线线垂直⇒线线垂直)⑷平面与平面垂直的判定定理: 如果一个平面(α)经过另一个平面(β)的一条垂线(l ),那么这两个平面(,αβ)互相垂直.,l l βααβ⊥⊂⇒⊥ (作用: 线面垂直⇒面面垂直)⑸平面与平面垂直的性质定理:如果两个平面(,αβ)垂直,那么在一个平面(α)内垂直于它们交线(m )的直线(l )垂直于另一个平面(β).,,,m l l m l αβαβαβ⊥⋂=⊂⊥⇒⊥ (作用: 面面垂直⇒线面垂直)9. 直线和平面所成的角⑴最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任意一条直线所成的角中最小的角.满足关系式:12cos cos cos θθθ=⋅θ是平面的斜线与平面内的一条直线所成的角;1θ是平面的斜线与斜线在平面内的射影所成的角;2θ是斜线在平面内的射影与平面内的直线所成的角.⑵直线和平面所成的角: 平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角. 范围:[0,90]10.二面角⑴二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,每个半平面叫做二面角的面.棱为l ,两个面分别是α、β的二面角记为l αβ--.二面角的范围:[0,]π⑵二面角的平面角:在二面角的棱上取一点,在二面角的面内分别作两条垂直于棱的射线,这两条射线所成的角叫做二面角的平面角.11.空间距离⑴点到平面的距离:一点到它在一个平面内的正射影的距离.⑵直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线段的长度.⑷异面直线的距离12. 多面体有关概念:(1)多面体:由若干个平面多边形围成的空间图形叫做多面体.围成多面体的各个多边形叫做多面体的面.多面体的相邻两个面的公共边叫做多面体的棱.(2)多面体的对角线:多面体中连结不在同一面上的两个顶点的线段叫做多面体的对角线.(3)凸多面体:把一个多面体的任一个面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.13.棱柱⑴棱柱的定义: 有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱.两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高).⑵棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱.侧棱垂直于底面的棱柱叫直棱柱.底面是正多边形的直棱柱叫正棱柱.棱柱的底面可以是三角形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形.②与底面平行的截面是与底面对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.⑷平行六面体、长方体、正方体:底面是平行四边形的四棱柱是平行六面体.侧棱与底面垂直的平行六面体叫直平行六面体,底面是矩形的直平行六面体叫长方体,棱长都相等的长方体叫正方体.⑸①平行六面体的任何一个面都可以作为底面;②平行六面体的对角线交于一点,并且在交点处互相平分;③平行六面体的四条对角线的平方和等于各棱的平方和;④长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.14.棱锥⑴棱锥的定义: 有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点()S ,叫棱锥的顶点,顶点到底面所在平面的垂线段()SO ,叫棱锥的高(垂线段的长也简称高).⑵棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比. 中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面⑷正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥. ⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高(叫斜高)也相等。
立体几何公理、定理推论汇总精编版
立体几何公理、定理推论汇总一、公理及其推论如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈且作用:① 用来证明两个平面是相交关系;②用来证明多点共线,多线共点。
经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言: 作用:用来证明线线平行。
二、平行关系平行于同一条直线的两条直线平行(平行公理)。
(1)符号语言://// //a ba c c b⎫⇒⎬⎭图形语言:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a baabααα⊄⎫⎪⊂⇒⎬⎪⎭图形语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////abaa bβαβα⎫⎪⊂⇒⎬⎪=⎭图形语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),abb b Oaaββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭图形语言:如果两个平面垂直于同一条直线,那么这两个平面平行。
高中立体几何常用定理
