自动控制系统基本知识
自动控制的基本知识
七、调节过程的品质指标 调节过度过程: 1)等幅振荡 2)扩散振荡 3)衰减振荡 4)非周期过程
1。稳定性:衰减率
Ψ愈大,越稳定。 Ψ=0.75~0.98
2.准确性:准确性是指被控量的偏差大小,它包括动态偏差yM和 静态(稳态)偏差yK 动态偏差:在控制过程中,被控量与给定值之间的最大偏差称为动态偏差. 静态偏差:在控制过程结束后,被控量的稳态值y∞与给定值yg之间的残余
只包含一个容积
单容对象是最简单的热工调节对象,电厂热工生产过程中 许多储水容器,如除氧器、加热器、凝汽器等。
2)多容对象
包含两个或以上容积
(1)有自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和个时间常数为Tc的惯性环节 近似。
(2)无自平衡能力的多容对象: 可用一个迟延时间为τ的纯迟延环节和一个积分环节近似。
3。阶跃响应特性:比较直观 在阶跃输入信号的作用下,系统的输出特性。 突然的扰动。 在电厂生产过程中,有许多输入信号近似于阶跃信号, 如负荷突然变化,阀门、挡板的开与关等。只要生产 过程允许,一般也比较容易通过控制机构(如控制阀 门)或扰动机构造成一个阶跃输入扰动。所以常在现 场用阶跃响应试验来检验控制系统的工作性能。
3。比例带δ对调节过程的影响
比例带: 3。比例带δ对调节过程的影响
比例带δ 小:调节作用强;
比例带δ太小:调节阀动作过频繁,不稳定。
二、积分调节规律调节器(P)
1。积分规律调节器的动态特性
U (S ) 1 WI ( S ) KP E (S ) Ti s 式中 Si——称为积分规律调节器的积分速度; Ti,——积分时间,习惯上多用积分时间来表示被调量偏差 积累的快慢。 Ti 越小表示偏差积累越快,积分作用越强。Ti是积分规律调节 器的整定参数。
自动控制基础知识总结(环工 给排水专业)
第一章自动控制基本知识1.任何自动化系统都是由被控对象和自动化装置两大部分组成。
2.被控对象是指需要控制的设备、机器或生产过程。
3.自动化装置指实现自动化的工具。
包括:测量元件及变送器,控制器,执行器,定值器,辅助装置(如电源,稳压装置)。
4.自动检测是实现生产过程自动化的首要基础。
5.在自动控制系统中,需要控制工艺参数的生产设备叫被控对象,简称对象。
6.测量元件与变送器在自动控制系统中起着获取信息的作用。
7.控制器:接收测量元件与变送器的信号,根据被控对象的数学模型及控制所要达到的要求,按照一定的控制规律进行运算,并输出相应的信号给执行器。
8.执行器:接收来自控制器的信号,改变操纵变量的大小或符号,从而实现对生产的控制,在过程控制系统中,常用的有电动、气动执行器。
9.定值器:将被控变量的给定值转换成统一信号的装置,以便使给定值送入控制器和测量信号进行比较。
10.在自动控制系统中,被控对象中需要控制的那个参数叫做被控变量。
被控变量要求保持的那个规定值称为给定值(亦称设定值),烦恼影响被控变量偏离给定值的各种因素称为干扰。
11.方框图具有单向传递性。
c(t)是被控对象的被控变量,z(t)是被控对象的测量值,r(t)是被控对象的希望值即给定值,e(t)是给定值与测量值的偏差,e(t)=r(t)-z(t).12.方框图的优点:只要依照信号的流向,便可将表示各元件或设备的方框连接起来,很容易组成整个系统。
与纯抽象的数学表达式相比,它还能比较直观、形象地表示出组成系统的各个部分间的相互作用关系及其在系统中所起的作用。
与物理系统相比,它能更容易地体现系统运动的因果关系。
13.反馈:把系统的输出信号又返回输入端的做法。
14.把被控变量不随时间而变化的平衡状态称为系统的静态,而把被控变量随时间而变化的不平衡状态称为系统的动态、15.平衡是暂时的、相对的、有条件的;不平衡是普遍的、绝对的、无条件的。
