2016年浙江省高职考数学模拟试卷(一)
2016年浙江省单招单考《数学》模拟试题卷
2016年嘉兴市高职考第一次模拟考试数学 试题卷考生注意:试卷共三大题,34小题,满分120分,考试时间120分钟.一、单项选择题(本大题共18小题,每小题2分,共36分)1 .已知集合2{|350}A x x x =-+<,{||1|2}B x x =->,则u C A B =I (▲) A . ∅B . (1,3)-C . (,1)(3,)-∞-+∞UD . R2. 命题甲“G =是命题乙“b G a ,,三个数成等比数列”成立的(▲) A .充分条件 B . 必要条件 C . 充要条件D . 既不充分也不必要3.已知直线过两点(1,3)A ,(3,7)B -,则该直线的倾斜角为(▲)A . 56πB .4π C . 34πD . 23π4. 函数0(2)y x =+-的定义域为(▲) A.}1|{≥x x B.}21|{≠≥x x x 且 C.}1|{>x xD.}21|{≠>x x x 且5. 若平面α与平面β平行,直线a α⊂,b β⊂,则(▲)A . a 与b 异面或相交B . a 与b 相交或平行C . a 与b 平行或异面D . 以上答案均不对 6. 若42log 464x +=,则x =(▲) A .4-B .4C .16D .147.角α是第二象限角,将角α终边沿顺时针方向旋转180°,则旋转后所得角是(▲) A .第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角 8.已知点M (a,2)在抛物线24y x =上,F 为抛物线的焦点,则MF 的距离是(▲) A .2 B.3C.4D.59. 若向量=(1,2),=(-3,-6),则下述正确的是(▲)A. 与 共线B. 3 =C.││=││D. ⊥10.已知等差数列{}n a 的前n 项和为n S ,515S =,则3a =(▲) A .2B.3C.4D.5 11. 下列函数在R 上是减函数的是(▲) A.y=x1B.y= -2x+1C.y= 1-x 2 D .y=e x12.已知双曲线方程为22916144x y -=,则双曲线的渐近线为(▲) A .34y x =±B. 43y x =± C. 169y x =±D. 916y x =±13.世界互联网大会乌镇峰会招募志愿者,现从某旅游职业学校6名优秀学生,2名老师中选3人作为志愿者,其中至少有一位老师的选法有(▲)种 A .15 B. 30 C.56 D.36 14. ABC ∆中,角C B A 、、所对的边分别为c b a 、、,若A b a sin 2=,则角B =(▲) A.30°B.150°C.30°或150°D.60°15. 已知b a <则下列关系式正确的是(▲) A. 22a b <B.22a b >C. ln ln a b <D. 22a b <16.已知函数3sin 4sin()2y x x π=-+,则该函数的周期和最大值为(▲)A. 2,5πB.2,7πC. 2,1πD.,5π17. 已知()3cos 05θθπ=-<<,则⎪⎭⎫ ⎝⎛+3sin πθ等于(▲) A .10334-- B .10334- C .10334+- D .10334+18.已知圆C : 2216x y += ,直线l:3x-4y+25=0,点P 是直线上任意一点,过点P 做圆C 的切线,则最短切线长为(▲) A.B. 1C.3D. 5二、填空题:(本大题共8小题,每小题3分,共24分)第23题图 19. 将下列四个数0.212122cos,3,,lg153C π-从大到小排列的顺序为 ▲ . 20. 2名男生与3名女生排成一排拍照,其中3名女生站在一起的概率是 ▲. 21.已知x xf 2cos )(cos =,则=)30(sin οf ▲ .22.已知3,a ,b ,24成等差数列;3,c ,d ,24成等比数列,则a+b+c+d= ▲ .23.如图已知圆C 与两坐标轴均相切,且圆心C 到坐标原点的 距离为1,则该圆的标准方程为 ▲ .24. 若1a >,则11122a a --•的最小值为 ▲ .25.某地区某天最高温度为28℃,最低温度为18℃,若这一天气温x 26.若正方体的棱长为1,则其外接球的体积为 ▲ (用π三、解答题:(本大题共8小题,共60分,解答题应写出文字说明及演算步骤) 27.(本题满分6分)平面内,求过点(1,3)A -,且垂直于直线23y x =+的直线方程. 28. (本题满分7分)在∆ABC 中,角,,A B C 所对应的边分别为,,a b c , 且222b c a bc+-=,(1)求角A 的度数; (2)若ABC c S ∆=且b 边长. 29 . ( 本题满分7分) 在n的展开式中只有第五项的二项式系数最大,求x 的一次项的系数。
浙江省高等职业技术教育招生考试数学模拟试卷(1)
浙江省高等职业技术教育招生考试数 学 试 卷(模拟)一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多涂或未涂均无分。
1.已知集合A={2,3,4},B={x|x-5≤0},则A ∩B=( ) A .{x|x<5} B. {2,3,4} C. {x|2<x<5} D.{2,3,4,5}*2.在下列函数中,定义域不是{x|x>-1}的是( ) A. 1+=x x y B. 1+=x y C. 1)2(log 22+++=x x xy D.)1(log 2x y +=3.设y f (x)(,)=-∞+∞在上是减函数,且满足f(2x-3)>f(x+5) ,则x 的取值范围是( )A.x >2B.x >8C.x <2D.x<8 4.log 327-log 33=( ) A .log 324 B .2 C .1 D .3log 27log 335. 若a=73,b=74,c=75,则下列不等式正确的是( )A.a>b>cB.b>a>cC.c>b>aD.b>c>a 6.下列各点中,在函数y=2x -7x+1上的是( )A. (1,0)B.(1,-5)C.(3,-7)D.(1,3) 7.已知m>0,则m+m16取得最小值时,当且仅当m 等于( ) A.2 B.4 C. 8 D.16 8.已知(2,5),(3,2)a b ==-,则32a b -等于( )A 、(6,15)B 、(12,11)C 、(3,19)D 、(0,19)9. χ=2是χ2=4成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分又不必要条件 10.已知平面βα、和直线a ,a ⊄α,a β⊂,则α与β的位置关系是( ) A.平行 B.相交 C.垂直 D.平行或相交 11.直线y=3x+1与直线20x my +-=互相垂直时,m=( ) A.13 B.13- C.3 D.3- 12.数列{n a }的前n 项和为23n ,则5a 等于( )A.27B.32C.36D.4813.若ααsin cos 12-=-,则α的终边在( )A.第一 、二象限B.第三、四象限C.第一、四象限D.第二、三象限14.过点11(,),且与直线x 2y 10+-=平行的直线方程为( ) A.2x y 10--= B.2y x 30--= C.x 2y 30+-= D.x 2y 10-+=15抛物线24x y =的焦点坐标是( )A.(0,1)B.(1,0)C.(116,0) D.1(0,)1616. 函数y=x x 2cos 32sin +的最小正周期和最大值分别是( ) A.π,1 B.2π,1 C.π,2 D.2π,2 17.圆x 2+y 2-8x+2y+12=0的圆心坐标和半径分别是( )A.(4,-1),5B.(-4,1),5C.(-4,1),5D.(4,-1),518.5名应届毕业生报考3所高等院校,若每人要报且只报一所院校,则不同的报名方法的种数有( )A. 53B. 35C.35C D.35A二、填空题(本大题共8小题,每小题3分,共24分)19.已知不等式220ax bx ++>的解集为11{|}23x x -<<,则a b -的值是 ;20.将20.720.7,log 0.7,2按从大到小的顺序,用“>”号连接: ; 21.若0cos ,0sin <>θθ,则角θ的终边在第 象限; 22.计算:sin(-12300)= ___________;23.直线10x -=的倾斜角是 度;24.点P (-1,2)到直线310x -=的距离为 ;25.圆柱的轴截面面积等于4,体积为10π,则它的底面半径是___________;26.与椭圆2212449x y +=共焦点,且离心率为54的双曲线标准方程是 。
2016年浙江纺织服装职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年浙江纺织服装职业技术学院单招数学模拟试题(附答案)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把答案填在答题卡上。
1.已知集合}02|{2≤--=x x x A ,}1|2||{≤-=x x B ,全集B A U =,则)(C U B A 等于 A .[1,2]B .1(-,2[]1 ,)3C .2[-,1()1 ,]3D .1[-,2()1 ,]32.若x x f tan )(=,则)600(︒f 的值为 A .3- B .3 C .33-D .33 3.设向量1(-=a ,)2,2(=b ,)1-,则))((b a b a +⋅等于 A .1(,)1 B .4(-,)4-C .4-D .2(-,)2-4.条件甲“1>a ”是条件乙“a a >”的 A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件5.如果1a ,2a ,…,10a 为各项都不大于0的等差数列,公差0≠d ,则 A .65101a a a a >B .65101a a a a <C .65101a a a a +<+D .65101a a a a =考单招——上高职单招网6.函数121)(+=x x f ,则)(x f y =在-∞(,)+∞上是 A .单调递减函数且无最小值 B .单调递减函数且有最小值 C .单调递增函数且无最大值D .单调递增函数且有最大值7.函数)6(2sin π+=x y 的图象关于A .点12(π,0)对称B .点6(π-,0)对称 C .直线3π=x 对称D .直线3π-=x 对称8.已知}{n a 是各项均为正数的等比数列,首项31=a ,前三项和为21,则=++543a a a A .33B .72C .84D .1899.若函数)(x f 在(0,2)上是增函数,函数)2(+x f 是偶函数,则)1(f ,)25(f ,)27(f 的大 小顺序是A .)1()25()27(f f f << B .)27()25()1(f f f << C .)27()1()25(f f f <<D .)25()1()27(f f f <<10.ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断 ①1cot tan =B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是考单招——上高职单招网A .①③B .②④C .①④D .②③11.当20π<<x 时,函数xxx x x f 2sin sin 9cos 2cos )(22++=的最小值为 A .2 B .32 C .4D .3412.不等式0lg ])1[(<--a a n a 对任意正整数n 恒成立,则实数a 的取值范围是A .}1|{>a aB .}210|{<<a aC .}1210|{><<a a a 或D .}1310|{><<a a a 或二、填空题:本大题共4小题,每小题4分,共16分。
2016年高职高考数学答案
2016年高职高考数学答案篇一:2016年高职数学模拟试卷高职高考班《数学》模拟试题班别学号姓名一、选择题:(本大题共15小题,每小题5分,共75分。
请把每题唯一的正确答案填入表格内)1、设集合M?{xx?1?1},集合N?{1,2,3,4},则集合M?N?()A. {1,2} B. {2,3} C. {3,4} D. {2,3,4}2、x?2是x?4的()A. 充分条件B. 必要非充分条件C. 充要条件D. 既非充分条件又非必要条件3、函数y?x?1在区间(?1,??)上是()A. 奇函数B. 偶函数C. 增函数D. 减函数4、不等式1?x0的解集为()1?xA. (??,?1)?[1,??)B. [?1,1]C. (??,?1]?[1,??)D. [?1,1) 5、已知tan?cos??0,且tan?sin??0,则角?是()A.第一象限角B. 第二象限角C. 第三象限角D. 第四象限角6、函数f(x)?2x?8?x?2x?152的定义域是()A. (?3,5)B. (??,?3)?(5,??)C. [?3,5]D. (?3,4)?(4,5)2x1,x17、设函数f(x)??2,则f[f(?3)]?()?x?2,x?1A. ?5 B. 15 C. ?11 D. 7 8、已知向量?(1,2)与向量?(4,y)垂直,则y?()A. ?8 B. 8C. 2 D. ?2 9、已知两条直线y?ax?2和y?(a?2)x?1互相垂直,则a?()A. 1 B.2 C. 0D. ?110、函数f(x)??x2?4x?7在区间[?3,4]上的最大值是()A. ?25B. 19C. 11D. 10111、等比数列{an}中,a1?,a4?3,则该数列的前5项之积为()9A. ?1B. 3C. 1D. ?312、已知数列{an}中,a1?3,an?an?1?3则a10?()A. 30B. 27C. 33D. 36x?13、函数f(x)?3sin(?)(x?R)的最小正周期是()46A. 2?B. 4?C. 8?D. ? 14、中心在原点,焦点在y轴上,离心率为,的椭圆标准方程为()2x2y2x2x2y2y222y1 C. ?1 ??1 B. ??1 D. x?A.44622615、在10件产品中有4件次品,现从中任取3件产品,至少有一件次品的概率是() A.2531 B.C.D.5656二、填空题:(每小题5分,共5×5=25分。
