中考数学例析直线上动点与两定点的距离和的最值问题

合集下载

初中数学最值问题典型例题(含答案分析)

初中数学最值问题典型例题(含答案分析)
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线
MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存
在,说明理由.
例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a且),点F在
AD上(以下问题的结果可用a,b表示)

(3)如图7,由题意可知,∠NMD=∠MDB,
NMMD
MDBD
要使,△DNM∽△BMD,只要使
即可,
NMBD
………………………………⑤
即:MD
2
设点M的坐标为(a,0),由MN∥BD,可得
△AMN∽△ABD,
NMAM

BD
AB
再由(1)、(2)可知,AM=1+a,BD=32
,AB=4
AMBD(1a)3232
与抛物线
2
点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重
合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)求a,b及sinACP的值
(2)设点P的横坐标为m
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个
=x-2x
2
解之,得
2.∴抛物线的解析式为y
.
2
b=-2
(2)连接AC交OB于E.
∵直线m切⊙C于A∴AC⊥m,∵弦AB=AO,∴ABAO
.∴AC⊥OB,∴m∥OB.
3
3
∴∠OAD=∠AOB,∵OA=4tan∠AOB=,∴OD=OA·tan∠OAD=4×=3.

初中数学中利用轴对称性求最值问题例析_王水友

初中数学中利用轴对称性求最值问题例析_王水友

段两端的距离相等知,PA=PD,所以求 PC+PD 的最
小值就转化为求 PC+PA 的最小值,即求 AC 的长度
即可。
例 2 已知抛物线
y
y =ax2 + c 经 过 A (0,1), P(2姨 3 ,-3)。
(1) 求 抛 物 线 的 解 析 式 并 判 定 C( 姨 3 ,0) 是否在此抛物线上;
A
D
C
O
x
M
P
(2) 点 M 是 抛 物 线
对称轴上的动点,连 MP、MC,试 求△PCM 周 长 的 最
小值。
【分析】 此题第二问是二次函数中利用轴对称
性求三角形周长的最小值问题 。由于 PC 的长度 保
持不变,要使△PCM 的周长最小,只要使 CM+MP的
值最小即可,这样问题就转化成例 1 的类型。
和点 B(2,1)。 (1) 求 此 抛 物 线 解
析式; (2) 点 C、D 分别是
x 轴和 y 轴上的动点, 求 四 边 形 ABCD 的 周 长的最小值。
y A′(-1,3)
D
A(1,3)
B(2,1)
E
C
x
B′(2,-1)
(3) 过 点 B 作 x 轴 的 垂 线 ,垂 足 为 E 点 ,点 P
A
N
B 线 时 ,BN′ 的 长 就 是 BM + MN 的 最 小 值 ,而 BN′大 于
或等于 BH,所以 BH 的长就是 BM+MN 的最小值,
容易算出 BH=4。
(五) 两动两定型
已知两定点,分别在两条直线上找两点,使这
两点与已知两定点构成的四边形周长最小。
例 7 已知抛物线 y=ax2+bx+1 经过点 A(1,3),

圆上动点到两定点距离线性和的最小值问题

圆上动点到两定点距离线性和的最小值问题
PD .


7 — — ~



图 2
求 5PA+3PD的最小值. 解 析 :连 结 P日、BD,则 P曰 : 8,BD =
10.
在 线 段 BD 上 取 点 ,,使 得 LBPF = /_._BDP,连结 PF,则 ABPF ABDP.
因为嚣=器= ,所以 = ,
1, OC = 4.
Y.N  ̄ oc = u,
= 2, L POC = L EOP ,
所 以 /X0CP /x OPE.
从而 面 PC =
=2


Pc
=2阳

连结 ED,易知 ED是 AABC的中位 线 ,所
以 2ED =BC =2 . 从 而 PC +2PD =2(PE +肋 )≥ 2ED =
图 3
解析 :连结 CD,延 长 CD交 QO于点 E,连 结 EO.
因为 AC =AD, CAD =90。, 所 以 LACD= ADC=45。. 因此 LAOE =90。,LADE = 135。. 以 AO、OE为边 ,作正 方形 AOEF,则点 D 在 以点 F为圆心 ,半径为 2的圆弧上运动.
6—3lD
数学 数 学
2018年第 6期
圆上 动 点 到 两定 点 距 离线 性 和 的最小 值 问题
于学明 李世 臣 (1.河南省商水 县希 望 中学,河南 商水 466100; 2.河南省周 口市川 汇 区教体局教研 室,河南 周 口 466001)
设 动 点 P 和 两 定 点 A、B,我 们 不 妨 称
PA+AP日为点 P到两定点 A、B距离 的线性和.
当 A=1,P点在一条定直线上移动时 ,两