16.过度过程:自动控制系统在动态过程中被控变量是不断变化的,这种随时间而变化的过程,称为自动控制系统的过度过程,也就是系统由一个平衡状态过渡到另一个平衡状态的过程,或者说是自动控制系统的控制作用不断克服干扰的全过程。
自动控制知识
(三)、大系统理论和智能控制论(第三阶段)
1970年以后
1.大系统理论 是指规模庞大、结构复杂、变量众多的 信息与控制系统,交通运输、生物工程、社会经 济和空间技术等复杂系统。
2.智能控制论 是具有某些仿人智能的工程控制与信
息处理系统, 如智能机器人、无人驾驶飞机。
vcd
返回
返回
§1-2 基本控制方式
返回
§1-4 自动控制系统的分类
一、按给定信号分类: 1、恒值控制系统: 输入为常数,系统能排除扰动影响,使输
出保持恒定不变。 2、随动控制系统: 输入是时间的未知函数,要求输出跟随输
入信号变化。 3、程序控制系统: 输入量是时间的已知函数,要求输出以一
定精度跟随输入信号变化。
返回
二、按数学描述分类:
返回
四、自动控制系统举例 恒温箱自动控制系统
§1-3 自动控制系统的组成及术语
一、自动控制系统的组成 二、控制系统中的常用术语
返回
一、自动控制系统的组成
由控制器与被控对象组成,控制器是系统 中对被控对象起控制作用的各部分的总称。
被 控 对 象
自
控
系
统件 比调较节元元件件校 放 执 行 元 件
1、线性系统:用线性方程描述的系统。 性质:1)组成系统的所有元件都是线性元件; 2)具有齐次性和叠加性。
2、非线性系统:用非线性方程描述的系统。 性质:1)系统中只要有一个非线性元件就是
非线性系统。 2)不满足叠加原理。
三、按时间信号的性质分类
1.连续时间系统: 系统中所有信号都是连续函数形成的模拟量。
• 误差的稳态分量称为稳态误差;
• 稳态误差表示到达平衡状态(过渡过程 结束)的精度。
自动控制基本知识
四、典型环节的动态特性
1.比例环节
1、定义:输出能够按一定比例,无迟延、无惯性的复现输入 信号。
2、微分方程: y(t) K p x(t)
Kp—环节的传递系数或比例系数。
3、传递函数为:W
(s)
Y (s) X (s)
KP
4、阶跃响应曲线:
2、积分环节
1、定义:输出与输入的积分成比例关系。 输出的变化速度与输入成比例关系。
Y s W1 s X1 s X 2 s
X2 s W2 sY s
W总 s
Y s X1 s
W1 s 1W1 sW2
s
第三节 调节器的调节规律
一、概念: 调节器的输出信号与输入信号之间的关系。 PID调节的优点:
(1)原理简单,使用方便。 (2)适应性强。广泛应用于化工、热工、冶金、冶炼、造纸等。 (3)鲁棒性强。即控制品质对被控对象特性的变化不太敏感。
(三)术语 测量变送器: 调节器: 执行器: 执行机构 调节机构 被控对象:指被控制的生产设备或生产过程。 被调量:表征生产过程是否正常而需要控制的物理量。 给定值:根据生产工艺要求,被控量应该达到的数值。 调节量:由控制作用来改变,以控制被控量的变化, 使被控量恢复为给定值的物理量。 扰动:引起被控量偏离其给定值的各种原因。 基本扰动:调节量 干扰:
b1
dx(t) dt
b0 x(t)
(n≥m)
2、传递函数 -微分运算转为代数运算,分析综合方便
定义:线性定常系统在零初始条件下,系统(或环节)输出信号的拉普拉 斯变换与输入信号的拉普拉斯变换之比。
W
(s)
Ly(t) Lx(t)
Y (s) X (s)
设线性定常系统(或环节)的微分方程如上式,在初始条件为零的情况 下,对上式进行拉普拉斯变换,得:
自动控制系统的基本知识重点表1
自动控制系统的基本知识01.自动控制系统的定义:P6是指带有反馈装臵的闭环控制系统。
从检出偏差到利用偏差进行控制,从而减小或消除偏差这个控制过程却是相同的。