(完整word版)浙江省高职考试数学试卷汇总(2011-2016年),推荐文档
2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B =I ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x =,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞U 的不等式(组)是 ( ) A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D . 2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B . p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( ) A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M=错误!未找到引用源。
2016年浙江高职考数学真题卷答案
2016年浙江省高等职业技术教育招生考试数学试卷参考答案一、单项选择题(本大题共18小题,每小题2分,共36分)二、填空题(本大题共8小题,每小题3分,共24分)19.]35-∞-⋃+∞(,(,)20.721.2x=22。
5223.1424.4-25.323π26.1或12三、简答题(本大题共8小题,共60分)27。
(8分)解:原式1818156(2)1)sin16π-=++-+1625112=++--+252=28.(6分)解:(1)因为4sin5a=,a是第二象限角,所以3cos5=-4sin45tan3cos35aaa===--(2)因为a是第二象限角,β是锐角,所以αβ+为第二或第三象限角, 又因为5sin()13αβ+=,所以αβ+是第二象限角,所以 12cos()13αβ+=-所以[]sin sin ()βαβα=+-sin()cos cos()sin a a αβαβ=+-+53124()135135=⨯-+⨯3365=29。
(7分)因为(nx-二项展开式的二项式系数之和为64, 所以264n=,即6n =6(x-二项展开式的通项公式为:616(r r rr T C x -+= 626(2)r r rrC xx --=-3626(2)r r rC x-=-由题意要求常数项,令 3602r -= 得4r =。
所以常数项为:4456(2)T C =-1615=⨯ 240= 30.(8分) (1)由题意联立方程组得:238020x y x y +-=⎧⎨+-=⎩解得:24x y =-⎧⎨=⎩,即(2,4)M -,又因为半径3r =所以,所求圆的方程为22(2)(4)9x y ++-=(2)如图,22(02)(04)2025OM =++-==设OM 的延长线与圆M 交于点*P ,则|OP |≤*||||||325OM MP OP +==+,所以当动点P 与*P 重合时,||OP 最大,此时||=3+25OP 最大31。
2016年杭州万向职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年杭州万向职业技术学院单招数学模拟试题(附答案)一、选择题(本题满分60分,每小题5分) 1. 函数)1(log 21-=x y 的反函数图象是( )A .B .C .D .2. 将四面体(棱长为3)的各棱长三等分,经过分点将原正四面体各顶点附近均截去一个棱长为1的小正四面体,则剩下的多面体的棱数E 为( ) A .16 B .17 C .18D .193. 复数32)31()22(i i -+等于( )A .―iB .iC .1―iD .―1―i4. 已知双曲线与椭圆125922=+y x 共焦点,它们的离心率之和为514,则此双曲线方程是( )A .141222=-y x B .112422=-x y C .112422=-y x D .141222=-x y 5. 已知−→−A 0=→a ,−→−B 0=→b ,则∠AOB 的平分线上的单位向量−→−M 0为( )A .||||→→→→+b ba aB .||||→→→→+⋅b ba aλ C .||→→→→++b a ba D .→→→→→→→→+⋅+⋅ab a b ab b a ||||||||6. 已知直线l 、m ,平面α、β,且βα⊂⊥m ,l 给出下列命题①若α∥β,则m l ⊥ ②若m l ⊥,则α∥β ③若α⊥β,则l //m ④若l ∥m ,则α⊥β,其中正确命题的个数是( ) A .1个B .2个C .3个D .4个xy 0 ―1 xy0 ―1xy0 1xy0 1考单招——上高职单招网7. 若(1+2x )10=a 0+a 1(x ―1)+a 2(x ―1)2+……+a 10(x ―1)10,则a 1+a 2+a 3+……+a 10= ( )A .510―310B .510C .310D .310―18. 设f (x )是定义域为R ,最小正周期为23π的函数,若⎪⎩⎪⎨⎧<≤<≤-=)0(,sin )02(,cos )(ππx x x x x f ,则)415(π-f 的值等于( ) A .1 B .0 C .22 D .―229. 设随机变量ξ服从正态分布N (0, 1),记Φ(x )=P(ξ<x ),则下列结论不正确的是( )A .Φ(0)=21 B .Φ(x )=1―Φ(―x ) C .P(|ξ|<a ) = 2Φ(a ) ―1D .P(|ξ|>a ) = 1―Φ(a )10.已知正方体ABCD ―A 1B 1C 1D 1的棱长为1,则直线DA 1与AC 的距离为( ) A .3 B .33 C .21 D .31 11.已知22)42(lim2=++-→x x f x ,则)63(2lim 2++-→x f x x 的值为( )A .31 B .21 C .32 D .6112. 如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形。
2016年浙江经济职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年浙江经济职业技术学院单招数学模拟试题(附答案)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆02222=+-+my x y x 的圆心在直线0=+y x 上,则实数m 的值为( )A .1B .-1C .2D .-22.设全集为实数集R ,集合A=}2|{<x x ,B=}3|{≥x x ,则 ( )A .B A ⋃=R B .B A ⋃=RC .=⋂B AD .=⋃B A3.13532lim +∞→+-n nn 的值等于( )A .31B .52 C .-31D .-81 4.三角形ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c.若A=60°,B=75°,a =32,则c 的值( )A .等于2B .等于4C .等于22D .不确定考单招——上高职单招网5.将直线012:=-+y x l 向左平移3个单位,再向上平移2个单位得到直线l ',则直线l l '与之间的距离为 ()A .557 B .55 C .51 D .57 6.6名运动员站在6条跑道上准备参加比赛,其中甲不能站在第一道也不能站在第二道,乙必须站在第五道或第六道,则不同排法种数为 ( )A .144B .96C .72D .48 7.已知直线m 与平面α相交于一点P 则在平面α内( ) A .存在直线与直线m 平行,也存在直线与直线m 垂直B .存在直线与直线m 平行,但不一定存在直线与直线m 垂直C .不存在直线与直线m 平行,但必存在直线与直线m 垂直D .不存在直线与直线m 平行,也不一定存在直线与直线m 垂直8.已知抛物线方程为b a c bx ax y ,0(2>++=、)R c ∈.则“此抛物线顶点在直线y=x 下方”是“关于x 的不等式x c bx ax <++2有实数解”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. 9.圆锥底面半径为1,其母线与底面所成的角为60°,则它的侧面积为;它的体积为.考单招——上高职单招网10.函数)3(log )(21-=x x f 的定义域为;若,1)(>x f 则x 的取值范围是.11.双曲线1322=-y x 的焦点坐标为;其渐近线方程是. 12.函数)62cos()(π-=x x f 的最小正周期为;在区间[-π,π]上.当y 取得最小值时,x 的值为.13.不等式014>-x 的解集为;若不等式a x <-14的解集为φ,则实数a 的取值范围是.14.等差数列213}{项和为的前n a ,其前6项和为24,则其首项a 1为;数列|}{|n a 的前9项和等于.三、解答题:本大题共6个小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知复平面内点A 、B 对应的复数分别是θθθ2cos cos ,sin 2221i z i z +-=+=,其中AB 设),2,0(πθ∈对应的复数为z .(Ⅰ)求复数z ;(Ⅱ)若复数z 对应的点P 在y=x 21上,求θ的值.考单招——上高职单招网16.(本小题满分14分)已知等比数{}n a 的首项11=a ,数列{}n b 满足首项b 1=a (a 为常数).且1+⋅=n n n a a b),3,2,1( =n(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和S n (写成关于n 的表达式).17.(本小题满分15分)如图,四棱锥P —ABCD 的底面是正方形,PA ⊥底面ABCD ,PA=AD=2,点M 、N 分别为棱PD 、PC 的中点. (1)求证:PD ⊥平面AMN ; (2)求三棱锥P —AMN 的体积; (3)求二面角P —AN —M 的大小.考单招——上高职单招网18.(本小题满分13分)已知椭圆的中心在原点,其一条准线方程为x =-4,它的一个焦点和抛物线y 2=4x 的焦点重合.(1)求该椭圆的方程;(2)过椭圆的右焦点且斜率为k (k ≠0)的直线l 和椭圆分别交于点A 、B ,线段AB 的垂直平分线和x 轴相交于点P (m ,0),求实数m 的取值范围.19.(本小题满分13分)甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为152浬/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40浬处的B 岛出发,朝北偏东θ(其中θ为锐角, 且)21=θtg 的方向作匀速直线行驶,速度为105 浬/小时.如图所示. (1)求出发后3小时两船相距多少浬? (2)两船在航行中能否相遇?试说明理由.考单招——上高职单招网20.(本小题满分13分)集合A 是由适合以下性质的函数f (x ) 组成的,对于任意的,0≥x )4,2[)(-∈x f ,),0[)(+∞在且x f 上是增函数.(1)试判断中是否在集合及A x x f x x f x )0()21(64)(2)(21≥⋅-=-=?若不在集合A中,试说明理由;(2)对于(1)中你认为是集合A 中的函数)(x f ,不等式)1(2)2()(+<++x f x f x f 是否对于任意的0≥x 总成立?证明你的结论.参考答案及解析一、选择题(每小题5分,共40分) 1.A 2.B 3.C 4.C 5.B 6.A 7.C 8.A二、填空题(每小题5分,其中第一空3分,第二空2分;共30分) 9.2π;π3310.}3|{|>x x ;(3,)27 11.)0,2(±;x y 3±= 12.4π;-π13.}0|{>x x ;]1,(--∞ 14.9; 41 三、解答题(共80分)考单招——上高职单招网15.(本小题满分12分)解:(1))12(cos sin cos 2212-+--=-=θθθi z z z ……………………3分θ2sin 21i --=………………5分(2)点P 的坐标为)sin 2,1(2θ--………………6分 由点P 在直线x y 21=上,即21sin 22-=-θ.………………9分 21sin ,41sin 2±==∴θθ则 .611,67,65,6),2,0(ππππθπθ=∴∈ ……………………12分16.(本小题满分14分)解:(1)21111,,1a a b a b a ⋅===又 , a a b a ==∴112 }{n a 成等比数列,0≠∴a 且公比q=a .……………………3分因此,数列}{n a 的通项公式为:),2,1(111 ===--n a q a a n n n …………5分 (2)由(1)知,121111,,--++-===∴==n n n n n n n n n n a a a a a b a a a a ,……7分212121a aa b b n n n n ==-++(常数) 即}{n b 是以a 为首项,a 2为公比的等比数列,……10分⎪⎪⎪⎩⎪⎪⎪⎨⎧±≠---=-==)1(1)1()1()1(22a aa a a n a n S n n …………14分 17.