北师大版 七年级数学(下)整式的运算知识点总结及习题
数学:第一章《整式的运算》基础知识复习(北师大版七年级下)
第2章: 整式的加减一、基础知识定义单项式:如100t 、6a 2、2.5x 、vt 、-n ,它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
单项式的系数:单项式中的数字因数叫做这个单项式的系数。
例如:单项式100t 、vt 、-n 的系数分别是100、1、-1。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式100t 中,字母t 的指数是1,100t 是一次单项式;在单项式vt 中,字母v 与t 的指数的和是2,vt 是二次单项式。
多项式:如2x-3,3x+5y+2z ,21ab-πr 2,它们都可以看作几个单项式的和,像这样几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如:在多项式2x-3中,2x 和-3是它的项,其中-3是常数项。
多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。
例如:在多项式2x-3中,次数最高的项是一次项2x ,这个多项式的次数是1;在多项式x 2+2x+18中,次数最高的项是二次项x 2,这个多项式的次数是2。
整式:单项式与多项式统称为整式。
例如:单项式100t 、vt 、-n ,以及多项式2x-3,3x+5y+2z ,21ab-πr 2等都是整式。
同类项:在单项式3ab 2与-4 ab 2,它们都含有字母a ,b 并且a 都是一次,b 都是二次,像3ab 2与-4 ab 2这样,所含字母相同,并且相同字母指数也相同的项想叫做同类,几个常数项也叫做同类项。
把多项式中同类项合并成一项叫做合并同类项。
我们可以运用交换律、结合律、分配率把多项式中的同类项进行合并。
整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
北师大数学七下整式运算知识点及易错题
第一章 整式运算知识点(一)概念应用1、单项式和多项式统称为整式。
单项式有三种:单独的字母(a,-w 等);单独的数字(125,73-,3.25,-14562等); 数字与字母乘积的一般形式(-2s, a 32-,πx 5等)。
2、 单项式的系数是指数字部分,如abc π23-的系数是π23- (注意系数部分应包含π,因为π是常数); 单项式的次数是它所有字母的指数和(记住不包括数字和π的指数),如53256y x π次数是8。
3、多项式:几个单项式的和叫做多项式。
4、多项式的特殊形式:2b a +等。
5、 一个多项式次数最高的项的次数叫做这个多项式的次数。
如12312-+y y x 是3次3项式。
6、单独的一个非零数的次数是0。
知识点(二)公式应用1 、n m n m aa a +=⋅ (m,n 都是正整数)如523b b b -=⋅-。
拓展运用n m n m a a a⋅=+如已知m a =2, n a =8,求n m a +。
解:n m n m a a a ⋅=+=2×8=16.2 、mn n m aa =)( (m,n 都是正整数) 如12436243622)()(2a a aa a =-=-⨯⨯ 拓展应用m n n m mn a a a)()(==。
若2=n a ,则42)(222===n n a a 。
3、n n n b a ab =)((n 是正整数) 拓展运用n n n ab b a )(=。
4、n m n m aa a -=÷(a 不为0,m,n 都为正整数,且m 大于n)。
拓展应用n m n m a a a÷=-如若9=m a ,3=n a ,则339=÷=÷=-n m n m a a a 。
5、)0(10≠=a a ;0(1≠=-a a a pp ,是正整数)。
如81)2(1)2(33-=-=-- 6、平方差公式22))((b a b a b a -=-+ a 为相同项,b 为相反项。
北师大版-七年级下册期末复习(整式的运算)
整式的运算【知识回顾】:1、单项式和多项式:2、同类项:3、单项式和单项式的乘法(除法):4、单项式和多项式的乘法(除法):5、平方差公式和完全平方公式:【典型例题】:{例1、下列整式哪些是单项式,哪些是多项式?它们的次数分别是多少?2223312,,21,,7,1,26,35a x y x x xy y h xy ab x by --++++- 单项式:多项式:次数:例2、多项式24215132a b a b a -+-中最高次数项的系数为_________,常数项是_______,它是____次_______项式例3、计算:(1) (3k 2+7k)+(4k 2-3k+1) (2) (3x 2+2xy-12x)-(2x 2-xy+x) ;例4、 化简求值2211(33)(1)32ax ax ax ax --+----,其中a=-2,x=3.>例5、(1)2323()()()()x y x y y x y x -⋅-⋅-⋅- (2)2344()()2()()x x x x x x -⋅-+⋅---⋅%(3) –a·(-a)2·a3 (4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 74a a ÷(6) 63()()x x -÷-;(17) (x-2y)(x+2y)(x 2+4y 2) (18))23)(23(y x y x +---(19)()()b a b a 7474++ (20)()()n m n m +--22}(21)⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+b a b a 21312131 (22)()()233222--a a、例6、.已知105,106a b==,求(1)231010a b +的值;(2)2310a b +的值。