02.自动控制系统的分类:P12恒值控制系统:(自动调整系统)特点:输入信号为某个常数,故称为恒值。
程序控制系统:输入信号不是常数,而是按照一种预先知道的时间函数变化。
随动系统:(伺服系统)输入信号是预先不知道的随时间任意变化的函数。
03.开环与闭环控制的特点:P5、P6开环系统:系统的输出端和输入端之间不存在反馈回路;开环控制系统的精度,主要取决于标定精度以及控制装臵参数的稳定程度,系统没有抵抗外部干扰的能力,故控制精度较低。
闭环系统:引入反馈环节,将输出量测出来,经物理量的转换后在反馈到输入端,使输出量对控制作用有直接影响;具有很强的纠偏能力,对干扰作用具有良好的适应性;由于采用反馈装臵,导致设备增多,线路复杂。
04.自动控制系统的三个特征:P6在结构上,系统必须具有反馈装臵,并按负反馈的原理组成系统。
由偏差产生控制作用。
控制的目的是力图减小或消除偏差,使被控量尽量接近期望值。
05.自动控制系统方框图的画法:P7、P1106.反馈信号的获得:电动机实际转速n经发电机转换为反馈电压Uf,再反送到系统的输出端。
与给定值Ugd进行比较,从而得到偏差信号:Ue=Ugd-Uf,Ue经放大器放大后,作为电枢电压控制电动机转速n。
07.负反馈的实现:P5反馈回路使信号的传送路径形成闭合环路,使输出量反过来直接影响控制作用,并按偏差Ue的性质产生控制作用,以求减小或消除偏差(从而是误差)的控制系统。
反馈信号由系统的输出端测量出来并转换为Uf,再反送到输入端与Ugd进行比较。
08.对自动控制系统的基本要求:P18稳定性(稳):评价系统在过渡过程中的振荡倾向和重新建立并平衡状态的能力。
快速性(快):控制系统不但要求稳,而其要求被控量能迅速地按照输入信号所规定的规律变化,即要求系统具有一定的响应速度。
自动控制知识
自动控制知识一、自动控制原理的基本概念1、什么是自动控制。
自动控制就是在没有人直接参与的情况下,利用控制装置控制被控对象,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。
2、自动控制系统的分类按控制方式分:开环控制、闭环控制(反馈控制)和复合控制。
3、什么是开环控制系统?有何特点?定义:在控制系统中,系统的输出量不被引回到输入端来对系统的控制部分产生影响。
(即开环系统无反馈)特性:在保证系统动态特性的前提条件下,放大倍数越大越好;不能自动补偿控制过程中受到的各种扰动因素的影响(即结构简单,调试方便,但精度低、无抗扰能力。
)4、什么是闭环控制系统?有何特点?定义:在控制系统中,系统的输出量通过反馈环节返回到输入端来对系统的控制部分产生影响。
(即闭环系统有反馈)特性:能自动补偿控制过程中受到的各种扰动因素的影响,但系统稳定性变差。
(即偏差控制,可以抑制内、外扰动对被控制量产生的影响。
精度高、结构复杂,设计、分析麻烦。
)5、对自动控制系统的基本要求对自动控制系统的基本要求:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。
(一)、稳定性:1)对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。
2)对随动系统,被控制量始终跟踪参据量的变化。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性,通常由系统的结构决定与外界因素无关。
(二)、快速性:对过渡过程的形式和快慢提出要求,一般称为动态性能。
稳定高射炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓,仍然抓不住目标。
(三)、准确性:用稳态误差来表示。
在参考输入信号作用下,当系统达到稳态后,其稳态输出与参考输入所要求的期望输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的输出跟随参考输入的精度越高。