(本小题满分15分)(1)证明:∵ABCD 是正方形,∴CD ⊥AD考单招——上高职单招网∵PA ⊥底面ABCD∴AD 是PD 在平面ABCD 内的射影, ∴CD ⊥PD ……………………3分在△PCD 中,M 、N 分别是PD 、PC 的中点, 则MN//CD ,∴MN ⊥PD在△PAD 中,PA=AD=2,M 为PD 的中点.∴AM ⊥PD 则PD ⊥平面AMN ……………………………………5分(2)解:∵CD ⊥AD ,CD ⊥PD ∴CD ⊥平面PAD. ∵MN//CD ,∴MN ⊥平面PAD又∵AM ⊂平面PAD ∴MN ⊥AM ,∠AMN=90°. 在Rt △PAD 中,PA=AD=2,M 为PD 的中点. ∴AM=PM=2. 又MN=21CD=1 .2221=⋅=∴∆MN AM S AMN ……………………8分 ∵PM ⊥平面AMN , ∴PM 为三棱锥P —AMN 的高.3131=⋅=∆-PM S V AMN AMN P 三棱锥.…………………………10分 (3)解:作MH ⊥AN 于H ,连接PH∵PM ⊥平面AMN ,∴PH ⊥AN∴∠PHM 为二面角P —AN —M 的平面角…………13分 ∵PM ⊥平面AMN ,∴PM ⊥MH. 在Rt △AMN 中,32=⋅=AN MN AM MH考单招——上高职单招网在Rt △PMH 中,3322)(===∠MHPMPHM tg︒=∠∴60PHM 则二面角P —AN —M 的大小为60°………………15分18.(本小题满分13分)解:(1)抛物线x y 42=的焦点坐标为(1,0).……………………1分设椭圆的方程为:)0(12222>>=+b a by a x 由题意得42=ca …………2分又3.4,12222=-==∴=c a b a c 从而 所求椭圆方程为:.13422=+y x ……5分 (2)设直线l 的方程为)0)(1(≠-=k x k y将其代入椭圆方程,得12)1(43222=-+x k x整理得:01248)43(2222=-+-+k x k x k ……7分 显然k 可以是不为0的任意实数设),(11y x A 、),(22y x B ,AB 中点),(00y x M 则220434k k x +=.22200433)1434()1(k kk k k x k y +-=-+=-=………………9分 AB 的垂直平分线方程为:)434(1433222k k x k k k y +--=++ 令222243,43,0k k m k k x y +=+==即得……………………11分 4100≠≠∴≠m m k 且 410,04132<<∴>-=∴m m m k …………13分 19.(本小题满分13分)解:以A 为原点. BA 所在的直线为y 轴建立如图所示的平面直角坐标系.考单招——上高职单招网设在t 时刻甲、乙两船分别在点),(11y x P ,),(22y x Q 的位置.则t x y t t x 15,1545cos 215111===︒=……2分 由55sin ,552cos .21===θθθ可得tg , 直线BQ 的方程为402-=x y .t t BQ BQ x 1051510sin ||)2cos(||2=⋅==-=θθπ..402040222-=-=t x y ………………5分(1)令3=t ,P 、Q 两点的坐标分别为(45,45),(30,20)345850)2045()3045(||22==-+-=PQ .即两船出发后3小时,相距345浬.……………………8分(2)射线AP 方程为)0(≥=x x y ,射线BQ 的方程为)0(402≥-=x x y它们的交点M (40,40).……………………9分 若甲、乙两船相遇,则应在M 点处.此时2404040||22=+=AM .甲到达M 点所用时间为:38215240215||===AM t 甲(小时).………………10分 540)4040()040(||22=++-=BM .乙到达M 点所用时间为: 4510540==乙t (小时)……12分 ∴≠,乙甲t t 甲、乙两船不会相遇.……13分20.(本小题满分13分)解:(1)函数2)(1-=x x f 不在集合A 中.………………3分这是因为当.45)49(,0491>=>=f x 不满足条件:…………5分考单招——上高职单招网x x f )21(64)(2⋅-=在集合A 中. …………………………8分 (2)12)21(128)21(64)21(64)1(2)2()(++⋅+-⋅-+⋅-=+-++x x x x f x f x f …10分 =])21(1212[)21(62--⋅⋅x 0)41()21(6<-⋅=x )1(2)2()(+<++∴x f x f x f 对于任意0≥x 总成立.……………………13分。
浙江省高等职业技术教育招生考试数学模拟试卷
的,且 x - 1 >0 ,故由均值定理可知 x + 1 =x - 1 + x-1 1 +1 ≥ 2 +1 = 3 , 当且仅当 x =2 时取到等号, 又 log3x x-1 是在x> 1上单调增的, 所以y≥log33=1, 故其最小值为1. 22. 1440 【解析】 女生不能在一起, 所以采用插空 法, 得A4A5=1440种. 【解析】 23. (0,1 ] 由 y= 3 域 (1, 2 ]可知a =-1,则 y= (0,1 ]. 解得 3 24. - 姨 2 【解析】由韦达定理可知 x1+x2 =-2 姨 2 ,设等差中项为 G,则 x1 +x2 =2G,故等差中项 G=- 姨 2 . 公式变形得到 sinAcosB +cosAs- 25. 钝角【解析】 inB <1, 则 sin (A +B ) <sin90° , A +B <90° , 则 C >90° , 故为钝角三角形 . 26. 等轴双曲线 【解析】 渐近线夹角为直角的双曲 线称为等轴双曲线. 三、 27. (1 ) 原式=2 +lg8+lg125+0! +4
5 4 3
则含有a2b4的项为令r=2,
姨
log 1(x+a )及其定义
3
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
2 2 4 则T3=C( ) a b =48a2b4. 3 -4
2
x>0
3
姨
log 1 x-1 满足 log x≥1 1
3
由题得角α 的终边在y= 1 x 31.【解】 2 (x≥ 0 ) 上, 则 r= 姨 5 x , 2 那么sinα= y = 姨 5 , r 5 cosα= x = 2 姨 5 , r 5 则sin2α= 2sinαcosα= 4 . 5 32.【解】 设此次砌墙一共用了 S块砖, 砌好第n层后剩下砖块为 an块 (1≤n≤10, n ∈N* ) , 则an= an-1 -1, 即 an+2= 1(an-1+2 , ) 2 2 ∴{an+2 为等比数列, 且公比为 1 , } 2 又由题意得: a1= S -1所以a1+2= S +1, 2 2
2016年浙江育英职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年浙江育英职业技术学院单招数学模拟试题(附答案)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的.1. 已知映射B A f →:,其中R B A ==,对应法则,:222+-=→x x y x f 若对实数B k ∈,在集合A 中不存在原象,则k 的取值范围是 ( B )A .1≤kB .1<kC .1≥kD .1>k 提示:设k x x =+-222,据题意知此方程应无实根()()02422<-⋅--=∆∴k , 1021<⇔<+-k k ,故选B2.()()3511x x +⋅-的展开式中3x 的系数为 ( B )A .6-B .6C .9-D .9 提示:()()()()()[]323511111x x x x x +-⋅-=+⋅-()()642233112x x x x x -+-⋅+-=∴展开式中3x 的系数为()()632=-⋅- 故选B3.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( C ) A .14 B .15C .16D .17提示:设等差数列{}n a 的公差为d , 由等差数列的性质知:88512024a a =∴=∴ 91199119891132()2()2122416333333a a a a a a d a a a -+--⨯-======,选C . 4.已知3sin()45x π-=,则sin 2x 的值为(D )A .1925B .1625 C .1425D .725提示:由已知得23(cos sin )25x x -=,两边平方得19(1sin 2)225x -=,求得7sin 225x =. 或令4x π-=α,则3sin 5=α,所以27sin 2sin(2)cos212sin 225x π=-==-=ααα考单招——上高职单招网5.设地球的半径为R ,若甲地位于北纬45︒东经120︒,乙地位于南纬75︒东经120︒,则甲、乙两地的球面距离为( D . ) A .3R B .6R πC .56R π D .23R π提示:求两点间的球面距离,先要求出球心与这两点所成的圆心角的大小,∠A OB =120°,∴A 、B 两点间的球面距离为31×2πR =23R π.选D . 6.若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的 (A)A .充分不必要条件.B .必要不充分条件.C .充要条件.D .既不充分也不必要条件. 提示:易知0402<->c a b a 且⇒02>++c x b x a 对任意R ∈x 恒成立。
2016年浙江广厦建设职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年浙江广厦建设职业技术学院单招数学模拟试题(附答案)一、选择题(每小题5分,共10小题,共50分),把答案涂在答题卡上.1. 圆04822=-++y x y x 与圆2022=+y x 关于直线b kx y +=对称,则k 与b 的值分别等于( ) A .2-=k ,5=b B .2=k ,5=bC .2=k ,5-=bD .2-=k ,5-=b2. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为 ( )A .75B .70C .120D .1003. 先将)(x f y =的图象沿x 轴向右平移3π个单位,再将图象上每一个点的横坐标伸长为原来的2倍,而保持它们的纵坐标不变,得到的曲线与x y cos =的图象相同,则)(x f y =是() A .)62cos(π+=x y B .)32cos(π+=x yC .)322cos(π+=x y D .)322cos(π-=x y 4. 已知直线m 、n 和平面α,则n m //的一个必要不充分条件是() A .α//m ,α//n B .α⊥m ,α⊥nC .α//m ,α⊂nD .m 、n 与α成等角5. 函数23log )(x x f =在其定义域上单调递减,且值域为]4,2[,则它的反函数的值域是()A .]9,3[-B .]3,9[-C .]3,9[--D .]9,3[考单招——上高职单招网6. 函数)(x f 满足:)()()2(R x x f x f ∈-=+,则下列结论正确的是() A .)(x f 的图象关于直线1=x 对称 B .)(x f 的图象关于点(1,0)对称C .函数)1(+=x f y 是奇函数D .函数)(x f 周期函数7. 无穷数列{}n a 中,21=a ,其前n 项和为n S .当2≥n ,*N n ∈时,n n a S 31=,则n n S ∞→lim 等于( )A .0B .34 C .2- D .38. 已知0>>b a ,全集U=R ,集合M=}2|{ba xb x +<<,N=}|{a x ab x <<,P=}|{ab x b x ≤<,则P 与M 、N 的关系为() A .P= (C U M) N B .P=M (C U N)C .P=M ND .P=M N9.A 为三角形的一个内角,且22cos sin =+A A ,则A 2sin 与A 2cos 的值依次为 ( )A .23,21 B .23,21-C .23,21--D .23,21-10. 已知椭圆)0(12222>>=+b a b y a x 与双曲线)0,0(12222>>=-n m ny m x 有相同的焦点)0,(c -和)0,(c .若c 是a 与m 的等比中项,2n 是2m 与2c 的等差中项,则椭圆的离心率等于()A .31B .33 C .21 D .22第Ⅱ卷(非选择题 共100分)二.填空题:(本大题共4小题;每小题5分,共20分)11. 不等式022≥-at t 对所有]1,1[-∈a 都成立,则t 的取值范围是.考单招——上高职单招网12. 右图所示的流程图是将一系列指令和问题用框图的形式排列而成,箭头说明下一步是到哪一个框图。
最新浙江省高职考试数学试卷汇总(2011-2016年)汇编