《例7、(1)若(91+m )2=316,求正整数m 的值.(2)若 2·8n ·16n =222,求正整数m 的值.`例8、化简求值:222241111()[()()]()2(1)2222a b a b a b a ab b b a -+--++--,其中a=2,b=-1.]例9、已知235,310m n ==,求(1)9m n -;(2)29m n -.(【随堂练习】:一、选择题:(本题共40分)1.在下列代数式:x y x abc ab3,,0,32,4,3---中,单项式有【 】(A )3个 (B )4个 (C )5个 (D )6个2.单项式7243xy -的次数是【 】%(A )8次 (B )3次 (C )4次 (D )5次3.在下列代数式:1,212,3,1,21,2122+-+++++x x b ab b a ab ππ中,多项式有【】(A )2个 (B )3个 (C )4个 (D )5个4.下列多项式次数为3的是【 】(A )-5x 2+6x -1 (B )πx 2+x -1 (C )a 2b +ab +b 2 (D )x 2y 2-2xy -15.下列说法中正确的是【 】(A )代数式一定是单项式 (B )单项式一定是代数式(C )单项式x 的次数是0 (D )单项式-π2x 2y 2的次数是6。
(版)北师大版数学七年级下册第一章整式乘除知识点总结及练习题
☆☆☆北师大版数学七年级【下册】第一章整式的乘除一、同底数幂的乘法同底数幂的乘法法那么: a m a n a mn(m,n都是正数)是幂的运算中最根本的法那么,在应用法那么运算时,要注意以下几点:①法那么使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法那么可推广为a m a n a pa mnp〔其中m、n、p均为正数〕;⑤公式还可以逆用:a mn a m a n〔m、n均为正整数〕二.幂的乘方与积的乘方.幂的乘方法那么:(a m)na mn(m,n都是正数)是幂的乘法法那么为根底推导出来的,但两者不能混淆..(am)n(an)m a mn(m,n都为正数).底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法那么化成同底,如将〔-a〕3化成-a3n当为偶数时),一般地,(a)n当为奇数时).n.底数有时形式不同,但可以化成相同。
.要注意区别〔ab〕n与〔a+b〕n意义是不同的,不要误以为a+b〕n=an+bn〔a、b均不〔为零〕。
.积的乘方法那么:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)na nb n〔n为正整数〕。
.幂的乘方与积乘方法那么均可逆向运用。
三.同底数幂的除法1.同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即a m a n a mn(a≠0,m、n都是正数,且m>n).2.在应用时需要注意以下几点:①法那么使用的前提条件是“同底数幂相除〞而且0不能做除数,所以法那么中a≠0.②任何不等于0的数的0次幂等于1,即a01(a0),如10010=1),那么00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即a p1(a≠0,p是正整数),而0-1,0-3都是无意义ap第1页的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如(-2)-21,(2)3148④运算要注意运算顺序..整式的乘法单项式乘法法那么:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
初一数学下学期第一章整式运算考点及答案北师大版
七年级数学(下) 第一章:整式的运算考点1:幂的意义和性质一、考点讲解:1、幂的意义:几个相同数的乘法2.幂的运算性质:(1)a m ·a n = a m+n (2)(a m )n = a mn ;(3)(ab )n = a n b n ;(4)a m ÷a n = a m -n (a≠0,a ,n 均为正整数)3、特别规定:(1)a 0=1(a≠0); (2)a -p =1(0,)p a p a ≠是正整数 4.幂的大小比较的常用方法:⑴求差比较法:如比较22221021313和的大小,可通过求差2222102-1313<0可知.2222102>1313 ⑵求商比较法:如999999999999999911999119与,可求= 9909990999999999909999119111=91191199⨯⨯=⨯=999,方可知 ⑶乘方比较法:如a 3=2,b 3=3,比较a 、b 大小可算 a 15=(a 3)5= 25=32,b 15=(b 5)3=33=2 7,可得a 15>b 15,即a >b .⑷底数比较法:就是把所比较的幂的指数化为相同的数,然后通过比较底数的大小得出结果.⑸指数比较法:就是把所比较的幂的底数化为相同的数,然后通过比较指数的大小,得出结果.【考题1-1】(2004、潍坊,2分)计算(-3a 3)2:a 2的结果是( )A .-9a 2B 6a 2C 9a 2D 9a 4解:D 点拨:主要考查积的乘方与同底数幂的除法的运算知识.(-3a 3)2= 9a 6,9a 6:a 2= 9a 4【考题1-2】(2004、开福)计算:x 2x 3=_______.解:x 5 点拨:考查学生同底数幂的乘法的知识x 2x 3= x 2+3=x 5三、针对性训练:(30 分钟) (答案:218 )1.下列计算正确的是( )A.1262624 x x =xB.(-a)(-a)=-a ÷÷C. 2n n 22n n n x x =xD.(-a)a =a ÷÷2.计算:×5101=________3、已知a=8131,b=2741,c=961,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a4、已知m -1n-13m+2n 1x =6x =(),x 3,求的值。