例谈两动点间距离的最值问题的几种解题途径

例谈两动点间距离的最值问题的几种解题途径

例谈两动点间距离的最值问题的几种解题途径(中学教研2017/3)杨伟达(广州市花都区第二中学 510800)众所周知,距离问题本是一个古老的话题.但在每一年的高考中,它常常成为专家命题的第一视觉,也常常是许多学生解题的绊脚石.因此,在解题中若能处理好距离的最值问题,对快速解题起到事半功倍的效果.下面是笔者对两动点间距离的最值问题从不同角度进行析疑解惑,突显“动”的魅力,焕发出新的活力.一、借助特殊曲线,寻求等价替换有这样的一类题,它们的两动点分别在常见的特殊曲线上,且这特殊曲线具有特殊的性质.此时可以通过观察图形,利用图形的特殊性质即可求得最值.例1 已知圆C :034222=+-++y x y x(1)略;(2)从圆C 外一点),(y x P 向圆引一条切线,M 为切点,O 为坐标原点,且有PO PM =,求使PM 最小的P 点的坐标.分析:此题的一个动点在圆外,另一个在圆上,且这两个动点的连线是圆的切线(特殊).解决此题关键在于利用圆的特殊性质,找出切线长等价替换,问题即可解决.解:已知圆C 方程:034222=+-++y x y x所以圆心坐标为)2,1(-,半径为2,又因为PO PM =,设),(11y x P , 且PM 是圆C 的切线,所以)(222为圆的半径R PC R PM =+ 所以212121212)2()1(y x y x +=--++化简为:034211=+-y x 这是点P 满足的轨迹方程. 因为PO PM =,所以PM 的最小值就是PO 的最小值.PO 的最小值转化为点O 到直线034211=+-y x 的距离.即1053203min ==PO联立方程组有⎪⎩⎪⎨⎧=+-=+0342209112121y x y x ,解得:⎪⎩⎪⎨⎧=-=5310311y x 因此,点P 的坐标为)53,103(-.例2 分别在椭圆19422=+y x 与抛物线222m y x -=上的两动点M 、N 间的距离最小值是5,则m 的值是( )(A )1± (B )2± (C )2±(D )22±分析:如图1,通过草图,不难发现两曲线相离,且位置比较特殊.观察可知,曲线上两动点的最短距离转化为两顶点(定点)间的距离.此时问题就变得简单了.解:因为M 、N 间的距离最小值是5 所以椭圆与抛物线不相交如图1,观察,此时抛物线的顶点N 与椭圆上顶点M 的距离 就是两动点M 、N 间的距离最小值抛物线的顶点)2,0(2m 与椭圆上顶点)3,0(的距离最小值为5 所以5322=-m 解得:2±=m 故选B.二、借助三角函数,寻求合二为一有这样的一类题,它们的两动点分别在常见的特殊曲线上,且动点也可以用含参坐标表示.此时可以直接运用距离公式,把它转化为三角函数的形式即可求得最值.比如:圆222R y x =+上一动点可表示为))(sin ,cos (为参数θθθR R ;椭圆12222=+by a x 上一动点可表示为))(sin ,cos (为参数θθθb a .例3 (2016·广州二测理数23)选修4-4坐标系与参数方程 在直角坐标系xOy 中,曲线C的参数方程为,(sin x y θθθ⎧=⎪⎨=⎪⎩为参数).以点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin(ρθ+)4π=(1) 略;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最大值.分析:此类型题每年在全国卷选做题中常常出现.比较快捷的解决方法是利用参数方程表示曲线上的某一动点坐标,再根据条件转化为求三角函数的最值问题即可将问题解决.解:(1)略.所求曲线C 的直角坐标方程为2213x y +=;直线l 的直角坐标方程为2x y +=.(2)因为点Q 是曲线C 上的点,所以可设点Q的坐标为),sin θθ所以点Q 到直线l的距离为d==. 当cos 16πθ⎛⎫-=- ⎪⎝⎭时,max d ==所以点Q 到直线l的距离的最大值为三、借助数形结合,突显形象直观有这样的一类题,它们的一个动点在某区域内,另一个动点在某特殊曲线上.此时两动点间距离问题可转化为某一定点到区域内的距离最值即可将问题解决.例4 设D 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥03200y x y x x 表示的平面区域,圆C:1)5(22=+-y x 上的点与区域D 上的点之间的距离的取值范围是 A.⎪⎪⎭⎫⎢⎣⎡+-134,1225 B.[)134,117+- C.[)34,17 D.[)134,117--分析:此题涉及线性规划问题.先将不等式组表示出平面区域,再根据圆的特殊性质通过数形结合可将问题解决.解:如图2,不等式组⎪⎩⎪⎨⎧≤-+≤-≥03200y x y x x 表示的平面区域如下图中三角形ABO 内(含边缘)的阴影部分。

(完整版)中考数学例析直线上动点与两定点的距离和的最值问题

(完整版)中考数学例析直线上动点与两定点的距离和的最值问题

“将军饮马”老歌新唱——例析直线上动点与两定点的距离和的最值问题王柏校古希腊有位将军要从A地出发到河边去饮马,然后再到B地军营视察,问怎样选择饮马地点,才能使路程最短?图1A地B地这是著名的“将军饮马”问题,在河边饮马的地点有很多处,怎样找出使两条线段之和最短的那个点来,我们只要设L为河(如图1),作AO⊥L交L于O点,延长AO至A',使A'O=AO;连结A'B,交L于C,则C点就是所要求的饮马地点。

再连结AC,则路程(AC+CB)为最短的路程。

为什么饮马地点选在C点能使路程最短?因为A'是A点关于L的对称点,AC与A'C 是相等的。

而A'B是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。

这就是运用轴对称变换,找到的一种最巧妙的解题方法。

这一流传近2000年的名题至今还被命题者所喜爱,近年来许多省市中考中出现了以此故事为背景的试题,它们所考查的深度和广度也在不断演变、拓展,而且又常与其他的数学知识相联系,数形结合,突出了数学的思维价值和应用能力,能够有效地体现学生的数学学习能力,现从2009年中考试题中撷取与此相关的试题来分类说明,供广大读者参考。

一、演变成与正方形有关的试题例1(2009年抚顺)如图2所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为()A.B.C.3 D分析与解:正方形ABCD 是轴对称图形,对角线AC 所在直线是它的一条对称轴,相对的两个顶点B 、D 关于对角线AC 对称,在这个问题中D 和E 是定点,P 是动点。

我们可以找到一个定点D 的轴对称点B ,连结BE ,与对角线AC 交点处P 就是使距离和最小的点(如图3),而使PD+PE 的和的最小值恰好等于BE ,因为正方形ABCD 的面积为12,所以它的边长为23,即PD +PE 的最小值为23。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

初中数学压轴题讲解:动点,面积与最值问题

初中数学压轴题讲解:动点,面积与最值问题

典例精讲
● 如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的 中点,P是直径MN上一动点,则PA+PB的最小值为______.
解题技巧:将军饮马的第一种情况
典例精讲
●如图所示,已知A( 1 ,y1),B(2,y2)为反比例函数 y 1 图象上的两点,动

P(x
,
1
2
x
典例精讲
● 如图为反比例函数
y1 x
在第一象限的图象,点A为此图象上的一动点,过点
A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为
()
典例精讲
● 如图,在平面直角坐标系中,已知点A(1,0),B(1−a,0),C(1+a,0)(a>0),点 P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90∘,则a的最 大值是()
典例精讲 (2)Q Rt△ABM ∽Rt△MCN ,
AB BM , 4 x , MC CN 4 x CN
CN x2 4x 4
压轴题研究1——面积最值(动点)
y
S梯形ABCN
1
2
x2 4x 4
4g4
(0<x<4)
1 x2 2x 8 1 (x 2)2 10
2
2
当 x 2 时, y 取最大值,最大值为 10.
动点与最值问题
将军饮马: 将军饮马三种情况,两定一动,两动一定,双定双动
另有PPT讲解
三边关系: 两边之和大于第三边,两边只差小于第三边
动点最值问题解析
三点共线
配方法: 纯代数的最值问题用配方,利用二次函数的性质
几何问题,一般以面积周长有关