2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B = ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x=,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞ 的不等式(组)是 ( )A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D .2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B .p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M={}230x xx ++=,则下列结论正确的是( )A . 集合M 中共有2个元素B . 集合M 中共有2个相同元素C . 集合M 中共有1个元素D .集合M 为空集 (15浙江高职考)2.命题甲""ab <是命题乙"0"a b -<成立的( )A . 充分不必要条件B . 必要不充分条件C .充分且必要条件D . 既不充分也不必要条件 (15浙江高职考)16.已知2(2)(2)0x x y -++=,则3xy 的最小值为( )A .2- B . 2 C . 6- D . 62-(15浙江高职考)19.不等式277x ->的解集为 (用区间表示).(16浙江高职考)1..已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B,则A B =A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}(16浙江高职考)2.不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)- (16浙江高职考)3.命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件(16浙江高职考)若1x>,则91x x +-的最小值为 第三章函数(11浙江高职考)2.若2410(2)log 3x f x +=,则(1)f = ( )A .2B .12 C . 1 D . 214log 3(11浙江高职考)3.计算3234(7)⎡⎤-⎣⎦的结果为 ( )A . 7B . -7C . 7D . 7-(11浙江高职考)5. 函数1y x=-的图像在 ( ) A . 第一、二象限 B . 第一、三象限 C . 第三、四象限 D . 第二、四象限 (11浙江高职考)9.下列函数中,定义域为{,x x R ∈且0}x ≠的函数是 ( )A .2y x = B . 2x y = C . lg y x = D . 1y x -=(11浙江高职考)13.函数2y x =+的单调递增区间是( )A .[)0,+∞ B . (),0-∞ C . (),-∞+∞ D . [)2,+∞(11浙江高职考)17.设15x a +=,15y b -=,则5x y += ( )A .a b + B . ab C . a b - D .ab(11浙江高职考)34. (本小题满分11分) (如图所示)计划用12m 长的塑刚材料构建一个窗框. 求:(1)窗框面积y 与窗框长度x 之间的函数关系式(4分); (2)窗框长取多少时,能使窗框的采光面积最大(4分); (3)窗框的最大采光面积(3分). (12浙江高职考)2.函数()3f x kx =- 在其定义域上为增函数,则此函数的图像所经过的象限为 ( )A .一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 二、三、四象限 (12浙江高职考)4.若函数(f x )满足(1)23f x x +=+,则(0)f = ( )A . 3B . 1C . 5D .32-(12浙江高职考)12. 某商品原价200元,若连续两次涨价10%后出售,则新售价为 ( ) A . 222元 B . 240元 C . 242元 D . 484元(12浙江高职考)17.若2log 4x =,则12x = ( )A . 4B . 4±C . 8D . 16(12浙江高职考)19. 函数2()log (3)7f x x x =-+-的定义域为(用区间表示). (12浙江高职考)34. (本小题满分10分)有400米长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一个矩形菜地,如图,设矩形菜地的宽为x 米. (1)求矩形菜地面积y 与矩形菜地宽x 之间的函数关系式(4分);x(第34题图)(2)当矩形菜地宽为多少时,矩形菜地面积取得最大值? 菜地的最大面积为多少?(6分); (13浙江高职考)2.已知()2223f x x =-,则(0)f = ( ) A . 0 B .3- C .23- D . 1- (13浙江高职考)4.对于二次函数223y x x =--,下述结论中不正确的是( )A . 开口向上B . 对称轴为1x =C . 与x 轴有两交点D . 在区间(),1-∞上单调递增(13浙江高职考)5.函数()24f x x =-的定义域为( )A .()2,+∞ B . [)2,+∞ C .(),2][2,-∞-+∞ D .实数集 R(13浙江高职考)19.已知log 162a =,28b=,则b a -= .(13浙江高职考)34. (10分)有60()m 长的钢材,要制作一个如图所示的窗框. (1)求窗框面积2()y m 与窗框宽()x m 的函数关系式;(2)求窗框宽()x m 为多少时,窗框面积2()y m 有最大值;(3 ) 求窗框的最大面积.(14浙江高职考)2.已知函数12)1(-=+xx f ,则=)2(f ( )A . -1B . 1C . 2D . 3(14浙江高职考)5.下列函数在区间),0(+∞上为减函数的是( )A .13-=x y B . x x f 2log )(= C . x x g )21()(= D . x x h sin )(=(14浙江高职考)21.计算:=8log 4 . (14浙江高职考)23.函数352)(2++-=x x x f 图象的顶点坐标是 .(14浙江高职考)33.(8分)已知函数⎩⎨⎧>+-≤≤=)1(,3)1()10(,5)(x x f x x f . (1)求)5(),2(f f 的值;(4分)(2)当*∈N x 时,)4(),3(),2(),1(f f f f …构成一数列,求其通项公式.(4分)(14浙江高职考)34.(10分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,如图所示.现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上. (1)根据所给条件,求出椭圆的标准方程;(3分) (2)求长方形面积S 与边长x 的函数关系式;(3分)(3)求当边长x 为多少时,面积S 有最大值,并求其最大值.(4分)(15浙江高职考)3.函数lg(2)()x f x x-=的定义域是( )A .[)3,+∞ B .(3,)+∞ C .(2,)+∞ D .[)2,+∞(15浙江高职考)4.下列函数在定义域上为单调递减的函数是( )A .3()()2x f x = B .()ln f x x = C .()2f x x =- D .()sin f x x =(15浙江高职考)13.二次函数2()43f x ax x =+-的最大值为5,则(3)f =( )A .2 B . 2- C .92D .92-(15浙江高职考)28.( 本题满分7分)已知函数21,0()32,0x x f x x x ⎧-≥=⎨-<⎩,求值: (1)1()2f -;(2分)(2)0.5(2)f -;(2分) (3)(1)f t -.(3分)A BDC(16浙江高职考)4.下列函数在其定义域上单调递增的是A .()2f x x =+B .2()23f x x x =-++ C .12()log f x x = D .()3xf x -=(16浙江高职考)5.若函数2()6f x x x =-,则A .(6)(8)(10)f f f +=B . (6)(8)2(7)f f f +=C . (6)(8)(14)f f f +=D . (6)(8)(2)f f f +=-(16浙江高职考)19.函数21()2155f x x x x =--+-的定义域为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 . (16浙江高职考)32. 某城市住房公积金2016年初的账户余额为2亿元人民币,当年全年支出3500万元,收入3000万元.假设以后每年的资金支出额比上一年多200万元,收入金额比上一年增加10%.试解决如下问题:(1)2018年,该城市的公积金应支出多少万元?收入多少万元?(2)到2025年底,该城市的公积金账户余额为多少万元?(可能有用的数据:21.1 1.21=,31.1 1.331=,41.1 1.464=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.12.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)第四章平面向量(11浙江高职考)25. 若向量(3,4)m =- ,(1,2)n =-,则||m n = ___________.(12浙江高职考)10.已知平面向量(2,3)(,),2(1,7)a b x y b a ==-=, ,则,x y 的值分别是 ( )A . 31x y =-⎧⎨=⎩B . 122x y ⎧=⎪⎨⎪=-⎩ C . 325x y ⎧=⎪⎨⎪=⎩ D . 513x y =⎧⎨=⎩ (13浙江高职考)7.AB AC BC --= ( )A .2BCB .2CBC .0D . 0(14浙江高职考)7.已知向量)1,2(-=a ,)3,0(=b ,则=-|2|b a( ) A .)7,2(- B . 53 C . 7 D . 29(15浙江高职考)21.已知(0,7)AB =-,则3AB BA -= .(16浙江高职考)6.如图,ABCD 是边长为1的正方形,则AB BC AC ++=A.2 B . 22 C.22+ D.0第五章数列(11浙江高职考)8.在等比数列{}n a 中,若355a a ⋅=,则17a a ⋅的值等于 ( )A .5B .10C .15D .25 (11浙江高职考)30. (本小题满分7分) 在等差数列{}n a 中,113a =,254a a +=,33n a =,求n 的值.(12浙江高职考)5. 在等差数列{}n a 中,若25413a a ==,,则6a = ( )A .14B . 15C .16D .17 (12浙江高职考)32. (本题满分8分)在等比数列{}n a 中,已知11,a =3216a=,(1)求通项公式n a ;(4分)(2)若n nb a =,求{}n b 的前10项和.(4分)(13浙江高职考)10.根据数列2,5,9,19,37,75……的前六项找出规律,可得7a = ( ) A . 140 B . 142 C . 146 D . 149 (13浙江高职考)22.已知等比数列的前n 项和公式为112nnS =-,则公比q = .(13浙江高职考)29. (7分) 在等差数列{}n a 中,已知271,20.a a ==(1)求12a 的值. (2)求和123456.a a a a a a +++++(14浙江高职考)8.在等比数列}{n a 中,若27,342==a a ,则=5a ( )A .81- B . 81 C . 81或81- D . 3或3-(14浙江高职考)22.在等差数列}{n a 中,已知35,271==S a ,则等差数列}{n a 的公差=d.(15浙江高职考)10.在等比数列{}n a 中,若1221n n a a a +++=- ,则2212a a ++……2na += ( ) A .2(21)n - B .21(21)3n - C .41n - D . 1(41)3n - (15浙江高职考)22.当且仅当x ∈ 时,三个数4,1,9x -成等比数列. (15浙江高职考)30.(9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列.求:(1),,a b c 的值;(3分)(2)按要求填满其余各空格中的数;(3分) (3)表格中各数之和.(3分)(16浙江高职考)7.数列{}n a 满足:*111,,()n n a a n a n N +==-+∈,则5a =A.9B. 10C.11D.12(16浙江高职考)22.等比数列{}n a 满足1234a a a ++=,45612a a a ++=,则其前9项的和9S = .第六章排列、组合与二项式定理(11浙江高职考)11.王英计划在一周五天内安排三天进行技能操作训练,其中周一、周四两天中至少要安排一天,则不同的安排方法共有 ( )A . 9种B . 12种C . 16种D . 20种(11浙江高职考)32. (本小题满分8分) 求91()x x-展开式中含3x 的系数. (12浙江高职考)13.从6名候选人中选出4人担任人大代表,则不同选举结果的种数为 ( ) A . 15 B . 24 C . 30 D . 360(12浙江高职考)33. (本小题满分8分) 求613x x ⎛⎫- ⎪⎝⎭展开式的常数项.(13浙江高职考)17.用1,2,3,4,5五个数字组成五位数,共有不同的奇数 ( ) A . 36个 B . 48个 C . 72个 D . 120个(13浙江高职考)33. (8分) 若展开式(1)nx +中第六项的系数最大,求展开式的第二项. (14浙江高职考)20. 从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法.(14浙江高职考)29.(7分)化简:55)1()1(++-x x .(15浙江高职考)11.下列计算结果不正确的是( ) A .4431099CC C-=B .1091010P P =C . 0!=1D .66888!P C =cba121 12(15浙江高职考)24.二项式212332()x x +展开式的中间一项为 .(15浙江高职考)29.