北师大版七年级数学初一下册 整式的乘除与因式分解知识点
整式的加减、乘除【知识点一】代数式的概念:①代数式中出现的乘号,通常写作“·”或省略不写,如6×b 常写作6·b 或6b ; ②数字与字母相乘时,数字写在字母前面,如6b 一般不写作b6;③除法运算写成分数形式,如1÷a 通常写作()01≠a a ④系数1或-1,通常省略1,如1a 写作a ,-1a 写作-a.⑤211a 通常写作23a. 例1、下列代数式中,书写正确的是( ) A. ab ·2 B. a ÷4 C. -4×a ×b D. xy 213E. mn 35F. -3× 【知识点二】单项式的概念:由 与 的 构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
例2、bc a 22-的 系数为 ,次数为 ,单独的一个非零数的次数是 。
【知识点三】多项式:几个单项式的 叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
例3、122++-x ab a ,项有 ,二次项为 ,一次项为 ,常数项为 ,各项次数分别为 ,系数分别为 ,这个多项式叫 式。
【知识点四】整式:单项式和多项式统称整式。
【注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
】【知识点五】 升幂排列与降幂排列 例4、多项式121322233-+-+-a a b b a ab b a 按字母a 升幂排列为:【知识点六】 同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。
【注意:同类项与系数大小无关,与字母的排列顺序无关。
】例5、下列各题中的两个项是不是同类项?(1)3x 2y 与-3x 2y (2)0.2a 2b 与0.2ab 2 (3)11abc 与9bc (4)3m 2n 3与-n 3m 2 (5)4xy 2z 与4x 2yz (6)62与x 2【知识点七】合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
北师大版七年级下册数学各章知识点总结
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式式 多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项 几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质: 1、同底数幂的乘法:a m﹒a n =am+n(m,n 都是正整数);2、幂的乘方:(am)n=amn(m,n 都是正整数); 3、积的乘方:(ab )n=a n bn(n 都是正整数);4、同底数幂的除法:am÷a n=am-n(m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂: 1、零指数幂:a=1(a ≠0);2、负整数指数幂:p是正整数。
七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
北师大版七年级数学下册知识点:第一章整式的运算
北师大版七年级数学下册知识点:第一章整式的运算一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习
《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。
北师大数学七年级下册第一章知识点及习题
第一章:整式的运算一, 概念1, 整式:单项式和多项式统称为整式.2, 单项式: 由数字与字母或字母与字母的相乘组成的代数式叫做单项式。
单项式不含加减运算,分母中不含字母。
(单独的字母;单独的数字;数字与字母的乘积) 3, 多项式:几个单项式的和叫做多项式。
多项式含加减运算。
代数式:用运算符导(指加, 减, 乘, 除, 乘方, 开方)把数或表示数的字母连接而成的式子叫做代数式。
数的一切运算规律也适用于代数式。
单独的一个数或者一个字母也是代数式乘方:求n 个相同因数乘积的运算叫做乘方幂:假如把a^n 看作乘方的结果,则读作a 的n 次幂二, 公式, 法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。
(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(留意考底数范围a ≠0)。
(6)负指数幂:11()(0)p p p a a a a-==≠(底倒,指反) (7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。