高考数学_浅析动点到两个定点的距离之和(差)的最值

高考数学_浅析动点到两个定点的距离之和(差)的最值

浅析动点到两个定点的距离之和(差)的最值江苏省泰州市民兴实验中学马永华在高三复习过程中经常碰到有关求某曲线上的一个动点到两定点的距离之和(差)的最值.许多同学在面对此类问题时感到束手无策,无从下手。

本文就此类最值问题常见题型作初步探索。

一、直线上的动点到直线外两个定点的距离之和(差)的最值.例1(1)已知点A(1,1),点B(3,-2),P是x轴上任意一点,则PA+PB的最小值为,此时点P的坐标为;(2)已知点A(1,1),点B(3,2),P是x轴上任意一点,则PB-PA的最大值为,此时点P的坐标为.解析:(1)如图1,当点P在x轴上运动时,PA+PB?AB(当且仅当A,P,B三点共线时等号成立)∴(PA+PB)min =AB=此时,点P的坐标为(2)如图2,当点P在x轴上运动时,PB- PA ?AB(当且仅当A,P,B三点共线时等号成立)∴(PB-PA)max =AB=此时,点P的坐标为变题:(1)已知点A(1,1),点B(3,2),P是x轴上任意一点,则PA+PB的最小值为,此时点P的坐标为;解析:(1)如图3,作点B关于x轴的对称点B?(3,-2),则有PB=PB?当点P在x轴上运动时,PA+PB=PA+PB??AB?(当且仅当A,P,B?三点共线时等号成立)∴(PA+PB)min =AB?=此时,点P的坐标为(2)已知点A(1,1),点B(3,-2),P是x轴上任意一点,则PB-PA的最大值为,此时点P的坐标为.解析:(2)如图4,作点B关于x轴的对称点B?,则有PB=PB?当点P在x轴上运动时,PB- PA= PB?- PA ?AB?(当且仅当A,P,B?三点共线时等号成立)∴(PB-PA)max =AB?=此时,点P的坐标为归纳:①当两定点位于直线的异侧时可求得动点到两定点的距离之和的最小值;②当两定点位于直线的同侧时可求得动点到两定点的距离之和的绝对值的最大值.若不满足①②时,可利用对称性将两定点变换到直线的同(异)侧,再进行求解.如变题的方法.例2函数的值域为.解析:将函数进行化简得:即为动点P(x,0)到两定点A(1,1)、B(3,-2)的距离之和.由例1可知:该值域为二、圆锥曲线上的动点到两个定点的距离之和(差)的最值.(一)直接求解或利用椭圆(或双曲线)的定义进行适当转化后求解.例3(1)已知A(4,0)和B(2,2),M是椭圆上的动点,则MA-MB的范围是;解析:(1)如图5,在∆MAB中有MA-MB<AB,当M,A,B三点共线且MB>MA即点M位于M2处时,有MA-MB=AB,所以MA-MB?AB;同理在∆MAB中有MB-MA?AB,即MB-MA?-AB(当点M位于M1处时等号成立)综上所述:-AB?MA-MB?AB(2)已知A(4,0)和B(2,2),M是椭圆上的动点,则MA+MB的最大值是.解析:(2) 如图6,因为点A恰为椭圆的右焦点,所以由椭圆的定义可得MA+MB=10-MF+MB(F为椭圆的左焦点),同(1)可得MB-MF?BF(当且仅当点M位于点M4处时,等号成立)所以(MA+MB)max =(10-MF+MB)max=10+BF=10+点评:因为点A,B都在椭圆的内部(即两定点都在曲线的同侧),故可直接求出动点M到两定点A,B的距离之差的最值;若要求动点M到两定点A,B的距离之和的最值(其中A恰为焦点),需要利用椭圆的定义转化为动点M到两定点F,B的距离之差的最值(点F为另一焦点).例4(1)已知F是双曲线的左焦点,A(4,1),P是双曲线右支上的动点,则PA+PF的最小值为;解析:(1)如图7,在∆PAB中有PA+PF>AB,当P,A,F三点共线即点P位于P1处时,有PA+PF=AF,所以(PA+PF)min=AF=.(2)已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则PA+PF 的最小值为.解析:(2)如图8,设F2是双曲线的右焦点,由双曲线的定义可得PA+PF=PA+2a+PF2=8+ PA+PF2?8+AF2(当P,A,F2三点共线即点P位于P2处时等号成立),所以(PA+PF)min=8+AF2=13.点评:本题需要特别关注点与双曲线的位置关系,两定点一定要在动点的轨迹(曲线)的异侧.(二)利用圆锥曲线的统一定义将圆锥曲线上的动点到焦点的距离与到相应准线的距离进行互化后进行求解.例5(1)已知点A(2,2),F是椭圆的右焦点,P是椭圆上的动点,则PF+PA的最小值是,此时,点的坐标为;解析:如图9,设点P到右准线的距离为PP?,由圆锥曲线的统一定义可知,即(当且仅当A,P,P?三点共线,即点P位于点P1处时取等号)此时点P的坐标为P(,2).(2)已知点A(5,2),F是双曲线的右焦点,P是双曲线上的动点,则PF+PA 的最小值是,此时点的坐标为.解析:如图10,设点P到右准线的距离为PP?,由圆锥曲线的统一定义可知,即(当且仅当A,P,P?三点共线,即点P位于点P1处时取等号)此时点P的坐标为P(,2)点评:此类最显著的特征是动点与焦点距离前有系数,可以利用圆锥曲线的统一定义将动点到焦点的距离转化为到相应准线的距离.例6(1)抛物线的焦点为F,A(4,-2)为一定点,在抛物线上找一点M,当MA+MF为最小值时,点M的坐标为;解析:如图11,为抛物线的准线,MM?为点M到准线的距离.利用抛物线的定义:MF=MM?,可得MA+MF= MA+MM??AM?(当且仅当A,M,M?三点共线时等号成立,即当点M在M?处时等号成立)此时点M的坐标为M(,-2)(2)P为抛物线上任一点,A(3,4)为一定点,过P作PP?垂直y轴于点P?,则AP+ PP?的最小值为.解析:如图12,延长PP?交抛物线的准线于点P??,由抛物线的定义:PP?=PF,所以AP+ PP?= AP+ PP??-1= AP+PF-1?AF-1(当且仅当A,P,F三点共线时等号成立,即当点P位于P1处时等号成立)点评:本题需要注意两点:①定点所在位置是抛物线的内部还是外部;②利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化.。