二、直流调速系统1、调速范围与静差率调速范围:是指在额定负载(及一定的静差率要求)下,电动机所能达到的最高转速与最低转速之比。
自动控制原理
上一页 下一页
返回
1. 2自动控制系统的组成与系统原理 框图
• 把系统(或环节)的输出信号直接或经过一些环节又送回到 输入端的做法叫做反馈。如图1一3所示,把系统的输出信 号通过检测变送装置送回到系统输入端的就是反馈。当系 统反馈信号取负值,并与给定值相加时,属于负反馈;当 反馈信号取正值,与给定值相加时,属于正反馈。自动控 制系统的主反馈一般是负反馈。 • 从系统的输入量r(t)沿着箭头方向到系统的输出量c(t),称 该信号通道为前向通道。而从系统的输出量沿着箭头方向 到系统的输入端,则称该信号通道为反馈通道。
上一页 下一页
返回
1. 4对自动控制系统
• • • • 1.4.2对自动控制系统的基本要求 对一个自动控制系统的基本要求为稳定性、快速性和准确性。 1.稳定性 对任何自动控制系统,首要条件是系统必须稳定。只有系统稳定,才 能正常工作。 • 稳定性是指系统受到扰动作用或给定值发生变化时,其动态过程的振 荡倾向和重新恢复状态的能力。 • 当系统受到扰动作用或给定值发生变化时,被控量就会偏离给定值, 如果经过系统的自身调节,系统能回到或接近原来的给定值,这样的 系统就是稳定的系统;否则,系统不能回到或接近原来的给定值,这 样的系统就是不稳定的系统。
上一页 下一页
返回
1. 4对自动控制系统
• 2.快速性 • 快速性是通过动态过渡过程时间的长短来表示的,如图1一11所示。 过渡过程时间越短,则快速性就越好;反之,过渡过程时间越长,则 快速性就越不好。 • 3.准确性 • 准确性是由系统达到稳态时,给定值与实际值之差来体现的,如图1 一12所示。它反映了系统的稳态精度。 稳定性、快速性和准确性往 往是互相制约的。在设计与调试的过程中,若过分强调某方面的性能, 则可能会使其他方面的性能受到影响。
自动控制基本知识
自控根本知识〔一〕根本概念 (2)〔二〕自动控制系统的组成 (2)〔三〕自动调节常用术语 (2)〔四〕调节对象的特性 (4)〔五〕调节器的特性 (6)〔六〕调节器的种类 (8)〔七〕对自动调节系统的要求 (12)〔一〕根本概念自动控制是指用专用的仪表和装置组成控制系统,以代替人的手动操作,去调节空调参数,使之维持在给定数值上,或是按给定的规律变化,从而满足空调房间的要求。
现在国内自动控制采用的方法,都是先测出调节参数对给定值的偏差,然后根据这个偏差,经控制系统的调节,消除干扰的影响,使调节参数再回到给定值(或允许范围)。
〔二〕自动控制系统的组成目前空调自动控制系统多采用电动调节。
这样的控制系统可由下面所示方块图表示:附图:自动控制系统方块图由于外扰的作用,调节对象的调节参数发生变化,经敏感元件测量并传送给控制机构〔调节器〕,调节器根据调节参数对给定值的偏差,指令执行机构使调节机构动作,去调节调节对象的负荷,使调节参数回到原来的给定值。
在给执行机构供电的主电路上,为使调节稳定,常装有通断机构,以便对执行机构间断供电。
〔三〕自动调节常用术语1.调节参数(也叫被调参数)需要维持数值不变或在允许范围内变化的参数,叫做调节参数。
空调中的调节参数主要是温度、湿度、压力,还有水位等等。
2.给定值(也叫定值值)就是根据需要给调节参数预先规定的不变值或波动范围,叫做给定值。
例如规定维持房间温度为23±℃,这个数值(即波动范围22.5~℃)就是室温调节系统的给定值(范围)。
3.偏差调节参数的实际数值同给定值之间的差值,叫做偏差。
例如,规定控制温度(给定值)为20℃,而实际却是21℃,它们相差的1℃即为偏差。
4.扰动能引起调节参数产生偏差的因素,叫做扰动或干扰。