(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。
(9)平方差公式:(a+b )(a-b)=a 2-b 2(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):例如:229x +mxy+4y 是一个完全平方和公式,则m =;是一个完全平方差公式,则m =;是一个完全平方公式,则m =;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第一单元习题一, 填空1, 代数式4xy 3是__项式,次数是__2, 代数式x x a x a 5154323+-是__项式,次数是__ 3, (2x 2y+3xy 2)-(6x 2y -3xy 2)=________________4, 43)()(b a b a -⋅-=__________________5, (3x+7y)·(3x -7y)=________________6, (x+2)2-(x+1)(x -1)=______________7, ⑴, 251010-⨯=; ⑵, =⋅32a a ; ⑶, ()=535;二, 选择题(2×4=8)1, 下列计算正确的是 () A, 2a-a=2 B, x 3+x 3=x 6 C, 3m 2+2n=5m 2n D, 2t 2+t 2=3t 22, 下列语句中错误的是 ( ) A, 数字 0 也是单项式 B, 单项式 a 的系数与次数都是 1 C, 21x 2 y 2是二次单项式 C, -32ab 的系数是 -32 3, 下列计算正确的是 ()A, (-a 5)5=-a 25 B, (4x 2)3=4x 6 C, y 2·y 3-y 6=0 D, (ab 2c)3=ab 2c 3 4, (x+5)(x-3)等于 ( )A, x 2 -15 B, x 2 + 15 C, x 2 + 2x -15 D, x 2 - 2x - 15 5, 下列计算正确的是( )A, 422a a a =+ B, 632a a a =⋅ C, ()532a a = D, ()()123223a a a =⋅ 6, 下列计算正确的是( )A, ()623mn mn =;B, ()24222n m m n =;C, ()422293n m mn =-;D, ()51052n m n m =- 7, 8m 可以写成( )A, 42m m ⋅ B, 44m m + C, ()42m D, ()44m8, 计算()()1 52+--x x x 的结果,正确的是( ) A, 54+x B, 542+-x x C, 54--x D, 542+-x x 三, 计算 2, xy y xy y x 322122⋅⎪⎭⎫ ⎝⎛+- 3, (3a+2b )2-b 2 4, 用完全平方公式计算20012 5, 用平方差公式计算2004×19966, (3x+9)(6x+8) 7, (a-b+2)(a-b-2) 8, ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+5353b a b a 9, (3mn+1)(3mn-1)-8m 2n 2 10, (2x 2)3-6x 3(x 3+2x 2+x)11, 已知8b a =+,5ab -=,求下列各式的值。
北师大版七年级数学下册全册知识点总结
北师大版七年级数学下册全册知识点总结第一章:整式的运算单项式整式多项式同底数幂的乘法幂的乘方 积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
四、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
北师大数学七年级下 第一单元 整式的运算 总结
第一单元整式的运算总结【基本概念】一. 单项式1. 单项式:数字与字母的积组成的代数式叫单项式,单独的一个数或一个字母也叫单项式。
(注意:单项式的字母不能在分母上。
)2. 单项式的次数:所有字母的指数和叫单项式的次数,单独的一个非零数的次数是0。
3. 单项式的系数:单项式的数字部分叫单项式的系数。
(注意:①系数包含数字前面的符号;②π是一个常数;③单独一个字母,它的系数为1。
)二. 多项式1. 定义:单项式和的形式叫多项式。
(注意:多项式的每一项包含它前面的符号。
)2. 常数项:多项式中,不含字母的项叫常数项。
3. 多项式的次数:多项式中,次数最高的项的次数,叫做多项式的次数。
4. 降(升)幂排列:把一个多项式按某个字母指数按从大到小(从小到大)的顺序排列起来,叫做把多项式按这个字母降(升)幂排列。
三. 整式1. 定义:单项式和多项式统称为整式。
四. 整式的加减1. 同类项:所含字母相同,并且对应字母的指数相同的几个单项式。
(注意:与系数无关,与字母排列顺序无关。
)2. 合并同类项:系数相加,字母的指数不变。
(注意:每项系数前包含前面的符号。
)3. 去括号:括号前面是“+”,去掉括号和“+”,括号里面各项都不变号。
括号前面是“—”,去掉括号和“—”,括号里面各项都要变号。
五. 幂的乘方1. 法则:底数不变,指数相乘。
六. 积的乘方1. 法则:底数相乘,指数不变。
七. 同底数幂相除1. 法则:底数不变,指数相减。
2. 负指数(乘方):底数变为其倒数,指数变为其相反数。
3. 零指数(乘方):一个不为0的数的零次方等于0。
八. 整式的乘法1. 单项式乘单项式法则:把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式法则:根据分配率用单项式乘以多项式的每一项,再把所得的积相加。