y轴上一定点到一直线两个端点距离和最小-概述说明以及解释

y轴上一定点到一直线两个端点距离和最小-概述说明以及解释

y轴上一定点到一直线两个端点距离和最小-概述说明以及解释1.引言1.1 概述在几何学中,我们经常会遇到点到直线的距离问题。

无论是数学领域还是实际应用中,点到直线的距离计算都有着广泛的应用。

本文将讨论一种特殊情况,即y轴上的一定点到一条直线连接两个端点的距离和的最小值问题。

考虑这样一个问题:给定一个直线,以及直线上的两个端点A和B,我们要找到y轴上的一个点P,使得点P到直线AB的距离和最小。

换句话说,我们需要找到一个点P,使得PA + PB的值最小。

这个问题涉及到了点到直线的距离计算、最小值求解以及实际问题的应用等多个方面。

解决这个问题的方法不仅可以用于理论研究,还可以在实际问题中得到应用。

通过研究这一问题,我们可以更好地理解点到直线的距离计算方法,并探讨最小值求解的方法和技巧。

同时,我们还将讨论这个问题的实际应用,例如在地理测量、物理学、图像处理等领域中的具体应用。

本文将按照以下结构来展开讨论。

首先,我们将介绍点到直线的距离计算方法,包括常见的几何公式和计算步骤。

然后,我们将介绍一种求解最小值的方法,以解决这个特殊问题。

最后,我们将讨论这个问题在实际应用中的具体应用案例,并对研究的局限性和未来的发展进行分析。

通过本文的研究,我们将更深入地了解点到直线的距离计算和最小值求解方法,进一步应用于实际问题中。

同时,我们也将为相关领域的研究提供一定的理论基础和启示。

让我们开始深入研究这个有趣而有实际应用价值的问题吧!1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文共分为三个主要部分,分别是引言、正文和结论。

下面对每个部分的内容进行简要介绍:1. 引言部分(Introduction)引言部分主要概述本篇文章的主题和研究背景。

首先会对"y轴上一定点到一直线两个端点距离和最小"这一问题进行概述,明确其重要性和实际应用意义。

同时,简要介绍本文的结构和组织方式。

2. 正文部分(Main Body)正文部分是本文的核心内容,主要包括三个小节。

中考数学题型:两定一动求PA+PB、PA-PB最值的方法技巧

中考数学题型:两定一动求PA+PB、PA-PB最值的方法技巧

中考题型:两定一动求线段最值即“PA±PB”型◆解决此类题型必备知识点:(1)两点之间线段最短(如:从A点走到B点,怎么走路程最短?)(2)点到直线上各点的距离,垂线段最短(3)两点关于直线对称,则这两点连成的线段被这条直线垂直平分(如:Q与Q’关于直线L对称,那么L是QQ’的垂直平分线)(4)垂直平分线上的点到线段两端的距离相等(5)三角形的三边关系:两边之和大于第三边,两边之差小于第三边●类型1:已知定点A、B,直线上的动点P,求PA+PB的最小值✧(1)定点A、B位于直线的两侧,P是L上的动点,求PA+PB的最小值如图,连接AB,点P与AB的位置关系有两种:①点P与AB不共线时,即存在三角形APB如P0位置,连接P0A、P0B在三角形AP0B中,据三边关系有:P0A+P0B>AB②点P与AB共线时,则有PA+PB=AB综合①②的讨论:PA+PB≥AB所以PA+PB的最小值为AB,此时的点P是AB与直线L的交点结论1:定点A、B在直线的两侧,当P为AB与L的交点时,PA+PB有最小值为AB✧(2)定点A、B位于直线的同一侧,P是L上的动点,求PA+PB的最小值求解思路:作其一定点关于直线L的对称点,将问题转化成两定点在直线的两侧的情形如:作A关于直线L的对称点A’,根据对称的性质,PA=PA’,将问题转化成求PA’+PB的最小值,此时A’与B位于直线L的两侧,为(1)中的情形,故当P是A’B与直线L的交点时,PA’+PB有最小值A’B,即PA+PB的最小值(若作B关于直线L的对称点B’同样的道理,最后P点是AB’与直线L的交点)结论2:定点A、B在直线的同侧,作A关于L的对称点A’,当P为A’B与L的交点时,PA+PB=PA’+PB有最小值,最小值等于A’B(或作B关于L的对称点B’,当P为AB’与L的交点时,PA+PB=PA+PB’有最小值,最小值等于AB’)✓小结:解题抓两个关键点1、找准对称轴。

直线上一动点到两定点距离之和最小问题

直线上一动点到两定点距离之和最小问题

直线上一动点到两定点距离之和最小问题.如何求直线上一动点p到(同侧)两定点距离之和的最小值所在直线的对称点与另一定p二、其中一定点关于动点点连结成的线段长即所求。

例题讲解)两点,3(3,),、平面直角坐标系内有A(2,-1B1 轴上一动点,求:是yP点B 距离之和最小时的坐标;P)到A、(1 距离之和的最小值;、BA2()P到的周长的最小值。

PAB(3)三角形2,DM=2在CD上且MABCD例2、正方形的边长为8,点DN+MN的最小值是多少?在对角线动点NAC上,则3的A2009,深圳)如图,在直角坐标系中,点3例.(顺OOA绕原点0),连结OA,将线段,坐标为(-2 OB.时针旋转120°,得到线段B的坐标;(1)求点、、O三点的抛物线的解析式;A(2)求经过B,使△C2)中抛物线的对称轴上是否存在点3()在(C的周长最小?若存在,求出点的坐标和BOC.的最小周长;若不存在,请说明理由△BOCyBOA x4巩固提高边的BC中,点Q为、在边长为12㎝的正方形ABCD PQAC上一动点,连接PB、,中点,点P为对角线周长的最小值为____________㎝。