空调中引起空调房间温度变化的因素,象室外温度变化、送风温度变化以及室内余热变化等等,都是室温的扰动。
自动调节的作用,也正是为消除扰动的影响,使调节参数恒定或在要求范围内。
自动控制系统基本知识01
反馈的概念
反馈控制是一种最基本最重要的控制方式,引 入反馈信号后,系统对来自内部和外部干扰的响应 变得十分迟钝,从而提高了系统的抗干扰能力和控 制精度。与此同时,反馈作用又带来了系统稳定性 问题,正是这个曾一度困扰人们的系统稳定性问题 激发了人们对反馈控制系统进行深入研究的热情, 推动了自动控制理论的发展与完善。因此从某种意 义上讲,古典控制理论是伴随着反馈控制技术的产 生和发展而逐渐完善和成熟起来的。
要使炼钢炉提供优质的产品,就必须严格控制炉 温……等等。
所有这一切都是以高水平的自动控制技术为前提的。
近几十年来,自动控 制技术正在迅猛的发展, 并在工农业生产、交通运 输、国防建设和航空航天 事业等领域中获得广泛应 用。比如:人造地球卫星 的成功发射与安全返回, 导弹的准确击中目标,雷 达系统的准确跟踪目标, 自动控制技术都起着极其 重要的作用。
或元部件的组合,一般由控制装臵和被控对象组成。一般包
括三种机构:测量机构、比较机构、执行机构。 自动控制系统的功能和组成是多种多样的,其结构有简 单也有复杂。它可以只控制一个物理量,也可以控制多个物 理量甚至一个企业机构的全部生产和管理过程;它可以是一 个具体的工程系统,也可以是比较抽象的社会系统、生态系 统或经济系统。
扰 动
输出量 炉温 (炉温实际值)
闭环控制系统方框图的组成、名词术语
控制装置:外加的设备或装置,亦叫控制器。 受控对象:被控制的机器或物体。
给定元件:其职能是给出与期望的被控量相对应的系统给
定值。
比较元件:其职能是把测量到的被控量实际值与给定元件
给出的输入量进行比较,求出他们之间的偏差。
测量元件:其职能是检测被控制量的物理量。
统称为开环控制系统。
自动控制基础知识.详解ppt课件
双位控制的特点:控制器只有最大和最小两个输出值,执 行器只有“开”和“关”两个极限位置。被控对象中物料 量或能量总是处于不平衡状态,被控变量总是剧烈振荡, 得不到比较平衡的控制过程。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(2)主要特点: 从信号传送来看,输出量经测量后回送到输入端,回送的
信号使信号回路闭合,构成闭环,即为负反馈。 从控制作用的产生看,由偏差产生的控制作用使系统沿减
少或消除偏差的方向运动。——偏差控制
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、比例控制
定义:使被控量的偏差量与调节阀的开关量对应起来,如 图1.15所示的系统,当液面高于给定值Lo后,阀门不是全 关,而是关小,液面越高,阀关得越小;反之.液面低于 给定值Lo,阀也不是全开,而是开大,液面越低,阀开得 越大。例如,液面低于给定值Lo的10%时,则调节信号也 能使阀门开大10%。这样当对象负荷变化时,调节作用就 会与之相适应。这种控制器的输出与被控量的偏差值成比 例的调节方式称为比例控制,又称P控制。
认识到了 贫困户 贫困的 根本原 因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
被控量——输出量 给定量——输入量
给定输入:决定系统输出量的变化 规律或要求值
扰动输入:系统不希望的外作用
自动控制原理各章知识精选全文完整版
(s), (t) E(s), e(t) cdesired (t) c(t)
E(s) 1 (s)
H
G (s)
1
H
H
⑵ e(t) ets (t) ess (t)
暂态 稳态
单位负反馈系统开环传函
r(t)
1 2
t2
时稳态误差