3. 多项式乘多项式法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
新版北师大七年级数学下册第一章整式的乘除运算知识点总结及习题
第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。
??,次数是注意:0. 是数字,而不是字母,它的系数是二、多项式几个单项式的代数和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:mnm?n(m,na?a?a都是正整数)1、同底数幂的乘法:mnmn(m,n都是正整数(a)?a)、幂2的乘方:nnn)都是正整数(abn(ab)?、积的乘方: 3nm?mn(m,n都是正整数?aa?a,a?0)、同底数幂的除法:4 六、零指数幂和负整数指数幂:0);a?10a?(1、零指数幂:1p?(a?a0,?p是正整数) 2、负整数指数幂:p a七、整式的乘除法:、单项式乘以单项式:1法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式相乘,先用一个多项式多项式与的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
八、整式乘法公式:22b?)?aa?b)(a?b( 1、平方差公式:222222b??2ab2?a?ab?b(a?b)?a(a?b) 2、完全平方公式:七年级数学(下)第一章《整式的运算》一、知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第一单元《整式的运算》本章知识结构:一、整式的有关概念1、单项式2、单项式的系数及次数3、多项式4、多项式的项、次数5、整式 二、整式的运算 (一)整式的加减法 (二)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式 (三)整式的除法1、单项式除以单项式2、多项式除以单项式一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。
单独一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
练习:指出下列单项式的系数、指数和次数各是多少。
a, 432y x , mn 32, 32-∏, 32b a -4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。
特别注意,多项式的次数不是组成多项式的所有字母指数和!!!............................. 练习:指出下列多项式的次数及项。
4232372ab z y x +-, 252523-+n m y x6、整式:单项式与多项式统称整式。
特别..注.意,..分母含有字母的代数式不是整式,即单项式和多项式的分母都不能含有字母。
..................................二、整式的运算 (一)整式的加减法基本步骤:去括号,合并同类项。
特别注意:1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.(二)整式的乘法 1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:n m n m a a a +=•(其中m 、n 为正整数) 练习:判断下列各式是否正确。
6623222844333)()()()(2,,2xx x x x m m m b b b a a a =-=-•-•-=+=+=•特别注意,公式还可以逆用:n m n m a a a •=+(m 、n 均为正整数) 2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
数学符号表示:mnnm aa =)((其中m 、n 为正整数)mnp p n m a a =])[((其中m 、n 、P 为正整数)练习:判断下列各式是否正确。
2244241222443243284444)()()(,)(])[(,)(m m m n n a a a xx b b b a a a ===-====--⨯⨯+特别注意,公式还可以逆用:m n n m mna a a )()(==,p n m mnp a a ])[(=(m 、n 均为正整数)3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
)符号表示:)()(),(,)(为正整数其中为正整数其中n c b a abc n b a ab nn n nn n n ==练习:计算下列各式。
32332324)(,)2(,)21(,)2(b a xy b a xyz --特别注意,公式还可以逆用:nn n n n n n abc c b a ab b a )(,)(=••=•,(其中n 为正整数) 4、同底数的幂相除法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:n m n m a a a -=÷(其中m 、n 为正整数))0(1),0(10≠=≠=-a a p a a a p p 为正整数判断:2350223636)()(,1)54(,2010,m m m a a a a -=-÷-=-===÷-÷ 练习:计算nm n m m m a a x x x +-----÷•÷÷-⨯÷÷⨯),()(,2)2(])2[()21(2)1.0(1022220200313215、单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