则△PBQ是等边三12,2、如图所示,正方形的面积为ABCDABE △AD内,在对角线角形,点在正方形P ACABCDE E 的和最小,则这个最小值为,使上有一点PE PDP CB().B.AD.C 3 .662325,⊥BCABCD中,AD∥BC,AB3、已知直角梯形PD取P=2,BC=DC=5,点在BC上移动,则当PA+AD)APD最小值时,△中边AP上的高为(3D A、BC、、、482171717171717的两条对角线分别,荆门)如图,菱形ABCD4、(2008 分别P是对角线AC上的一个动点,点M、N8长6和,点值,则PM+PN的最小BC 是边AB、的中点是。

O在,点AMN=25、(2009,南通)如图,MN是O的直径,0上的一BAMN=30,为弧AN的中点,P是直径MN上,∠个动点,则PA+PB的最小值是。

中考数学复习专题之二“将军饮马”模型解决最值问题

中考数学复习专题之二“将军饮马”模型解决最值问题

专题二 “将军饮马”模型解决最值问题【实战精例1】(2019•广西)如图,AB 为O 的直径,BC 、CD 是O 的切线,切点分别为点B 、D ,点E 为线段OB 上的一个动点,连接OD ,CE ,DE ,已知AB =2BC =,当CE DE +的值最小时,则CEDE的值为( )A .910B .23C D 【实战精例2】 (滨州·中考真题)如图,等边ABC ∆的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若2AE =,EM CM +的最小值为 .一、“将军饮马”模型问题:如图,在定直线l上找一动点P,使点P到两定点A和B的距离之和最小,即PA+PB 最小。

【简析1】如图,作出定点B关于定直线l的对称点C,连接AC与定直线l的交点Q即为所要寻找的点,且最小值等于AC。

类型一:“两定一动“--和最小【经典剖析1】(2021秋•官渡区期末)如图,已知点D、E分别是等边三角形ABC中+的最小值为()AD=,点F是线段AD上的动点,则BF EFBC、AB边的中点,6A.3 B.6 C.9 D.12【经典剖析2】如图,直线8=+分别与x轴、y轴交于点A和点B,点C,D分别y x为线段AB,OB的中点,点P为OA上一动点,当PC PD+值最小时,点P的坐标为()A.(4,0)−−D.(1,0)−C.(2,0)−B.(3,0)【经典剖析3】 已知(1,1)A −、(2,3)B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( ) A .1(0,)4B .1(0,)3C .1(0,)4−D .1(0,)3−【经典剖析4】如图,边长为a 的等边ABC ∆中,BF 是AC 上中线且BF b =,点D 在BF上,连接AD ,在AD 的右侧作等边ADE ∆,连接EF ,则AEF ∆周长的最小值是( )A .1223a b +B .12a b +C .12a b +D .32a类型二:两定一动“--差最大--定点同侧类型三:“两定一动“--差最大【经典剖析1】(2019秋•龙口市期末)如图,已知点(0,1)B−,点P为x轴上一A,(2,3)点,当||−最大值时,点P的坐标为.PB PA类型四:“两动一定“--最短距离【经典剖析1】如图,四边形ABCD中,130∠=∠=°,在BC,CD上B DBAD∠=°,90分别找一点M,N,使AMN∠+∠的度数为()∆的周长最小时,则ANM AMNA.80°B.90°C.100°D.130°【经典剖析2】如图,30=,点E,F分别是BA,∠=°,点D是它内部一点,BD mABC∆周长的最小值为()BC上的两个动点,则DEFA.0.5m B.m C.1.5m D.2m类型五:“两动两定“--最短距离【经典剖析1】(2021春•江岸区校级月考)如图所示,50AOB ∠=°,30BOC ∠=°,12OM =,4ON =.点P 、Q 分别是OA 、OB 上动点,则MQ PQ NP ++的最小值是 .类型六:“两定点一定长①”【类型七】“两定点一定长②”【经典剖析1】如图,在矩形ABCD 中,4AB = ,7BC= ,E 为CD 的中点,若P Q 、为BC 边上的两个动点,且2PQ =,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.问题作法图形原理在直线l 上求两点M,N (M 在N 左侧),使MN=a ,使AM+MN+NB 最短将A 向右移a 个单位到A’,作A ’关于l 对称点A’’,连接A’’B 与交点即为N ,左移a 个单位,即为M 。

关于定直线上的动点到两定点间距离和(差)的极值问题

关于定直线上的动点到两定点间距离和(差)的极值问题

关于定直线上的动点到两定点间距离和(差)的极值问题09年1月(08学年第一学期)的鄞州区初三数学期末试卷中最后一道题的第2小题:关于在一条直线上的动点到两定点间距离的和(或差)的极值问题,学生的得分率不高,大约为50﹪左右。

本着数学归类、归纳的理念,在这里把同一类问题作一整理、归纳、延展。

一、和的最小值问题例1、在直角坐标系中,点A 、B 的坐标分别为(-4,-1)和(-2,-5);点P 是y 轴上的一个动点,求点P 在何处时,PA +PB 的 和为最小?并求最小值。

解:(1)∵点P 在y 轴上,∴以y 轴为对称轴,作点B 的对称点B 1, 连接AB 1与y 轴交于点P ,P 点就是所求的点。

此时,PA +PB =PA +PB 1 =AB 1;理由如下:取点P 以外的点P 1,可知,P 1A +P 1B =P 1A +P 1B 1>AB 1= PA +PB ,所以P 1A +P 1B >PA +PB ,即P 为符合要求的点。

求点P 的坐标,可用三角形相似或可以通过经过A 、B 1两点的直线解析式与y 轴的交点坐标的方法。

点P 为(0,311) (2)求PA +PB (AB 1)的值,可用勾股定理来求。

即PA +PB =AB 1=132。

例2、已知菱形ABCD 中,∠DAB =600;AB =6,M 为AB 的中点,点P 在对角线AC 上,求点P 在何处时,PM +PB 的和为最小?并求最 小值。