立体几何中的公理、定理和常用结论一、定理1.公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.若A∈l,B∈l,A∈α,B∈α,则l⊂α.2.公理2如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.P∈α,P∈α⇒α∩β=l,且P∈l.3.公理3经过不在同一条直线上的三点,有且只有一个平面.推论1经过一条直线和这条直线外的一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.4.异面直线的判定定理:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.(若a⊂α,A 错误!α,B∈α,B错误!a,则直线AB和直线a是异面直线.) 5.公理4(空间平行线的传递性):平行于同一条直线的两条直线互相平行.6.等角定理:如果一个角的两边和另一角的两边分别平行并且方向相同,那么这两个角相等.7.定理:如果一条直线垂直于两条平行线中的一条直线,那么它也垂直于另一条直线.若b∥c,a⊥b,则a⊥c.8.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.若a错误!α,b⊂α,a∥b,则a∥α.9.直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.若a∥α,a⊂β,α⋂β=b,则a∥b.10.直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,这条直线和这个平面垂直.若m⊂α,n⊂α,m⋂n=O,l⊥m,l⊥n,则l⊥α.11.:若两条平行直线中的一条垂直于一个平面,那么另一条直线也和这个平面垂直.若a∥b,a⊥α,则b⊥α.12.直线与平面垂直的性质定理:若两条直线同时垂直于一个平面,那么这两条直线平行.若a⊥α,b⊥α,则a∥b.13.平面与平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.若a⊂α,b⊂α,a⋂b=A,a∥β,b∥β,则α∥β.14.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.若α∥β,α∩γ=a,β∩γ=b,则a∥b.15.定理:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.若α∥β,a⊥α,则a⊥β.16.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.若l⊥α,l⊂β,则α⊥β.17.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.若α⊥β,α∩β=l,a⊂α,a⊥l,则a⊥β.18.两个平面垂直的性质定理:如果两个平面互相垂直,那么过一个平面内一点且垂直于第二个平面的直线在第一个平面内.若α⊥β,P∈α,P∈a,a⊥β,则a⊂α.19.长方体的体积公式:V长方体=abc,其中a,b,c分别为长方体的长、宽、高.20.祖暅原理:两个等高(夹在两个平行平面之间)的几何体,如果在任何等高处的截面积都相等,那么这两个几何体的体积相等.二、常识1.过空间一点,与已知平面垂直的直线有且只有一条.2.过空间一点,与已知直线垂直的平面有且只有一个.3.经过平面外一点有且只有一个平面和已知平面平行.三、常用结论(可用来解决选择、填空题)1.空间四点A、B、C、D,若直线AB与CD异面,则AC 与BD,AD与BC也一定异面.2.如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.3.如果过平面内一点的直线垂直于与此平面垂直的一条直线,那么这条直线在此平面内.4.夹在两个平行平面间的平行线段相等.5.经过两条异面直线中的一条,有且只有一个平面与另一条直线平行.6.若直线a同时平行于两个相交平面,则a一定也平行于这两个相交平面的交线.7.如果一条直线垂直于一个三角形的两边,那么它也垂直于第三边.8.如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线所在直线上.9.如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行.10.平行于同一平面的两个平面平行.11.空间四面体A-BCD中,若有两对对棱互相垂直,则第三对对棱也互相垂直,且顶点A在平面BCD内的射影是△BCD 的垂心(类似地,顶点B在平面ACD内的射影是ΔACD的垂心,…).12.空间四面体P-ABC中,若P A、PB、PC两两垂直,则①点P在平面ABC内的射影是ΔABC的垂心;②△ABC的垂心O也是点P在平面ABC内的射影(PO⊥平面ABC).13.空间四面体P-ABC中,①若P A=PB=PC,则点P在平面ABC内的射影是△ABC的外心.②若三个侧面上的斜高PH1=PH2=PH3,则点P在平面ABC 内的射影是△ABC的内心.14.如果两个平面同时垂直于第三个平面,那么这两个平面的交线垂直于第三个平面.若α⊥β,P∈α,P∈a,a⊥β,则a⊂α.。
高二数学立体几何的概念公理定理
立体几何的概念、公理、定理王春老师编辑2007-12 -20一.写出以下公理、定理,并根据图形写出它们的条件与结论。
(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.,AaA a公理3:经过不在同一直线上的三点,有且只有一个平面。
A、B、C不在同一直线上有且只有一个平面α,使A∈α,B∈α,C∈α推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
A a有且只有一个平面,使推论2:经过两条相交直线,有且只有一个平面。
a∩b=A有且只有一个平面,使推论3:经过两条平行直线,有且只有一个平面。
a∥b=A有且只有一个平面,使(二)空间直线公理4 :平行于同一条直线的两条直线互相平行。
a∥bb∥c等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