Ts 1 E(s) Ts 1 s3
e(t)
T
2. 运动方程式
确定输入量、输出量 列写各元件运动方程 消除中间变量 化为标准形式
RL
u1
C u2
Fi
K
m
f
y
L
C
u1
u2
R
R1
u1
C
R2 u2
LC
d 2u2 dt 2
RC
du2 dt
u2
u1
m
d2y dt 2
f
dy dt
Ky
Fi
LC
d 2u2 dt 2
RC
du2 dt
u2
RC
du1 dt
tg1 1 2 cos1
p e 1 2 100 %
d. c(t) c() c() t ts
2%或5%
4 ts n
2%
3 ts n
5%
d. N : 振荡次数
N ts Td
Td
2 d
d n 1 2
tr , t p 评价响应速度
p , N 评价阻尼程度
ts
以分析,并将分析结果应用于工程系统的综合和自然界 系统的改善。 自动控制
毋需人直接参与,而是被控制量自动的按预定规律变 化的控制过程。
4. 开环控制、闭环控制、反馈控制原理
自控系统的基础知识.
四:自控系统控制设备简介 2:电动阀组部分(ASI部分)
ASI-电动阀
ASI-电动蝶阀
11
ASI-FCU电动二通阀
ASI Controls
ASI Controls
四:自控系统控制设备简介 2:电动阀组部分(Honeywell)
电动闸阀
电动蝶阀
12
FCU电动二通阀
ASI Controls
ASI Controls
3
ASI Controls
ASI Controls
自控系统的基本知识
3:什么叫输入与输出
在自控系统中,输入与输出的概念都是控制器来说的。 1:现场实时感测的温度,湿度,水管压力,风管静压等都称之为 模拟输入量。 2:风机的运行状态(开,关),故障报警(正常,报警), 滤网状态(脏,不脏)等都称之为 数字输入
ASI Controls
目
一:自控系统的基本知识
录
二:自控系统的基本控制对象及范围
三:各系统的控制原理
四:自控系统控制设备简介 五:自控系统控制的架构 六:自控系统的一些图控示例
1
ASI Controls
ASI Controls
自控系统的基本知识
一、什么是自控系统?
自动控制系统是指在没有人直接参与的情况下,利用外加的设备或 装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预 定的规律运行。 自动控制是相对人工控制概念而言的。指的是在没人参与的情况下 ,利用控制装置使被控对象或过程自动地按预定程序运行。
四:自控系统控制设备简介 3:感测器部分
室内温度感测器
风管湿度感测器
静压感测器
ቤተ መጻሕፍቲ ባይዱ水压差开关
水管压差感测器
自动控制原理基本知识点
自动控制原理基本知识点1.控制系统的基本组成和结构:自动控制系统一般由被控对象、传感器、控制器和执行器组成。
被控对象是需要控制的物理系统,传感器用于采集被控对象的参数信息,控制器根据采集到的参数信息进行计算和控制命令的输出,执行器负责根据控制命令对被控对象进行操作。
2.控制器的种类和工作原理:常见的控制器有比例控制器、积分控制器、微分控制器和PID控制器等。
比例控制器的输出与被控对象的参数成比例,用于消除静差;积分控制器的输出与被控对象参数的积分值成正比,用于消除稳态误差;微分控制器的输出与被控对象参数的变化率成正比,用于提高系统的动态响应速度;PID控制器是由比例、积分和微分控制器组成的综合控制器,可以在一定程度上综合利用比例、积分和微分控制器的优点。
3.系统的稳定性和稳定裕度:在自动控制系统中,稳定性是一个重要的性能指标。
系统稳定性的判据是该系统在无限时间内的响应能否在有限范围内振荡或逐渐衰减趋于平衡态。
稳定裕度是指系统实际稳定边界与临界稳定边界之间的差值,用于评估系统稳定性的好坏。
较大的稳定裕度意味着系统对参数变化和负载干扰具有较强的抵抗能力。