(本题满分7分)课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数. (1)要求组长必须参加;(2分)(2)要求选出的3人中至少有1名女生;(2分)(3)要求选出的3人中至少有1名女生和1名男生.(3分)(16浙江高职考)8.一个班级有40人,从中选取2人担任学校卫生纠察队员,选法种数共有A. 780 B . 1560 C. 1600D. 80(16浙江高职考)29.(本题满分7分)2()n x x-二项展开式的二项式系数之和为64,求展开式的常数项.第七章概率(14浙江高职考)9. 抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于( ) A . 0.5 B . 0.6 C . 0.7 D . 0.8(14浙江高职考)23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P = .(16浙江高职考)23.一个盒子里原来有30颗黑色的围棋子,现在往盒子里再投入10颗白色围棋子并充分搅拌,现从中任取1颗棋子,则取到白色棋子的概率为 .第八章三角函数(11浙江高职考)14.已知α是第二象限角,则有3sin 2α=可推知cos α= ( )A .32-B . 12-C . 12D .32(11浙江高职考)16.如果角β的终边过点(5,12)P -,则sin cos tan βββ++的值为 ( )A .4713 B . 12165- C . 4713- D . 12165(11浙江高职考)20.22sin15cos 15︒-︒的值等于 .(11浙江高职考)24. 化简:cos78cos33sin 78sin 33︒︒+︒︒=______________. (11浙江高职考)27.(本小题满分6分)在ABC ∆中,若三边之比为1:1:3,求ABC∆最大角的度数.(11浙江高职考)33. (本小题满分8分)已知数列11()sin 3cos 122f x x x =++,求:(1)函数()f x 的最小正周期(4分); (2)函数()f x 的值域(4分).(12浙江高职考)6.在0~360︒范围内,与390︒- 终边相同的角是 ( )A . 300°B . 600°C . 2100°D . 3300° (12浙江高职考)11.已知(,)2παπ∈, 且3cos 5α=-,则sin α= ( ) A .45-B . 45C . 34D . 34- (12浙江高职考)21.化简sin()cos()2ππαα-++= .(12浙江高职考)24. 函数38sin ()y x x R =-∈的最大值为____________.(12浙江高职考)28. (本题满分7分)在ABC ∆中,已知6,4,60ab C ︒===,求c 和sin B .(12浙江高职考)30.已知函数2()2sin cos 2cos 13f x x x x =-++.求:(1)()4f π;(3分) (2)函数()f x 的最小正周期及最大值.(4分) (13浙江高职考)6.在0~360︒︒范围内,与1050︒终边相同的角是 ( )A .330︒B .60︒C .210︒D .300︒(13浙江高职考)8.若sin α=45-,α为第四象限角,则cos α= ( )A .45-B . 45C . 35D . 35- (13浙江高职考)13.乘积sin(110)cos(320)tan(700)-︒⋅︒⋅-︒的最后结果为 ( )A . 正数B . 负数C . 正数或负数D . 零 (13浙江高职考)14.函数sin cos y x x =+的最大值和最小正周期分别为( )A .2,2πB .2,2πC .2,πD .2,π(13浙江高职考)16.在ABC ∆ 中,若::1:2:3A B C ∠∠∠=,则三边之比::a b c = ( )A .1:2:3 B . 1:2:3 C . 1:4:9 D . 1:3:2(13浙江高职考)21.求值:tan75tan15︒︒+= .(13浙江高职考)26.给出120,α︒=-在所给的直角坐标系中画出角α的图象 .(13浙江高职考)30. (8分) 若角α的终边是一次函数2(0)y x x =≥所表示的曲线,求sin 2.α(13浙江高职考)31. (8分) 在直角坐标系中,若(1,1,),(2,0),(0,1)A B C --,求ABC∆的面积ABC S ∆.(14浙江高职考) 6.若α是第二象限角,则πα7-是( )A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角(14浙江高职考)10.已知角β终边上一点)3,4(-P ,则=βcos ( )A .53- B . 54C .43- D . 45(14浙江高职考)11.=︒⋅︒+︒⋅︒102sin 18sin 18cos 78cos ( )A .23-B .23C . 21-D .21(14浙江高职考)14.函数x x y 2cos sin 2+=的最小值和最小正周期分别为( )A . 1和π2B . 0和π2C . 1和πD . 0和π (14浙江高职考)26.在闭区间]2,0[π上,满足等式1cos sin =x ,则=x .(14浙江高职考)27.(6分)在△ABC 中,已知5,4==c b ,A 为钝角,且54sin =A ,求a .(14浙江高职考)30.(8分)已知52tan ,73tan ==βα,且βα,为锐角,求βα+.(15浙江高职考)5.已知角4πα=,将其终边按顺时针方向旋转2周得角β,则β=( )A .94πB .174π C .154π-D .174π-(15浙江高职考)9.若2cos()cos()446ππθθ-+=,则cos 2θ=( ) A.23B .73C . 76D .346(15浙江高职考)14.已知3sin 5α=,且(,),2παπ∈则tan()4πα+=( ) A .7- B . 7 C . 17-D . 17 (15浙江高职考)15.在ABC ∆中,若三角之比::1:1:4A B C =,则sin :sin :sin A B C =( )A .1:1:4 B . 1:1:3 C . 1:1:2 D . 1:1:3Oxy(15浙江高职考)20.若tan (0),ba aα=≠则cos2sin 2a b αα+= .(15浙江高职考)31.( 本题满分6分) 已知()3sin()4cos(3)2f x ax ax ππ=-+-+(0a ≠)的最小正周期为23(1)求a 的值;(4分) (2)()f x 的值域.(2分)(15浙江高职考)32.在ABC ∆中,若31,,32ABCBC B S π∆=∠==,求角C . (16浙江高职考)10.下列各角中,与23π终边相同的是 A.23π- B.43π C.43π- D.73π(16浙江高职考)12.在ABC ∆中,若tan tan 1A B = ,则ABC ∆的形状是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形(16浙江高职考)17.已知[]0,x π∈,则2sin 2x >的解集为 A.(0,)2π B. 3(,)44ππ C.(,]4ππ D.(,]42ππ(16浙江高职考)24.函数2()6sin()cos(2)8sin 5f x x x x ππ=-+-+的最小值为 .(16浙江高职考)28. 已知α是第二象限角,4sin 5α=, (1)求tan α;(2)锐角β满足5sin()13αβ+=,求sin .β(16浙江高职考)31.在ABC ∆中,6,23,30a b B ︒==∠=,求C ∠的大小.第九章立体几何 (11浙江高职考)10.在空间,两两相交的三条直线可以确定平面的个数为 ( )A . 1个B . 3个C . 1个 或3个D . 4个(11浙江高职考)22.如果圆柱高为4cm ,底面周长为10cm π,那么圆柱的体积等于_____. (11浙江高职考)31. (本小题满分7分)(如图所示)在正三棱锥V ABC -中,底面边长等于6,侧面与底面所成的二面角为60︒,求:(1)正三棱锥V ABC -的体积(4分);(2)侧棱VA 的长(3分);(提示:取BC 的中点D ,连接AD 、VD ,作三棱锥的高VO .)(12浙江高职考)18.如图,正方体1111ABCD A B C D -中,两异面直线AC 与1BC 所成角的大小为 ( )A . 30°B . 45°C . 60°D . 90°(12浙江高职考)26. 已知圆锥的侧面展开图是一个半径为4cm 的半圆,则此圆锥的体积是______________cm 3.(12浙江高职考)31. (本题满分7分)如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==. 求:(1)二面角P CD A --的大小;(4分)(2)三棱锥P ABD -的体积.(3分)(13浙江高职考)9.直线a 平行于平面β,点A β∈,则过点A 且平行于a 的直线( )A .只有一条,且一定在平面β内B .只有一条,但不一定在平面β内C .有无数条,但不都是平面β内D .有无数条,都在平面β内(13浙江高职考)25.用平面截半径R = 5的球,所得小圆的半径r = 4,则截面与球心的距离等于 .(13浙江高职考)32. (7分) 如图在棱长为2的正方形ABCD A B C D ''''-中,求:(1)两面角B A D D ''--的平面角的正切值;(2)三棱锥A BCC '-的体积.D'C' A'C DABB'OD CBAVD 1C 1B 1A 1ADC BB AC DP(14浙江高职考)18. 在空间中,下列结论正确的是( ) A . 空间三点确定一个平面B . 过直线外一点有且仅有一条直线与已知直线垂直C . 如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D . 三个平面最多可将空间分成八块 (14浙江高职考)24.已知圆柱的底面半径2=r,高3=h ,则其轴截面的面积为 . (14浙江高职考)32.(7分)(1)画出底面边长为cm 4,高为cm 2的正四棱锥ABCDP -的示意图;(3分)(2)由所作的正四棱锥ABCD P -,求二面角C AB P --的度数.(4分)(14浙江高职考)8.在下列命题中,真命题的个数是( ) ①//,a b a b αα⊥⇒⊥②//,////a b a b αα⇒③,//ab a b αα⊥⊥⇒ ④,a b b a αα⊥⊂⇒⊥A . 0个B . 1个C . 2个D . 3个 (15浙江高职考)25.体对角线为3cm 的正方体,其体积V= .(15浙江高职考)33. (本题满分7分)如图所示, 在棱长为a 正方体1111ABCD A B C D -中,平面1AD C 把正方体分成两部分, 求:(1)直线1C B 与平面1AD C 所成的角;(2分)(2)平面1C D 与平面1AD C 所成二面角的平面角的余弦值; (3分)(3)两部分中体积大的部分的体积. (2分)(16浙江高职考)25.圆柱的底面面积为π2cm ,体积为4π3cm ,球的直径和圆柱的高相等,则球的体积=V 3cm .(16浙江高职考)33. (本题满分7分)如图(1)所示, 已知菱形,60ABCD BAD ︒∠=中,2AB =,把菱形ABCD 沿对角线BD 折为60︒的二面角,连接AC ,如图(2)所示,求:(1)折叠后AC 的距离; (2)二面角D AC B --的平面角的余弦值.图(1) 图(2)第十章平面解析几何(11浙江高职考)6.下列各点不在曲线C :22680xy x y ++-=上的是 ( )A . (0,0)B . (-3,-1)C . (2,4)D . (3,3) (11浙江高职考)7.要使直线1:340l x y +-=与2:230l x y λ-+=平行,则λ的值必须等于 ( )A . 0B . -6C . 4D . 6(11浙江高职考)12. 根据曲线方程22cos 1,(,)2xy πββπ+=∈,可确定该曲线是( ) A . 焦点在x 轴上的椭圆 B . 焦点在y 轴上的椭圆 C . 焦点在x 轴上的双曲线 D . 焦点在y 轴上的双曲线(11浙江高职考)15. 两圆221:2C x y +=与222:210C x y x +--=的位置关系DABCB 1A1 D 1C 1 DBACDBCA是 ( )A . 相外切B . 相内切C . 相交D . 外离 (11浙江高职考)21.已知两点(1,8),(3,4)A B --,则两点间的距离AB = .(11浙江高职考)23.设α是直线4y x =-+的倾斜角,则α= 弧度.(11浙江高职考)26. 抛物线216y x =-上一点P 到y 轴的距离为12,则点P 到抛物线焦点F 的距离是______________.(11浙江高职考)28. (本小题满分6分)求中心在原点,对称轴为坐标轴,焦点在y 轴上,离心率35e =,焦距等于6的椭圆的标准方程.(11浙江高职考)29. (本小题满分7分)过点(2,3)P 作圆222210x y x y +--+=的切线,求切线的一般式方程.(12浙江高职考)7.已知两点(1,5),(3,9)A B -,则线段AB 的中点坐标为 ( )A . (1,7)B . (2,2)C . (-2,-2)D . (2,14)(12浙江高职考)14.双曲线221169x y -=的离心率为 ( ) A .74B .53C . 43D . 54(12浙江高职考)15.已知圆的方程为224230x y x y ++-+=,则圆心坐标与半径为 ( )A . 圆心坐标(2,1),半径为2B . 圆心坐标(-2,1),半径为2C . 圆心坐标(-2,1),半径为1D . 圆心坐标(-2,1),半径为2(12浙江高职考)16.已知直线210ax y ++=与直线46110x y ++=垂直,则a的值是 ( )A . -5B . -1C . -3D . 