cbaaA∈a,B∈aA∈,B∈aA∈aababcba//a c////////AB A BAC A C///BAC B A C异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
(三)直线和平面 直线和平面平行的判定定理:如果平面外一条直线和 这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
定理 :如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直这个平面。
定理:一条直线垂直于两个平行平面中的一个平面, 它也垂直于另一个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面, 那么这两条直线平行。
立体几何三大公理应用超级全面
立体几何三大公理的应用公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
1.如图,在正方体ABCD−A′B′C′D′中,P是B′D′的中点,对角线A′C∩平面AB′D′=Q.求证:A,Q,P三点共线.2.如图所示,在正方体ABCD−A1B1C1D1中,E为AB的中点,F为A1A的中点,求证:(1)E,F,D1,C四点共面;(2)CE,D1F,DA三线共点.3.如图,在正方体ABCD−A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.4.如图所示,在正方体ABCD−A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.5.如图,正方体ABCD−A1B1C1D1中,E,F分别为C1D1,B1C1的中点.(1)求证:E,F,B,D四点共面;(2)若AC∩BD=P,A1C1∩EF=Q,AC1与平面EFBD交于点R,求证:P,Q,R三点共线.6.在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.(1)若A1C交平面EFBD于点R,则P,Q,R三点共线.(2)证明DE、BF、CC1三线共点.7.如图,空间四边形ABCD中,H、G分别是AD、CD的中点,E、F分别在AB、BC上,且CFFB =AEEB=13.(1)求证:E、F、G、H四点共面;(2)求证:FG、HE、BD三条直线交于一点.8.已知空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是BC,CD上的点,且CFCB =CGCD=23.求证:(1)E,F,G,H四点共面;(2)三条直线EF,GH,AC交于一点.9.如图所示,在空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG︰GC=DH︰HC=1︰2.(1)求证:E,F,G,H四点共面;(2)求证:直线EG、FH、AC交于一点.10.正三棱柱ABC−A1B1C1的棱长都为2,D、E、F分别是AB、A1C1、BC的中点,(1)证明:A1、C1、D、F四点共面;(2)求异面直线B1C与DE所成角余弦值;(3)证明:A1D、C1F、B1B三线共点.11.如图,已知平面α,β,且α∩β=l,设梯形ABCD中,AD//BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).12.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC=//12AD,BE=//12FA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形(2)C,D,F,E四点是否共面?为什么?13.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥底面ABCD,AB=PA=1,AD=√3,E,F分别为棱PD,PA的中点.(1)求证:B、C、E、F四点共面;(2)求异面直线PB与AE所成的角.能力提升一、共线问题例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
如果两个平行平面同时和第三个平面相交,则交线平行。
8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
立体几何公理
立体几何公理立体几何公理是指关于空间内的几何关系和空间物体的性质所遵循的公理系统。
这些公理是由欧几里德在古希腊时期所提出的,并且被广泛应用于物理学、工程学以及计算机图形学等领域。
本文将详细介绍立体几何公理及其应用。
立体几何公理一般包括以下几个方面:1. 点、直线、平面在立体几何中,点是没有任何大小和形状的基本元素。
而直线和平面则有一定的尺寸和形状。
在立体几何公理中,点、直线和平面是基本的概念,不需要进行严格定义。
2. 共面性和共线性在空间几何中,三个点可以在同一个平面上,四个或更多的点可以在同一平面上。
另外,三个点也可以共线,但如果超过三个点共线,则会出现相互重合的情况。
3. 相交性和平行性在立体几何中,直线可以相交或平行。
如果两条直线在平面内交于一点,则称其相交,如果两条直线在平面上不存在交点,则称其平行。
4. 角角是由两条射线分割开的空间区域,角的大小可以用度数或弧度表示。
在立体几何公理中,角的概念是由直线的交点所定义的,角度的度量值是由角的两侧所包含的平面面积决定的。
5. 肢体性肢体性是指一个物体中的任意两点连线都在这个物体内部或其表面上。
这个物体可以是任何形状的,在立体几何中,肢体性是非常重要的性质。
6. 对称性对称性是指一个物体在某个平面上对称,那么它的形状和尺寸是保持不变的。
在几何学中,对称性是非常重要的性质,因为它可以帮助推导出许多重要的结论。
总的来说,立体几何公理是空间几何学的基础,对于物理学、建筑设计、计算机图形学等领域都具有非常重要的作用。
它们帮助我们理解和描述物体在三维空间中的运动和形状。
在应用中,我们必须熟练掌握立体几何公理,并善于运用它们解决实际问题。