解:(1)由上例可知,AC 为对称轴,点B 的对称点为点D ,连接DM 与AC 的交点为点P ,P 点就是所求的点。

此时,PB +PM =PD +PM =DM 。

(2)根据题意得,△ABD 为等边三角形,边长为12,DM为边上的高线。

所以DM=36,即PB +PM =36。

例3、在正方形ABCD 中,AB =12,点M 在BC 上,且BM =5,点P 在对角线BD 上,求点P 在何处时,PM +PC 的和为最小?并求最小值。

专题05 抛物线上的点到两条直线的距离之和的最小值-高中数学破题致胜微方法(抛物线上的点到定点或定直线的

专题05 抛物线上的点到两条直线的距离之和的最小值-高中数学破题致胜微方法(抛物线上的点到定点或定直线的

专题05 抛物线上的点到两条直线的距离之和的最小值本内容主要研究抛物线上的点到两条直线的距离之和的最小值.利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化;数形结合,画图得出最值.
先看例题:
例:已知直线l1:x-y-5=0和直线l2:y=-4,抛物线x2=16y上一动点P到直线l1和直线l2的距离之和的最小值是().
归纳整理:
抛物线上的点到两条直线的距离之和的最小值:
利用抛物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化;
数形结合,一条直线是抛物线的准线或者是与准线平行的直线,求出焦点到另一条直线的距离从而得出所求最值.
再看一个例题,加深印象:
例:已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()
总结:
1. 求抛物线上的点到两条直线的距离之和的最小值,其中一条直线是抛物线的准线或者是与准线平行的直线,利用线物线的定义将动点(在抛物线上)到焦点与到准线的距离进行互化.
2. 数形结合,求出焦点到另一条直线的距离从而得出所求最值.
练习:
1. 抛物线y2=4x上的动点到准线的距离和到直线y=2x+3的距离之和的最小值为( )
A.1
2. 已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()
A.2
B.3
C.11
5
D.
37
16
答案:
1.
2.。

解析几何中求距离最值问题的方法与策略

解析几何中求距离最值问题的方法与策略

解析几何中求距离最值问题的方法与策略作者:洪其强来源:《广东教育·高中》2013年第10期关于解析几何中的距离的最值问题,是我们在高考复习中经常遇到的一种题型,它有时以函数最值的形式出现,有时直接以解析几何题的形式出现,对于这种题型的处理方法,如果得当,就会达到事半功倍的效果.本文以几个例题来谈谈有关这种题型的最佳解决方法.一、直线上一点到两已知点的距离的最值问题1. 同侧求差取最大,直接连接找交点.例1. 设有两点P(3,x)、Q(2,y),其中x+y=2,且x、 y∈R+,求P、Q到原点O的距离之差的最大值,并求取得最大值时的x和y 的值.分析:由题意可知=|OP|-|OQ|= - = - ,即在x轴上求一点M(x,0),使它到点A(0,3)和点B(2,2)距离的差取得最大值 .又A、B两点都在x轴的同侧,为此,连接AB并延长使之交x轴于一点,易证该点即是所求的点M,从而AB的长就是所求的最大值.解析:由分析易得|OP|-|OQ|的最大值为|AB|= ,此时直线AB的方程为y=- x+3.令y=0得x=6即所求的x=6,y=-4.2. 异侧求差取最大,找出对称直接连.例2. 在直线l∶3x-y-1=0上求一点M使它到点A(4,1)和点B(0,4)的距离的差最大.分析:由题意可知A、B两点分别在直线l的两侧,故设B(0,4)点关于直线l∶3x-y-1=0的对称点为B′,易求得B′(3,3),连接AB′并延长交于l一点,易证该点即是所求的点M.解析:由分析易得|MA|-|MB|的最大值为|AB′|= ,此时直线AB′的方程为y=-2x+9.由3x-y-1=0,y=-2x+9?圯x=2,y=5,故所求M点为(2,5).3. 异侧求和取最小,直接连接找交点.例3. 求函数f(x)= + 的最小值.分析: f(x)= += + 表示动点P(x,0)到定点A(-3,3),B(5,-1)的距离之和,而A、B两点分别位于x轴的上下两侧,由此连接AB交x轴于一点,易证该点即是所求的P点.解析:由题意及分析易得直线AB的方程为y=- x+ ,令y=0得x=3即所求的P点为(3,0).4. 同侧求和取最小,找出对称直接连.例4. 在直线l∶x-y+9=0上任取一点P,又知M(-3,0),N(3,0),试问P点在何处时|PM|+|PN|取得最小值?解析:由题意可知M(-3,0),N(3,0)在直线l同侧,要使|PM|+|PN|取得最小值.设M(-3,0)点关于直线l∶x-y+9=0的对称点为M′,易求得M′(-9,6),连接M′N并延长交l于一点,易证该点即是所求的点P. 又直线M′N的方程为y=- x+ ,即x+2y-3=0.由x-y+9=0,x+2y-3=0,得x=-5,y=4,即所求P点位置为(-5,4).点评:由上可知,上述问题可用如下口诀给予解决:同侧求差取最大,直接连接找交点;异侧求差取最大,找出对称直接连;异侧求和取最小,直接连接找交点;同侧求和取最小,找出对称直接连.二、利用数形结合求距离的最值问题例5. 设m≥1,求坐标平面上两点A(m+ ,m-),B(1,0)之间距离的最小值.分析:此题若直接用距离公式求解,比较麻烦. 如果从轨迹图形入手,最简捷.先将动点的轨迹求出来,将动点与定点的距离最值问题转化为定点与轨迹上的点的距离的最值问题.解析:A不是动点吗?那么A的轨迹是什么?这是十分自然的联想,由x=m+ ,y=m- 可知,A点的轨迹方程为x2-y2=4,绘出如上图所示的双曲线的一支,立即可以看出,|AB|的最小值为1 .三、将两个动点转化为只有一个动点例6. 如图,设P为圆(x-3)2+y2=1上的动点,Q为抛物线y2=x上的动点,求|PQ|的最小值.分析:利用圆上动点到圆心的距离等于常数的特点,将圆的动点转化为圆心定点,从而两个动点的距离最值问题,就转化为一个动点到一个定点的距离的最值问题.本题P,Q两点都是动点,如果设这两个点的坐标来求,显然非常困难. 这就需要把这两个变量转化为一个变量来处理. P点在圆上运动,但P点到圆心M(3,0)的距离是定值,利用这个定值来解决.解析:设Q(y2,y),则|QM|2=(y2-3)2+y2=y4-5y2+9=(y2- )2+ ≥ .取等号当且仅当y=± .故|PQ|的最小值为 -1.四、利用圆锥曲线的定义将折线段转化为直线段来求距离的最值问题例7. 已知椭圆 + =1内有一点P(1,-1),F为椭圆的右焦点,在椭圆上求一点M,使得|MP|+2|MF|取得最小值.分析:利用圆锥曲线的定义将折线段转化为直线段来求最值.解析:a2=4,b2=3,c2=1即F(1,0). 由M向右准线作垂线,垂足为N,则 = = .即|MN|=2|MF|.故|MP|+2|MF|=|MP|+|MN|.显然当M,P,N共线时,|MP|+|MN|最小,由 + =1,得x=±,因为x>0,所以M(,-1).(作者单位:贵州省龙里中学)责任编校徐国坚。