1(12浙江高职考)20.椭圆2219x y +=的焦距为 . (12浙江高职考)22.已知点(3,4)到直线340x y c ++=的距离为4,则c =_______.(12浙江高职考)25. 直线10x y ++=与圆22(1)(1)2x y -++=的位置关系是________________.(12浙江高职考)27.(本题满分6分)已知抛物线方程为212.y x =(1)求抛物线焦点F 的坐标;(3分) (2)若直线l 过焦点F ,且其倾斜角为4π,求直线l 的一般式方程.(3分)(12浙江高职考)29. (本题满分7分)已知点(4,15)在双曲线2215x y m -=上, 直线l 过双曲线的左焦点1F ,且与x 轴垂直,并交双曲线于,A B 两点,求: (1)m 的值;(3分) (2)AB .(4分)(13浙江高职考)3.下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 ( ) A .210x y -+= B .121x y+=- C .21y x =+ D . 12(0)y x -=-(13浙江高职考)11.已知点A (1,-2)、B (3,0),则下列各点在线段AB 垂直平分线上的是 ( ) A .(1,4) B .(2,1) C .(3,0) D . (0,1) (13浙江高职考)12.条件“ab =”是结论“221ax by +=所表示曲线为圆”的 ( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件 (13浙江高职考)15.若直线1:260l x y ++=与直线2:310l x kx +-=互相垂直,则k = ( )A .32- B . 32 C . 23- D . 23(13浙江高职考)18.直线4320x y -+=与圆()()224116x y -+-= 的位置关系是( )A . 相切B . 相交C . 相离D . 不确定 (13浙江高职考)20.双曲线2214xy -=的焦距为 . (13浙江高职考)24.经过点(2,1)P -,且斜率为0的直线方程一般式为 . (13浙江高职考)28. (6分) 已知椭圆的中心在原点,有一个焦点与抛物线28y x =-的焦点重合,且椭圆的离心率23e =,求椭圆的标准方程.(14浙江高职考)12.已知两点)1,4(),5,2(--N M ,则直线MN 的斜率=k ( )A . 1B .1- C .21 D .21-(14浙江高职考)13.倾斜角为2π,x 轴上截距为3-的直线方程为 ( )A .3-=xB .3-=yC .3-=+y xD .3-=-y x(14浙江高职考)15.直线032:=-+y x l 与圆042:22=-++y x y x C 的位置关系是 ( )A . 相交切不过圆心B . 相切C . 相离D . 相交且过圆心(14浙江高职考)16.双曲线19422=-y x 的离心率=e ( ) A .32B .23 C .213 D . 313 (14浙江高职考)17.将抛物线x y 42-=绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A .x y 42= B . x y 42-= C . y x 42= D . y x 42-=(14浙江高职考)25.直线012=-+y x 与两坐标轴所围成的三角形面积=S .(14浙江高职考)28.(6分)求过点)5,0(P ,且与直线023:=+-y x l 平行的直线方程.(14浙江高职考)31.(8分)已知圆0464:22=++-+y x y xC 和直线05:=+-y x l ,求直线l 上到圆C 距离最小的点的坐标,并求最小距离.(15浙江高职考)6.已知直线40x y +-=与圆22(2)(4)17,x y -++=则直线和圆的位置关系是( )A . 相切B . 相离C . 相交且不过圆心D . 相交且过圆心 (15浙江高职考)7.若(0,),βπ∈则方程22sin 1x y β+=所表示的曲线是( )A . 圆B . 椭圆C . 双曲线D . 椭圆或圆 (15浙江高职考)12.直线320150x y ++=的倾斜角为( )A .6π B .3πC .23π D .56π(15浙江高职考)17.下列各点中与点(1,0)M - 关于点(2,3)H 中心对称的是( )A .(0,1) B . (5,6) C . (1,1)- D . (5,6)-(15浙江高职考)18.焦点在x 轴上,焦距为8的双曲线,其离心率2e =,则双曲线的标准方程为 ( ) A .221412x y -= B . 221124x y -= C . 221412y x -= D . 221124y x-= (15浙江高职考)26. 如图所示,在所给的直角坐标系中,半径为2, 且与两坐标轴相切的圆的标准方为 .(15浙江高职考)27.(本题满分7分)平面内,过点(1,),(,6)A n B n -的直线与直线210x y +-=垂直,求n 的值.(15浙江高职考)34.( 本题满分10分)已知抛物线24xy =,斜率为k 的直线l 过其焦点F 且与抛物线相交于点112,2(,),()A x y B x y .(1)求直线l 的一般式方程;(3分)(2)求AOB ∆的面积S ;(4分)(3)由(2)判断:当直线斜率k 为何值时AOB ∆的面积S 有最大值;当直线斜率k 为何值时AOB ∆的面积S 有最小值.(3分)(16浙江高职考)9.椭圆22116x y m+= 的离心率34e =,则m 的值为A.7 B 7 C. 7或25 D. 7或2567(16浙江高职考)11. 抛物线的焦点坐标为(0,2)F -,则其标准方程为A .24y x =-B . 28y x =-C . 24x y =-D .28x y =-(16浙江高职考)13.下列结论正确的是 A. 直线a 平行于平面α,则a 平行于平面α内的所有直线 B.过直线a 外一点可以作无数条直线与a 异面C.若直线a 、b 与平面α所成角相等,则a 平行于bD.两条不平行直线确定一个平面(16浙江高职考)14.如图,直线32120x y +-=与两坐标轴分别交于,A B 两点,则下面各点中,在OAB ∆内部的是A.(1,2)-B. (1,5)C. (2,4)D. (3,1)(16浙江高职考)15.点(2,)a 到直线10x y ++=的距离为2,则a 的值为A.1-或5B.1-或5-C. 1 或5- D .5-(16浙江高职考)16.点1(3,4)P ,2(,6)P a ,P 为1P2P 的中点,O 为原点,且52OP =,则a 的值为A.7B. 13-C. 7或13D. 7 或13-y xOyB(16浙江高职考)18. 若我们把三边长为,,a b c 的三角形记为(),,a b c ∆,则四个三角形()6,8,8∆,()6,8,9∆,()6,8,10∆,()6,8,11∆中,面积最大的是A. ()6,8,8∆ B . ()6,8,9∆ C.()6,8,10∆ D. ()6,8,11∆(16浙江高职考)26.直线1212:(1)(2)0,:(3)(1)10,l a x a y a l a x a y l l -++-=-+-+=⊥,则a = .(16浙江高职考)30.( 本题满分8分)设直线2380x y +-=与20x y +-=交于点M ,(1)求以点M 为圆心,半径为3的圆的方程;(2)动点P 在圆M 上,O 为坐标原点,求PO 的最大值.(16浙江高职考)34.( 本题满分9分)已知双曲线22221x y a b -=的离心率52e =,实轴长为4,直线l 过双曲线的左焦点1F 且与双曲线交于,A B 两点,83AB =. (1)求双曲线的方程;(2)求直线l 的方程.。
2016年浙江邮电职业技术学院单招数学模拟试题(附答案)
考单招——上高职单招网2016年浙江邮电职业技术学院单招数学模拟试题(附答案)一、选择题:本大题共12小题,每小题5分,共60分. 1.cos600°=( )A .21-B .21 C .23-D .232.已知函数)(,)(,11lg )(a f b a f xx x f -=+-=则若=( )A .bB .-bC .b1D .-b1 3.函数)0(2)(2≤+=x x x f 的反函数的图象大致是 ( )4.一元二次方程)0(0122≠=++a x ax 有一个正实数根和一个负实数根的充分不必要条件是( )A .1<aB .0>aC .1-<aD .1>a考单招——上高职单招网5.一所中学有高一、高二、高三学生共1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个160人的样本,那么应当从高三年级的学生中抽取的人数是 ( )A .20B .40C .60D .806.已知平面α、β都垂直于平面γ,且.,b a =⋂=⋂γβγα给出下列四个命题:①若βα⊥⊥则,b a ;②若βα//,//则b a ;③若b a ⊥⊥则,βα;④若b a //,//则βα.其中真命题的个数为 ( )A .4B .3C .2D .17.若把函数)(x f y =的图象按向量)2,3(--=πa 平移后,得到函数x y cos =的图象,则原图象的函数解析式可以为 ( )A .2)3cos(+-=πx yB .2)3cos(--=πx yC .2)3cos(++=πx yD .2)3cos(-+=πx y8.已知奇函数)(x f 的定义域为),0()0,(+∞⋃-∞,且对任意正实数)(,2121x x x x ≠,恒有0)()(2121>--x x x f x f ,则一定有( )A .)5()3(->f fB .)5()3(-<-f fC .)3()5(f f >-D .)5()3(->-f f考单招——上高职单招网9.已知平面上直线l 的方向向量e =)53,54(-,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则e λ=11A O ,其中λ= ( )A .511 B .-511 C .2 D . -210.若双曲线12222=-by a x 和椭圆)0,0(12222>>>=+b m a b y m x 的离心率互为倒数,那么以a ,b ,m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形11.若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为( )A .)3612(16π-B .18πC .36πD .)246(64π-12.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )A .B .C .D .二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.13.73)12(xx -的展开式中常数项等于.121112oyx 121112oyx121112oyx 121112oyx考单招——上高职单招网14.以正方体ABCD —A 1B 1C 1D 1的8个顶点中4个为顶点,且4个面均为直角三角形的四面体是(只要写出一个四面体即可).15.若双曲线)0(222>=-k k y x 的焦点到相应准线的距离是2,则k=.16.若含有集合A={1,2,4,8,16}中三个元素的A 的所有子集依次记为B 1,B 2,B 3,…,B n (其中n ∈N *),又将集合B i (i =1,2,3,…,n )的元素的和记为i a ,则321a a a ++ n a ++ =.17.正方体AC 1中,S ,T 分别是棱AA 1,A 1B 1上的点,如果,90︒=∠TSC 那么=∠TSB 18.若直线30mx ny +-=与圆223x y +=没有公共点,则以(,)m n 为点P 的坐标,过点P 的一条直线与椭圆22173x y +=的公共点有个 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分12分)在任何两边都不相等的锐角三角形ABC 中,已知角A 、B 、C 的对边分别为a 、b 、c ,且.22cos sin 22=-A A (Ⅰ)求角B 的取值范围;(Ⅱ)求函数)62sin(sin 22π++=B B y 的值域;(Ⅲ)求证:.2a c b <+20.(本小题满分12分)考单招——上高职单招网如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为1,点M 在侧棱BB 1上. (Ⅰ)若BM=2,求异面直线AM 与BC 所成的角;(Ⅱ)当棱柱的高BB 1等于多少时,AB 1⊥BC 1?请写出你的证明过程. 21.(本小题满分12分)高三(1)班50名学生在元旦联欢时,仅买了甲、乙两种瓶装饮料可供饮用.在联欢会上甲饮料喝掉了36瓶,乙饮料喝掉了39瓶.假设每个人至多喝1瓶甲饮料和1瓶乙饮料,并且有5名学生两种饮料都没有喝,随机选取该班的1名学生,计算下列事件的概率;(Ⅰ)他没有喝甲饮料;(Ⅱ)他喝了1瓶乙饮料但是没有喝甲饮料; (Ⅲ)他喝了1瓶甲饮料和1瓶乙饮料.22.(本小题满分14分)直角坐标平面内,△ABC 的两上顶点A 、B 的坐标分别为A (-1,0)、B (1,0),平面内两点G 、M 同时满足以下条件:①0=++GC GB GA ;②||||||MC MB MA ==;③.//AB GM(Ⅰ)求△ABC 的顶点C 的轨迹方程;(Ⅱ)过点P (2,0)的直线l 与△ABC 的顶点C 的轨迹交于E 、F 两点,求PF PE ⋅的取值范围.考单招——上高职单招网23.