《立体几何三个公理的应用》教学设计
执笔人:甘淑清 2010。12.25
单位:江西省宜春市万载中学(336100) 课 题:9.1.3 平面(三) 教学目标:1、掌握公理 3 的三个推论及初步应用。
2、会用图形语言、符号语言表示推论的文字语言 3、掌握推论的作用。 教学重点:公理 3 的三个推论。 教学难点:三个推论的证明及简单应用。
三、新课讲授:
推论 1:经过一条直线和这条直线外的一点有且只有一个
平面。
A
图形表示 α a
符号:A a 存在唯一平面,使aA
推论 2:经过两条相交直线有且只有一个平面。
bP a
图形: α
符号: a
b
p
存在唯一平面 , 使ba
。
推论 3:经过两条平行直线,有且只有一个平面。
图形:
a
α
b
个人备课笔录
符号:a∥
b
存在唯一平面,
使ba
对于推论的正确性,还需要进行严格的证明。 分析:⑴与平面几何的证明一样,证明立体几何问题的一 般步骤是: 第一步:根据题意作图 ,写出已知,求证。 第二步:写出证明过程。 ⑵对于“有且只有”型命题的证明,要从“有”和“只有” 两方面证明,即既论存在性一“有”,又证唯一性一“只有”。 ⑶化生疏为熟悉,化未知为已知是我们常用的证题方法。 推论 1 的证明:
N、P 分别是 AB、A1D1、BB1 的中点。
D
C
A
MB
N D1 A1
P C1
B1
⑴画出过 M、N、P 三点的平面与平面 A1C1 的交线以及与平 面 BC1 的交线。
⑵设过 M、N、P 三点的平面与 B1C1 交于 Q,求 PQ 的长。 答案:2、D;3、C;4、6;5、1 或 3 或 4;6、(1)略(2)
立体几何公理、定理推论汇总
立体几何公理、定理推论汇总一、公理及其推论如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈且作用:① 用来证明两个平面是相交关系;②用来证明多点共线,多线共点。
经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言: 作用:用来证明线线平行。
二、平行关系平行于同一条直线的两条直线平行(平行公理)。
(1)符号语言://// //a ba c c b⎫⇒⎬⎭图形语言:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a baabααα⊄⎫⎪⊂⇒⎬⎪⎭图形语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////abaa bβαβα⎫⎪⊂⇒⎬⎪=⎭图形语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),abb b Oaaββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭图形语言:如果两个平面垂直于同一条直线,那么这两个平面平行。
立体几何公理、定理推论汇总
立体几何公理、定理推论汇总一、公理及其推论如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂ 作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈⇒=∈且作用:① 用来证明两个平面是相交关系;②用来证明多点共线,多线共点。
经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使, 经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使, 经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。
平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。
二、平行关系平行于同一条直线的两条直线平行(平行公理)。
(1)符号语言://// //a ba c c b⎫⇒⎬⎭图形语言:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a baabααα⊄⎫⎪⊂⇒⎬⎪⎭图形语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////abaa bβαβα⎫⎪⊂⇒⎬⎪=⎭图形语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),abb b Oaaββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭图形语言:如果两个平面垂直于同一条直线,那么这两个平面平行。
立体几何公理、定理推论汇总
立体几何公理、定理推论汇总一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈I I 且作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。
公理3 经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
公理4 平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。
二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。
(1) 符号语言://////a b a c c b ⎫⇒⎬⎭ 图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭ 图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭I图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。
高二数学立体几何的概念、公理、定理