练习:计算下列各式。
)31()43()32)(4(),())(3()4()3)(2(),2()5)(1(25322323223c ab c bc a b a b a b ab y x x n m ⋅-⋅--⋅--⋅--⋅6、单项式乘以多项式法则:单项式乘以多项式,就是根据乘法分配律用单项式的去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。
7、多项式乘以多项式法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项; 练习:1、计算下列各式。
)212)()(3()2)(1()3)(2)(2(),32()2)(1(y x y x y x y x c y x a --+-+-++-+⋅-8、平方差公式法则:两数的和乘以这两数的差,等于这两数的平方差。
数学符号表示:.,,))((22也可以是代数式既可以是数其中b a b a b a b a -=-+说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。
其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
9、完全平方公式法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。
口决:首平方,尾平方,2倍乘积在中央。
数学符号表示:.,,2)(;2)(222222也可以是代数式既可以是数其中b a b ab a b a b ab a b a +-=-++=+结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
练习:1、判断下列式子是否正确,并说明理由。
,254)52)(2(,2)2)(2)(1(22222b a b a y x y x y x -=--=-+.,,,)4(,141)121)(3(22只能表示一切有理数平方公式还是完全无论是平方差公式b a x x x --=-2、计算下列式。
)73)(73)(3()9)(4)(2()6)(6)(1(y x y x y x y x y x y x --+-+--+-22219992001)7(9.199)6()23)(23)(5()23)(23)(4(--++-+++-z y x z y x z y x z y x3、简答下列各题:()?,2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知z n mn m z n m xy y x y x a a aa ++=+-=+=-+=+(三)整式的除法 1、单项式除以单项式法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、多项式除以单项式法则:多项式除以单项式,就是多项式的每一项去除单项式,再把所得的商相加。
练习:计算下列各题。
)5.0()4331)(4()6()645)(3(])(31[)(6)2()2()41)(1(21231221223233225346y x y x y x y x x x y x y x b a b a c a c b a m m m n m -+--÷+-÷+--÷-÷-《整式的运算》一、知识点:1、只有数与字母的 的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
下列代数式中,单项式共有 个,多项式共有 个。
-231a , 52243b a -, 2, ab ,)(1y x a +, )(21b a +, a ,712+x , x y π+2、一个单项式中,所有 的指数和叫做这个单项式的次数;一个多项式中,次数 的项的次数叫做这个多项式的次数。
(单独一个非零数的次数是0)(1)单项式232z y x -的系数是 ,次数是 ;(2)π的次数是 。
(3)22322--+ab b a c ab 是单项式 和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是 .3、同底数幂的乘法,底数 ,指数 。
即:_______mna a ⋅=(m ,n 都是正整数)。
填空:(1)()()=-⨯-6533 (2)=⋅+12m m b b .4、幂的乘方,底数 ,指数 。
即:()____nm a =(m ,n 都是正整数)。
填空:(1)()232= (2)()=55b(3)()=-312n x.5、积的乘方等于每一个因数乘方的积。
即:()____nab =(n 是正整数). 填空:(1)()=23x (2)()=-32b (3)421⎪⎭⎫⎝⎛-xy = .6、同底数幂相除,底数不变,指数相减。
即:nm nma a a -=÷ (n m n m a >都是正整数,且,,0≠),零指数:=0a ,(0)a ≠;负指数=-p a (是正整数p a ,0≠).填空:①()()=-÷-36x x ②()()=÷xy xy 4③21___3-⎛⎫-= ⎪⎝⎭; ④()03.14____π-=.7、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
如:()=⎪⎭⎫ ⎝⎛-xy z xy 3122。
(2)单项式与多项式相乘:()b a ab ab 22324+= 。