(本小题满分12分)已知d cx bx ax x f +++=23)(是定义在实数集R 上的函数,其图象与x 轴相交于A ,B ,C 三点,若B 点坐标为(2,0),且)(x f 在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.(Ⅰ)求c 的值,写出极值点横坐标的取值范围(不需要证明); (Ⅱ)在函数)(x f 的图象上是否存在一点M (00,y x ),使曲线d cx bx ax y +++=23在点M 处的切线斜率为3b ?若存在,求出点M 的坐标;若不存在,说明理由.参考答案及解析一、选择题:本大题共12小题,每小题5分,共60分. 1.A 2.B 3.C 4.C 5.B 6.A 7.A 8.D 9.D 10.B 11.C 12.A 二、填空题:本大题共4小题,每小题4分,共16分.13.14 14.四面体A 1ABC (不唯一) 15.6 16.186 17.︒90 18.2 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 19.解:(Ⅰ)∵,43sin ,22cos sin 222=∴=-A A A∴.3,20,23sin ππ=∴<<±=A A A 又 …………2分考单招——上高职单招网∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+≠<<<<32,,20,20πππC B C B C B ∴.23,36ππππ<<<<B B 或 …………4分 (Ⅱ)∵,1)62sin()62sin(sin 22+-=++=ππB B B y …………5分由(Ⅰ)得⎪⎪⎩⎪⎪⎨⎧≠-<-<.262;65626πππππB B …………6分∴223<<y ,∴函数)62sin(sin 22π++=B B y 的值域为(2,23).……8分 (Ⅲ)∵,212cos 222=-+=bc a c b A ∴,222bc a c b =-+…………9分 223)(a bc c b =-+,∵,)(43)(,)2(,2222a c b c b c b bc c b <+-+∴+<∴≠∴,4)(22a c b <+ …………11分 ∴.2a c b <+ …………12分20.解:(Ⅰ)在正三棱柱ABC —A 1B 1C 1中,B 1B ⊥底面ABC ,∵3||,1,2=∴===AM BC AB BM .……2分 ∴BC BM AB BC AM ⋅+=⋅)(210120cos -=+︒=⋅+⋅=BC BM BC AB ,……4分又∵,,cos ||||><=⋅BC AM BC AM BC AM考单招——上高职单招网∴.63,cos ->=<BC AM …………5分 异面直线AM 与BC 所成的角为.63arccos……6分 (Ⅱ)∵,0||0)()(1121111111+⋅++=+⋅+=⋅C B AB BB C B BB BB AB BC AB …8分令0||,0112111=⋅+=⋅C B AB BB BC AB 则,,22||021||121=∴=-BB BB ∴当221=BB 时,AB 1⊥BC 1.…………12分 21.解:(Ⅰ)用A 表示事件“他喝了1瓶甲饮料”,则A 就表示事件“他没有喝甲饮料”.因此,选取的人没喝甲饮料的概率,28.050361)(1)(=-=-=A P A P …………4分 (Ⅱ)用B 表示事件“他喝了1瓶乙饮料但是没有喝甲饮料”,C 表示事件“他两种饮料都没有喝”,则B 和C 互斥,并且B+C=A . …………6分 由P (A )=P (B+C )=P (B )+P (C ),得P (B )=P (A )-P (C )=.18.050528.0=-……8分 (Ⅲ)用D 表示事件“他喝了1瓶甲饮料和1瓶乙饮料”,E 表示事件“他喝了1瓶饮料”,则D 和B 互斥,并且E=D+B. …………10分考单招——上高职单招网由P (E )=P (D+B )=P (D )+P (B ),得P (D )=P (E )-P (B )=.60.018.05035=- 或设喝了一瓶甲饮料和一瓶乙饮料的人数为x ,则,505)39()36(=+-++-x x x ∴.30=x 出如下韦恩图. …………3分(Ⅰ)他没有喝甲饮料的概率为;28.05095=+ …………6分 (Ⅱ)他喝了1瓶乙饮料但是没有喝甲饮料的概率为;18.0509= …………9分 (Ⅲ)他喝了1瓶甲饮料和1瓶乙饮料的概率为.6.05030= …………12分 22.解:(Ⅰ)设点C ,G 的坐标分别为),(),,(00y x y x ,),(),1(),1(000000y y x x y x y x GC GB GA --+--+---=++=--=)3,3(00y y x x 0 003,3y y x x ==, …………2分由AB GM MB MA //||||和=,知点M 的坐标为(0,y 0), ……3分由||||MC MB =,可得,)(120220y y x y -+=+∴.13,949122222=++=+y x y x y 即喝一瓶 甲饮料喝一瓶 30人 乙饮料考单招——上高职单招网点C 的轨迹方程是).0(1322≠=+y y x …………6分 (Ⅱ)直线l 的斜率为k (k ≠0),则它的方程为y=k (x -2),由⎩⎨⎧=-+-=.033),2(22y x x k y 可得,0344)3(2222=-+-+k x k x k …………8分 其中,0)1(36)34)(3(4162224>-=-+-=∆k k k k ∴.011≠<<-k k 且 …………9分设两交点E 、F 的坐标分别为 ),(),,(2211y x y x ,由韦达定理得:.334,3422212221+-=⋅+=+k k x x k k x x 又因为),2(),2(2211-=-=x k y x k y 从而)2)(2)(1()2)(2(2122121--+=+--=⋅x x k y y x x PF PE).321(93)1(9)4342334)(1(22222222+-=++=++⨯-+-+=k k k k k k k k ……11分又).29,3(,433,1022∈⋅<+<<<PF PE k k 所以∴PF PE ⋅的取值范围是(3,29). …………14分 23、解:(Ⅰ)∵)(x f 在[-1,0]与[0,2]上有相反的单调性,∴.0,0)0(=='c f …………2分极值点横坐标的取值范围]4,2[,021∈=x x …………4分考单招——上高职单招网 (Ⅱ)令,023)(2=+='bx ax x f ∴函数)(x f 的极值点为.32,021a b x x -== …………6分 根据(Ⅰ)得,],4,2[322∈-=a b x ∴].3,6[--∈a b ………8分 假设存在满足条件的点M ),(00y x ,令,0323,3)(0200=-+='b bx ax b x f 得 ……(1) ,0)9(43642222<⨯+=+=∆a b a b a ab b ∴方程(1)没有实数根. ∴不存在满足条件的M 点. …………12分。
2016年4月浙江省普通高校招生选考科目考试模拟测试数学试题(一)(原卷版)
2016年4月浙江省普通高校招生选考科目考试模拟测试数学试题(一)一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不给分)1.函数()f x = ) A.[1,)+∞ B.(1,)+∞ C.[0,)+∞ D.(0,)+∞2.若集合{}{}1,3,5,7,9,2,3,5,6,7A B ==,则A B = ( )A.{}3,5B.{}3,5,7C.{}1,3,5,7D.{}2,3,5,73.若1,2,4-构成一个递增的等差数列,则该数列的第5项为( )A.10B.7-C.8D.6-4.将一个半径为1的球放入一个底面是边长为2的正方形,髙是3的长方体的容器中,然后向容器这注水.问可注入的水的体积最多为( )A.12B.124π-C.4123π-D.2123π- 5.将函数()2sin 2f x x =的图象向右平移(0)ϕϕ>个单位长度后所得函数图象关于y 轴对称.则下列满足条件的ϕ的值可能为( ) A.6π B.4π C.2π D.3π6.20y -+=与y 轴的交点顺时针转动90 后得到的直线方程为( )20y +-= B.0x +-=C.0x +=20y ++=7.下列有关平面向量的运输,错误的是( )A.00a ⋅=B.0AB BC CA ++=C.若a b ⊥ ,则a b a b +=-D.若(1,2),(3,5)a b ==- ,则(4,3)a b -=-8.数列{}n a 满足12a =,1(1)2n n n n a a ++-=.则5a 的值为( ) A.22 B.20 C.18 D.169.若椭圆C 的离心率为45,则椭圆的长轴长、短轴长、焦距的比例关系为( ) A.5:4:3 B.5:3:4 C.3:4:5 D.4:3:510.棱长为2的正方体1111ABCD A B C D -中,E 为BC 中点,则1D E 的长度为( )C.311.若实数,x y 满足约束条件2510,4,4350,x y x y x y --≤⎧⎪+≤⎨⎪-+≥⎩则23x y +的取值范围是( )A.[7,11]-B.[7,5]-C.[5,9]-D.[5,5]-12.下列四个选项中,使得11a b>成立的一个充分不必要条件是( ) A.a b < B.33a b < C.lg lg a b > D.lg lg a b <13.正四棱锥P ABCD -中,2AB =,PA =则相邻两侧面所成的锐二面角的余弦值为( ) A.15- B.1514.若正数,x y 满足()(2)1x y x y +-=,则2x y +的最小值为( ) A.23 B.59 C.20915.设,m n 是不同的直线,,,αβγ是不同的平面,则下列命题中真命题的是( )A.若,//m αβα⊥,则m β⊥B.若,m n αβ⊂⊂,且m n ⊥,则αβ⊥C.若//,//αββγ,则//αγD.若//,//m n αα,则//m n16.已知数列{}n a 满足12a =,其前n 项和为n S .若当1n >时,1,,2n n n S a S -成等差,则n a =( )A.212n -B.2nC.12,14,1n n n -=⎧⎨>⎩D.22,164,1n n n -=⎧⎨⨯>⎩ 17.已知双曲线22221(,0)x y a b a b-=>的左右焦点分别为12,F F ,点P 在双曲线上,且满足212PF F F =.若直线1PF 与圆222x y a +=有交点,则该双曲线的离心率的取值范围为( ) A.53e > B.513e << C.53e ≥ D.513e <≤ 18.已知函数,0()(0)ln ,0kx k xf x k x x +≤⎧=≥⎨>⎩,若函数[()]1y f f x =+有4个零点.则实数k 的取值范围是( )A.0k e <<B.10k e <<C.0k e <≤D.10k e<≤ 二、填空题(本大题共4小题,每空3分,共15分)19.已知函数211,0,()2,0,x x f x x x x x ⎧+->⎪=⎨⎪--≤⎩则1()2f -= ;若()1f a =,则a = . 20.边长为1的正方形ABCD 中,若E 为BC 中点,则AC DE ⋅=.21.数列{}n a 中,若满足121,2a a ==,当3n ≥时,12n n n a a a --=⋅,则6S = .22.如图所示,三棱柱111ABC A B C -的底面是边长为2的正三角形,高为2.侧棱1AA ⊥底面ABC .若点E 为BC 的中点,点P 时线段1A E 上的动点.则直线1B P 与1PC 所成角的余弦值的最小值为 .三、解答题(本大题共3小题,共31分)23.(本题满分10分)ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知cos2A =(1)求角A 的大小;(2)若1a b ==,试求ABC ∆的面积;(3)若a =bc 的最大值.24.(本题满分10分)已知椭圆2222:1(0)x y C a b a b +=>>过点. (1)求椭圆C 的方程;(2)过点(1,1)P 分别作斜率为12,k k 的椭圆的动弦,AB CD ,设,M N 分别为线段,AB CD 的中点.若121k k +=,是否存在一个定点Q ,使得其在直线MN 上,若存在,求出该定点的坐标,若不存在,说明理由.25.(本题满分11分)已知函数2()32(1),,,[1,1]f x ax a b x b a b R x =--+-∈∈-.(1)若1a b +=,证明函数()f x 的图象必过定点; (2)记()f x 的最大值为M ,对任意的1,1a b ≤≤,求M 的最大值.:。
高职单招《数学》模拟试题(一)
高职单招《数学》模拟试题(一)-CAL-FENGHAI.-(YICAI)-Company One1高职单招《数学》模拟试题(一)(考试时间120分钟,满分150分)班级___________ 座号______ 姓名__________ 成绩_____一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干后的括号内。
本大题共12小题,每小题4分,共48分):1、设全集I={}210,,,集合M={}21,,N={}0,则C I M ∩N 是( ) A 、φ B 、M C 、N D 、I2、下列各组函数中,哪一组的两个函数为同一函数( )A 、y=lgx 2与y=2lgxB 、y=2x 与y=xC 、y=Sinx 与y=-Sin(-x)D 、y=Cosx 与y=-Cos(-x)3、设定义在R 上的函数f(x)=3x x ,则f(x)是( )A 、偶函数,又是增函数B 、偶函数,又是减函数C 、奇函数,又是减函数D 、奇函数,又是增函数4、若log 4x=3,则log 16x 的值是( )A 、23 B 、9 C 、3 D 、64 5、函数y=5-Sin2x 的最大值与周期分别是( )A 、4,πB 、6,2π C 、5,π D 、6,π 6、若Cosx=-23,x ∈)2,(ππ,则x 等于( ) A 、67π B 、34π C 、611π D 、35π 7、已知△ABC ,∠B=45°,C=23,b=22,那么∠C=( )A 、60°B 、120°C 、60°或120°D 、75°或105°8、下列命题:①若两个平面都垂直于同一个平面,则这两个平面平行。