高二数学立体几何的概念、公理、定理第一篇:高二数学立体几何的概念、公理、定理立体几何的概念、公理、定理王春老师编辑 2007-12-20一.写出以下公理、定理,并根据图形写出它们的条件与结论。
(一)立体几何三公理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
A∈a,B∈aA∈a,B∈a公理2a?bA耷ab=a,A a aÌa a公理3:经过不在同一直线上的三点,有且只有一个平面。
A、B、C不在同一直线上Þ有且只有一个平面α,使A∈α,B∈α,C∈α推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
∈a AÏa Þ有且只有一个平面a,使Ìa推论2:经过两条相交直线,有且只有一个平面。
a∩b=AÞÌa 有且只有一个平面a,使Ìa推论3:经过两条平行直线,有且只有一个平面。
a∥b=AÞ有且只有一个平面a,使Ìa Ìa(二)空间直线公理4 :平行于同一条直线的两条直线互相平行。
cab a∥Þb∥a//c 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
AB//A/B/BAC B/A/C///AC//ACÞ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
用心爱心专心116号编辑Zishi2007-12-20异面直线判定定理:用平面内一点与平面外一点的直线,A∈aPÏa l与a异面aÌa(三)直线和平面Þ直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
labαa//b bÌa aËaÞa//aaÌa直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
立体几何公理定理推论汇总
立体几何公理、定理推论汇总一、公理及其推论公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。
公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈⇒=∈且 作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。
公理3 经过不在同一条直线上的三点,有且只有一个平面。
符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。
符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。
符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使, 推论3 经过两条平行直线,有且只有一个平面。
符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。
公理4 平行于同一条直线的两条直线平行(平行公理)。
符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。
公理4 平行于同一条直线的两条直线平行(平行公理)。
(1)符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭图形语言:面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、共线问题
例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:
(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;
(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).
例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR ∩BD=Y.求证:X、Y、Z三点共线.
例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。
二、共面问题
例4.直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.
例5. 证明两两相交而不共点的四条直线在同一平面内.
已知:如图,直线l 1,l 2,l 3,l 4两两相交,且不共点.
求证:直线l 1,l 2,l 3,l 4在同一平面内
例6. 已知:A 1、B 1、C 1和A 2、B 2、C 2分别是两条异面直线l 1和l 2上的任意三点,M 、N 、R 、T 分别是A 1A 2、B 1A 2、B 1B 2、C 1C 2的中点.求证:M 、N 、R 、T 四点共面.
例7. 在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足MB AM =NB CN =QD AQ =PD
CP =k. (1)求证:M 、N 、P 、Q 共面.
(2)当对角线AC =a,BD =b ,且MNPQ 是正方形时,求AC 、BD 所成的角及k 的值(用a,b 表示)
三、共点问题
例8. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.
1、(1)证明:∵AA 1∩BB 1=O,
∴AA 1、BB 1确定平面BAO ,
∵A 、A 1、B 、B 1都在平面ABO 内,
∴AB ⊂平面ABO ;A 1B 1⊂平面ABO.
同理可证,BC 和B 1C 1、AC 和A 1C 1分别在同一平面内.
(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.
2证明:如图,设AB ∩A 1B 1=P ;
AC ∩A 1C 1=R ;
∴ 面ABC ∩面A 1B 1C 1=PR.