直线上一动点到两定点距离之和最小问题

直线上一动点到两定点距离之和最小问题

如何求直线上一动点p到(同侧)两定点距离之和的最小值解题思路和步骤:一、作出点p的位置:即其中一定点关于点p所在直线的对称点与另一定点的连线跟点p所在直线的交点。

1、作其中一定点关于点p所在直线的对称点;2、连接该对称点和另一定点,所得直线与点p所在直线的交点即点p的位置。

二、其中一定点关于动点p所在直线的对称点与另一定点连结成的线段长即所求。

例题讲解1、平面直角坐标系内有A(2,-1),B(3,3)两点,点P是y轴上一动点,求:(1)P到A、B距离之和最小时的坐标;(2)P到A、B距离之和的最小值;(3)三角形PAB的周长的最小值。

例2、正方形ABCD的边长为8,点M在CD上且DM=2,动点N在对角线AC上,则DN+MN的最小值是多少?A D EPBC 例3.(2009,深圳)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标和 △BOC 的最小周长;若不存在,请说明理由.巩固提高1、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ , 则△PBQ 周长的最小值为____________㎝。

2、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .63、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取 最小值时,△APD 中边AP 上的高为( ) A 、17172B 、17174 C 、 17178D 、3 B A O y xOxyBD AC P 4、(2008,荆门)如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别 是边AB 、BC 的中点,则PM+PN 的最小值是 。

动点最值问题

动点最值问题

两条线段求最值PA+K*PB型1.PA+PB型1.1 两定一动(将军饮马)此类在学生学完对称后就可以适当进行讲解了出现一个动点的解题方法这类试题的解决方法主要是通过轴对称,将动点所在直线同侧的两个定点中的其中一个,映射到直线的另一侧。

当动点在这个定点的对称点及另一定点的线段上时,由“两点之问线段最短”可知线段和的最小值,最小值为定点线段的长。

引:如图在直线 l 上找一点 P 使 AP+BP 最短。

解:(1)如果两点在直线异侧,如图(1),连接 AB 交直线 l 于点 P,则点 P 为所示作的点;(2)如果两点在直线同侧,如图(2),可通过轴对称把问题转化为两点在直线异侧的情况。

证明:如下图所示,从 B 出发向河岸引垂线,垂足为 D,在 BD 的延长线上,取 B 关于河岸的对称点 B',连结 AB',与河岸线相交于 P,则 P 点就是所求作的点,只要从 A 出发,沿直线到 P,再由 P 沿直线走到 B,所走的路程就是最短的。

如果在河边的另外任一点 C, 则CB=CB’,但是,AC+CB=AC+CB'>AB'=AP+PB'=AP+PB。

可见,在 P 点外任何一点 C,它与 A、B两点的距离和都比 AP+PB 都长。

本质:两点之间,线段最短。

【牛刀小试】1.如图,正方形 ABCD 的边长为 2,E 为 AB 的中点,P 是 AC 上一动点.则PB+PE 的最小值是____________.2.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为__________.3.如图,MN 是半径为 1 的⊙O 的直径,点 A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点, P 是直径MN 上一动点,则 PA + PB 的最小值为_________.4.如图,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB的中点,P 是直径 AB 上的一动点.若 MN=1,则△PMN 周长的最小值为________.5.已知 A(-2,3),B(3,1),P 点在 x 轴上,若 PA+PB 长度最小,则最小值为____________.6.如图,在 Rt△ABC 中,∠C=90°,∠B=60°,点 D 是 BC 边上的点,CD=1,将△ABC 沿直线 AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则△PEB 的周长的最小值是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“将军饮马”老歌新唱——例析直线上动点与两定点的距离和的最值问题王柏校古希腊有位将军要从A地出发到河边去饮马,然后再到B地军营视察,问怎样选择饮马地点,才能使路程最短?图1A地B地这是著名的“将军饮马”问题,在河边饮马的地点有很多处,怎样找出使两条线段之和最短的那个点来,我们只要设L为河(如图1),作AO⊥L交L于O点,延长AO至A',使A'O=AO;连结A'B,交L于C,则C点就是所要求的饮马地点。

再连结AC,则路程(AC+CB)为最短的路程。

为什么饮马地点选在C点能使路程最短?因为A'是A点关于L的对称点,AC与A'C 是相等的。

而A'B是一条线段,所以A'B是连结A'、B这两点间的所有线中,最短的一条,所以AC+CB=A'C+CB=A'B也是最短的一条路了。

这就是运用轴对称变换,找到的一种最巧妙的解题方法。

这一流传近2000年的名题至今还被命题者所喜爱,近年来许多省市中考中出现了以此故事为背景的试题,它们所考查的深度和广度也在不断演变、拓展,而且又常与其他的数学知识相联系,数形结合,突出了数学的思维价值和应用能力,能够有效地体现学生的数学学习能力,现从2009年中考试题中撷取与此相关的试题来分类说明,供广大读者参考。

一、演变成与正方形有关的试题例1(2009年抚顺)如图2所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为()A.B.C.3 D分析与解:正方形ABCD是轴对称图形,对角线AC所在直线是它的一条对称轴,相对的两个顶点B、D关于对角线AC对称,在这个问题中D和E是定点,P是动点。

我们可以找到一个定点D的轴对称点B,连结BE,与对角线AC交点处P就是使距离和最小的点(如图3),而使PD+PE的和的最小值恰好等于BE,因为正方形ABCD的面积为12,所以它的边长为23,即PD+PE的最小值为23。