②两条平行直线与同一个平面所成的角相等。
③若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行。
④若一条直线一个平面相交,并且和这个平面内无数条直线垂直,则这条直线和这个平面垂直。
浙江省2016高职考数学
2016年浙江省高等职业技术教育招生考试数学试卷(根据手写记录整理可能有误)一、单项选择题(本大题共18小题,每小题2分,共36分)1.已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B ,则A B =A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}2.不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)-3.命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件 4.下列函数在其定义域上单调递增的是A .()2f x x =+B .2()23f x x x =-++C .12()log f x x = D .()3xf x -=5.若函数2()6f x x x =-,则A .(6)(8)(10)f f f +=B . (6)(8)2(7)f f f +=C . (6)(8)(14)f f f +=D .(6)(8)(2)f f f +=- 6.如图,ABCD 是边长为1的正方形,则AB BC AC ++=A.2B .C.2+07.数列{}n a 满足:*111,,()n n a a n a n N +==-+∈,则5a = A.9 B. 10 C.11 D.128.一个班级有40人,从中选取2人担任学校卫生纠察队员,选法种数共有 A. 780 B . 1560 C. 1600 D.809.椭圆22116x y m += 的离心率34e =,则m 的值为A.77或25 D. 7或256710.下列各角中,与23π终边相同的是A.23π-B.43πC.43π- D.73π11. 抛物线的焦点坐标为(0,2)F -,则其标准方程为A .24y x =- B . 28y x =- C . 24x y =- D .28x y =- 12.在ABC ∆中,若tan tan 1A B = ,则ABC ∆的形状是 A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰直角三角形 13.下列结论正确的是A. 直线a 平行于平面α,则a 平行于平面α内的所有直线B.过直线a 外一点可以作无数条直线与a 异面C.若直线a 、b 与平面α所成角相等,则a 平行于bD.两条不平行直线确定一个平面14.如图,直线32120x y +-=与两坐标轴分别交于,A B 两点,则下面各点中,在OAB ∆内部的是A.(1,2)-B. (1,5)C. (2,4)D. (3,1)15.点(2,)a 到直线10x y ++=的距离为2,则a 的值为 A.1-或5 B.1-或5- C. 1 或5- D .5-16.点1(3,4)P ,2(,6)P a ,P 为1P 2P 的中点,O 为原点,且52OP =,则a 的值为 A.7 B. 13- C. 7或13 D. 7 或13- 17.已知[]0,x π∈,则2sin 2x >的解集为 A.(0,)2πB. 3(,)44ππC.(,]4ππD.(,]42ππ18. 若我们把三边长为,,a b c 的三角形记为(),,a b c ∆,则四个三角形()6,8,8∆,()6,8,9∆,()6,8,10∆,()6,8,11∆中,面积最大的是A. ()6,8,8∆ B . ()6,8,9∆ C.()6,8,10∆ D. ()6,8,11∆二.填空题:(本大题共8小题,每小题3分,共24分) 19.函数21()2155f x x x x =--+-的定义域为 .20.若1x >,则91x x +-的最小值为 . 21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .22.等比数列{}n a 满足1234a a a ++=,45612a a a ++=,则其前9项的和9S = . 23.一个盒子里原来有30颗黑色的围棋子,现在往盒子里再投入10颗白色围棋子并充分搅拌,现从中任取1颗棋子,则取到白色棋子的概率为 . 24.函数2()6sin()cos(2)8sin 5f x x x x ππ=-+-+的最小值为 . 25.圆柱的底面面积为π2cm ,体积为4π3cm ,球的直径和圆柱的高相等,则球的体积=V 3cm .26.直线1212:(1)(2)0,:(3)(1)10,l a x a y a l a x a y l l -++-=-+-+=⊥,则a =三.解答题: 27. (本题满分8分)计算:108153!2561)sin()20166π+++-+. 28. (本题满分6分)已知α是第二象限角,4sin 5α=, (1)求tan α;(2)锐角β满足5sin()13αβ+=,求sin .β 29.(本题满分7分)(nx二项展开式的二项式系数之和为64,求展开式的常数项. 30.( 本题满分8分)设直线2380x y +-=与20x y +-=交于点M ,(1)求以点M 为圆心,半径为3的圆的方程;(2)动点P 在圆M 上,O 为坐标原点,求PO 的最大值.31.(本题满分7分)在ABC ∆中,6,30a b B ︒==∠=,求C ∠的大小.32. (本题满分8分)某城市住房公积金2016年初的账户余额为2亿元人民币,当年全年支出3500万元,收入3000万元.假设以后每年的资金支出额比上一年多200万元,收入金额比上一年增加10%.试解决如下问题:(1)2018年,该城市的公积金应支出多少万元?收入多少万元? (2)到2025年底,该城市的公积金账户余额为多少万元?(可能有用的数据:21.1 1.21=,31.1 1.331=,41.1 1.464=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.12.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=) 33. (本题满分7分)如图(1)所示, 已知菱形,60ABCD BAD ︒∠=中,2AB =,把菱形ABCD 沿对角线BD 折为60︒的二面角,连接AC ,如图(2)所示,求:(1)折叠后AC 的距离; (2)二面角D AC B --的平面角的余弦值.图(1) 图(2)34.( 本题满分9分)已知双曲线22221x y a b-=的离心率e =4,直线l 过双曲线的左焦点1F 且与双曲线交于,A B 两点,83AB =. (1)求双曲线的方程;(2)求直线l 的方程.D BCB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016 年浙江省高职考数学模拟试卷(一)
一、选择题
1. 若 A x1
x 10 ,B
x x 10 ,则 A B 等于
( )
A.
x x 1
B.
x x
10
C. 1,2,3,4,5,6,7,8,9,10
D.
A
x1
x 10
2. 若 p : x
2 ,q : x 2
x 6 0 ,则 p 是 q 的
(
)
A. 充分而不必要条件
B.必要而不充分条件
C.充要条件
D. 既不充分也不必要条件
3. 函数 f (x) 4 x
2
x
2
4 的定义域是
( )
A. [ 2,2]
B. ( 2,2)
C. (
, 2) ( 2,
)
D.
2,2
4. 在区间 (0, ) 上是减函数的是
( )
A. y 2x
1
B.
y
3x
2
1
C. y
2 D. y
2x
2
x
1
m 3
4 2m
x
5. 若 sin
,cos
为第二象限角, 则 m 的值是
(
)
m
5
m ,其中
5
A. m 8
B. m 0
C. m 0 或 m 8
D. m 4 或 m 8
6. 直线 x y m 0 与圆 x
2
y 2
2x 1
0 有两个不同交点的充要条件是
(
)
A.
3 m 1
B.
4 m 2 C. 0 m 1
D. m 1
7. x
2
y 2
1所表示的曲线是
(
)
方程
n
2
n
2
1
A. 圆
B. 椭圆
C.双曲线
D.点
8. 若 l 是平面
的斜线,直线 m
平面 ,在平面
上的射影与直线 m 平行,则
(
)
A. m // l
B. m l
C. m 与 l 是相交直线
D. m 与 l 是异面直线
9. 若 sin
cos 1
,则 ant
等于
(
)
sin
cos
2
1
B.
1
C. 3
D.
3
A.
3
3
10. 设等比数列 a n 的公比 q 2 ,且 a 2
a 4 8 ,则 a 1 a 7 等于
(
)
A. 8
B. 16
C. 32
D. 64
11. 已知 (1 2x) 6
a 0 x
6
a 1 x
5
a 2 x
4
a 6 ,则 a 0 等于
(
)
A. 1
B. 64
C. 32
D. 0
12. 已知一条直线经过点 (3, 2) 与点 ( 1, 2) ,则这条直线的倾斜角为
(
)
A. 0
B. 45
C. 60
D. 90
13. 已知二次函数 y ax 2
bx c ( a 0),其中 a , b , c 满足 9a
3b c 0 ,则该
二次函数图像恒过定点
()
A. (3,0)
B. ( 3,0)
C. (9,3)
D. (9, 3)
14. log 2 sin15
log 2 cos15 的值是
(
)
A. 1
B. 1
C. 2
D. 2
15. 在 ABC 中,已知 a 8 , B 60 ,
C 75 ,则 b 等于
(
)
A. 4 2
B.
4 3
C. 4
6
3 2
D.
3
16. 若 a b ,c d ,则下列关系一定成立的是
( )
A. ac
bd
B. ac bc
C. a c
b d
D. a c b d
17. 已知抛物线的顶点在原点,对称轴为坐标轴,且以直线
3x
5y 15
0 与 y 轴的交点
为焦点,则抛物线的准线方程是
(
)
A. x 2
12 y
B.
x
2
12 y C. x 3 D. y 3
18. 点 P( x, y) 在直线 x y
4 0 上, O 为原点, 则 OP 的最小值是
(
)
A.
10
B. 2
2
C.
2
D. 2
二、填空题
19. 不等式 8
3x 1的解集是
;
20. 已知点 P sin 3 , cos
3
落在角 的终边上, 且
0,2 ,则 的值为
;
4
4
21. 已知 a 5 ,且 a (4, n) ,则 n 的值是
;
22. 若 A(1, 2) , B(4,
1) , C (m,2) 三点共线,则 m 的值为
;
23. 从数字 1, 2 , 3 , 4 , 5 中任取 2 个数字组成没有重复数字的两位数,则这个两位数大
于 40 的概率为
;
24.
x
2
y
2
F 1 的直线与椭圆交于 M , N 两点,则
已知 F 1 、 F 2 是椭圆 1的焦点,过
25 9
MNF 2 的周长为
;
25. 若圆柱的母线长为
a ,轴截面是正方形,则圆柱的体积为
;
26. 已知 x 0 ,则函数 f ( x)
12
;
3x 图像中最低点的坐标为
x
三、解答题
27. 函数 f ( x) x
2
ax 1,且 f (2) 3 ,求实数 a 的取值范围;
28.现从男、女共 9 名学生干部中选出 1名男同学和 1名女同学参加夏令营活动,已知共有 20
种不同的方案,若男生多于女生,求:( 1)男女同学的人数各是多少?(
且男生女生都要有的选法有多少种?
2 )共3选人
29.
已知直线l : x 2 y 3 0
与圆
( x2)
2
( y 3)
2
9
相交于P 、
Q
两点,求(
1
)弦
PQ 的长;(2)三角形 POQ 的面积(O 为坐标原点);
30.设三个数 a ,b, c 成等差数列,其和为6,且 a ,b,1 c成等比数列,求成等比数
列的三个数;
31.已知点 A(1,0) 是双曲线x
2
y 2 1 上的点,且双曲线的焦点在x 轴上,(1)若n N *,m n
双曲线的离心率 e 3 ,求双曲线的方程;(2)过(1)中双曲线的右焦点作直线l ,该直线与双曲线交于 A 、 B 两点,直线 l 与x轴上的夹角为,若弦长 AB 4 ,求角的值;
32.在 ABC 中, A, B 都为锐角, a 6 , b 5
1
, sin B,( 1)求sin A和cosC
2
的值;( 2)设f ( x)sin( x 2 A) ,求 f () 的值;
33.如图所示,正三棱柱ABC A1B1C1的底面边长为4cm ,截面 ABD 与底面 ABC 所成
的角为 30 ,求:(1) CD 的长;(2)三棱锥 D ABC 的体积;
34.如图所示,在一张矩形纸的边上找一点,过这点剪下两个正方形,它的边长分别是 AE ,
DE ,已知 AB 12 , AD 8 ,问:(1)设 DE x ,两正方形面积和为y ,列出 y 与
x 之间的函数关系式;(2)要使剪下的两个正方形的面积和最小,两正方形边长应各
为多少?( 3)两正方形面积和的最小值为多少?。