∵ BC ⊂面ABC ;B 1C 1⊂面A 1B 1C 1,
且 BC ∩B 1C 1=Q ∴ Q ∈PR,
即 P 、R 、Q 在同一直线上.
3解析:∵A 、B 、C 是不在同一直线上的三点
∴过A 、B 、C 有一个平面β
又βα⊂=⋂AB P AB 且,
.,,l p l P ∈=⋂∴则设内内又在既在点βααβ .
,,,:三点共线同理可证R Q P l R l Q ∴∈∈ 4解析: 证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.
证明 ∵a ∥b,∴过a 、b 可以确定一个平面α.
∵A ∈a,a ⊂α,∴A ∈α,同理B ∈a.
又∵A ∈m ,B ∈m,∴m ⊂α.同理可证n ⊂α.
∵b ∥c,∴过b,c 可以确定平面β,同理可证m ⊂β.
∵平面α、β都经过相交直线b 、m,
∴平面α和平面β重合,即直线a 、b 、c 、m 、n 共面.
5、解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内.
证明:图①中,l 1∩l 2=P ,
∴ l 1,l 2确定平面α.
又 l 1∩l 3=A,l 2∩l 3=C, ∴ C,A ∈α.
故 l 3⊂α.
同理 l 4⊂α.
∴ l 1,l 2,l 3,l 4共面.
图②中,l 1,l 2,l 3,l 4的位置关系,同理可证l 1,l 2,l 3,l 4共面.
所以结论成立.
6、证明 如图,连结MN 、NR ,则MN ∥l 1,NR ∥l 2,且M 、N 、R 不在同一直线上(否则,根据三线平行公理,知l 1∥l 2与条件矛盾).∴ MN 、NR 可确定平面β,连结B 1C 2,取其中点S.连RS 、ST ,则RS ∥l 2,又RN ∥l 2,∴ N 、R 、S 三点共线.即有S ∈β,又ST ∥l 1,MN ∥l 1,∴MN ∥ST ,又S ∈β,∴ ST ⊂β.
∴ M 、N 、R 、T 四点共面.
7解析:(1)∵ MB AM =QD
AQ =k ∴ MQ ∥BD ,且MB AM AM +=1
+k k ∴ BD
MQ =AB AM =1+k k ∴ MQ =
1+k k BD 又 NB CN =PD
CP =k ∴ PN ∥BD ,且
NB CN CN +=1+k k ∴ BD NP =CB CN =1+k k 从而NP =1
+k k BD ∴ MQ ∥NP ,MQ ,NP 共面,从而M 、N 、P 、Q 四点共面. (2)∵ MA BM =k 1,NC BN =k
1 ∴ MA BM =NC BN =k 1,MA BM BM +=1
1+k ∴ MN ∥AC ,又NP ∥BD.
∴ MN 与NP 所成的角等于AC 与BD 所成的角.
∵ MNPQ 是正方形,∴ ∠MNP =90°
∴ AC 与BD 所成的角为90°,
又AC =a ,BD =b ,AC MN =BA BM =1
1+k ∴ MN =1
1+k a 又 MQ =
11+k b,且MQ =MN , 1+k k b =11+k a ,即k =b
a . 说明:公理4是证明空间两直线平行的基本出发点.
已知:平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面α=c . 求证:a 、b 、c 相交于同一点,或a ∥b ∥c .
证明:∵α∩β=a ,β∩γ=b
∴a 、b ⊂β
∴a 、b 相交或a ∥b .
(1)a 、b 相交时,不妨设a ∩b =P ,即P ∈a ,P ∈b
而a 、b ⊂β,a ⊂α
∴P ∈β,P ∈α,故P 为α和β的公共点
又∵α∩γ=c
由公理2知P ∈c
∴a 、b 、c 都经过点P ,即a 、b 、c 三线共点.
(2)当a ∥b 时
∵α∩γ=c且a⊂α,a⊄γ
∴a∥c且a∥b
∴a∥b∥c
故a、b、c两两平行.
由此可知a、b、c相交于一点或两两平行.。