二、演变成与梯形有关的试题例2(2009鄂州)已知直角梯形ABCD中A D∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,⊿APD中边AP上的高为()A.21717B.41717C.81717D.3分析与解:如图,先作出A点关于BC的对称点E,连结DE交BC于P点,连结AP,再过点D作D F⊥BC于F,过点D作DG⊥AP于G.先可以根据梯形知识和勾股定理可以求得DF=4,从而AB=4,再由AB=BE且AD∥BC,知道BP是⊿ABE的中位线,∴BP=21AD=1得AP=17.因为⊿ADP的面积=21AD•DF=21AP•DG,所以AP边上的高DG为APDFAD•=17817,即正确答案是C.三、演变成与圆有关的试题例3(2009龙岩)如图,AB、CD是半径为5的⊙O的两条弦,AB = 8,CD = 6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则P A+PC的最小值为.B CDAP图4分析与解:首先根据对称知识确定点P 的位置,连结BC 交MN 于点P ,根据垂径定理易知AE =4,CF =3,EF =7.再过C 作C G ⊥AB 于点G ,在Rt ⊿BCG 中,CG =EF =7,BG =BE +EG =3+4=7,所以PA +PC 的最小值为BC =72.四、演变成与直角坐标系有关的试题例4(2009孝感)在平面直角坐标系中,有A (3,-2),B (4,2)两点,现另取一点C (1,n ),当n = 时,AC + BC 的值最小.分析与解:点A 和B 在直角坐标系下的位置如图8,此问题中A,B 是定点,而点C (1,n )在直线x=1上,可以找出A 点关于直线x=1的对称点A ˊ坐标是(–1,-2),经过点B 和A ˊ的直线解析式为y=54x-56,所以当x=1时n=-52。

这题与点的坐标和一次函数知识想结合,考查了学生的数形结合能力。

解题时要画出示意图,在直角坐标系中确定点的大致位置,就可以比较明确的看出利用将军饮马的背景,再利用坐标知识求出对称点的坐标,最后结合一次函数求出结果。

五、演变成与一次函数有关的试题例5(2009荆门)一次函数y =kx +b 的图象与x 、y 轴分别交于点A (2,0),B (0,4).如图9 (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点的坐标.分析与解:利用待定系数法易求得函数解析式为:y =-2x +4;求 PC +PD 的最小值时 既可以用代数方法求解,也能用几何方法求出,关键还是正确找到能使PC +PD 的值最小的点的位置。

如图10,设点C 关于点O 的对称点为C ',连结P C '、C 'D ,则PC =PC ′. ∴PC +PD =PC ′+PD ≥C ′D ,即C ′、P 、D 共线时,PC +PD 的最小值是C ′D .连结CD ,在Rt △DCC ′中,C ′D ='22C C CD +=22;易得点P 的坐标为(0,1).Oxy BD AC P(亦可作Rt △AOB 关于y 轴对称的△) 六、演变成与二次函数有关的试题例6(2009重庆)如图11,抛物线c bx x y ++-=2与x 轴交与A (1,0),B (- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.分析与解:(1)将A (1,0),B (-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=∴23b c =-⎧⎨=⎩∴抛物线解析式为:223y x x =--+(2)存在理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小∵223y x x =--+ ∴C 的坐标为:(0,3) 直线BC 解析式为:3y x =+Q 点坐标即为13x y x =-⎧⎨=+⎩的解 ∴12x y =-⎧⎨=⎩∴Q (-1,2)七、演变成综合型试题例6(2009 衢州)如图12,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.图124 x 2 2A8 -2 O -2 -4 y6B C D -4 44 x 2 2 A8-2 O -2 -4 y 6 B CD -44 Q P分析与解: (1) (如图13)将点A (-4,8)的坐标代入2y ax =,解得12a =. 将点B (2,n )的坐标代入212y x =,求得点B 的坐标为(2,2), 则点B 关于x 轴对称点P 的坐标为(2,-2). 直线AP 的解析式是5433y x =-+.令y =0,得45x =.即所求点Q 的坐标是(45,0).(2)① (如图14)解法1:CQ =︱-2-45︱=145,故将抛物线212y x =向左平移145个单位时,A ′C +CB ′最短, 此时抛物线的函数解析式为2114()25y x =+.解法2:设将抛物线212y x =向左平移m 个单位,则平移后A ′,B ′的坐标分别为A ′(-4-m ,8)和B ′(2-m ,2),点A ′关于x 轴对称点的坐标为A ′′(-4-m ,-8).直线A ′′B ′的解析式为554333y x m =+-.要使A ′C +CB ′最短,点C 应在直线A ′′B ′上,将点C (-2,0)代入直线A ′′B ′的解析式,解得145m = 故将抛物线212y x =向左平移145个单位时A ′C +CB ′最短,此时抛物线的函数解析式为2114()25y x =+.② (如图15)左右平移抛物线212y x =,因为线段A ′B ′和CD 的长是定值,所以要使四边形A ′B ′CD 的周长最短,只要使A ′D +CB ′最短;第一种情况:如果将抛物线向右平移,显然有A ′D +CB ′>AD +CB ,因此不存在某个位置,使四边形A ′B ′CD 的周长最短.第二种情况:设抛物线向左平移了b 个单位,则点A ′和点B ′的坐标分别为A ′(-4-b ,8)和B ′(2-b ,2).因为CD =2,因此将点B ′向左平移2个单位得B ′′(-b ,2),要使A ′D +CB ′最短,只要使A ′D +DB ′′最短.点A ′关于x 轴对称点的坐标为A ′′(-4-b ,-8),直线A ′′B ′′的解析式为55222y x b =++.要使A ′D +DB ′′最短,点D 应在直线A ′′B ′′上,将点D (-4,0)代入直线A ′′B ′′的解析式,解得165b =.故将抛物线向左平移时,存在某个位置,使四边形A ′B ′CD 的周长最短,此时抛物线的函数解析式为2116()25y x =+.综上所述,很多数学问题都是由这个“将军饮马”问题发展和延伸而来的,解决这类试题要数形结合,往往先用“对称”的方法转化为两点之间的距离问题,利用两点之间线段最短,找出相应的位置及最值。

此类问题较为自然地考查了正方形、梯形、圆、坐标及函数的相关知识,同时也考查了化归思想、数形结合思想、分类讨论思想,较好地落实了新课标对应用能力的要求。

相关文档
最新文档