4.控制系统的性能指标:自动控制系统的性能指标包括稳态误差、动态响应和抗干扰能力等。
稳态误差是指系统在稳定工作状态下与期望值之间的差别,可以通过选择合适的控制器和调节参数来降低;动态响应是指系统在受到扰动或控制命令改变时,恢复到新的稳定状态所需的时间和过程,可以通过调节控制器的参数来提高;抗干扰能力是指系统对于外部干扰的响应能力,可以通过增加控制器的增益和改进控制策略来改善。
5.开环控制和闭环控制:自动控制系统可以分为开环控制和闭环控制两种模式。
开环控制是指输出量不通过传感器进行反馈,仅根据期望输入和系统模型进行控制。
闭环控制是指输出量通过传感器进行反馈,并与期望输入进行比较后进行控制。
闭环控制可以实现对系统的实时监测和修正,具有较好的稳定性和鲁棒性。
(完整版)自动控制原理知识点汇总
自动控制原理总结第一章绪论技术术语1.被控对象 :是指要务实现自动控制的机器、设施或生产过程。
2.被控量:表征被控对象工作状态的物理参量 (或状态参量 ),如转速、压力、温度、电压、位移等。
3.控制器:又称调理器、控制装置,由控制元件构成,它接受指令信号,输出控制作用信号于被控对象。
4.给定值或指令信号 r(t) :要求控制系统按必定规律变化的信号,是系统的输入信号。
5.扰乱信号 n(t) :又称扰动值,是一种对系统的被控量起损坏作用的信号。
6.反应信号 b(t) :是指被控量经丈量元件检测后回馈送到系统输入端的信号。
7.偏差信号 e(t):是指给定值与被控量的差值,或指令信号与反应信号的差值。
闭环控制的主要长处:控制精度高,抗扰乱能力强。
弊端:使用的元件多,线路复杂,系统的剖析和设计都比较麻烦。
对控制系统的性能要求:稳固性迅速性正确性稳固性和迅速性反应了系统的过渡过程的性能。
正确性是权衡系统稳态精度的指标,反应了动向过程后期的性能。
第二章控制系统的数学模型拉氏变换的定义:F ( s) f ( t )e- st d t几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加快函数4.指数函数e-at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数 (δ函数 )拉氏变换的基本法例1.线性法例2.微分法例3.积分法例Lf ( t )d t1F ( s )s4.终值定理e( ) lim e( t ) lim sE ( s)ts 05.位移定理L f (t)e 0 s F(s)Le atf ( t )F ( s a )传达函数: 线性定常系统在零初始条件下, 输出信号的拉氏变换与输入信号的拉氏变换之比 称为系统 (或元零件 )的传达函数。
动向构造图及其等效变换1.串连变换法例2.并联变换法例3.反应变换法例4.比较点前移“加倒数”;比较点后移“加自己”。
5.引出点前移“加自己”;引出点后移“加倒数” 梅森( S. J. Mason )公式求传达函数典型环节的传达函数 1.比率 (放大 )环节 2.积分环节 3.惯性环节 4.一阶微分环节 5.振荡环节G ( s)12 s 22 Ts 1T C ( s ) = 1 n6.二阶微分环节( s )P k kR ( s )k 1第三章时域剖析法二阶系统剖析2nKJF2nJ2 n(完整版)自动控制原理知识点汇总二阶系统的单位阶跃响应1.过阻尼 ξ>1 的状况 :系统闭环特色方程有两个不相等的负实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40~50年代 经典控制理论 (频域法或复频域法)
核心:传递函数,稳定性、稳定裕度等 特点:图形方法,直观简便,设置参数少,
(以简单控制结构获取相对满意的性能) 适用范围:单输入单输出(SISO)系统 数学基础:复变函数,积分变换
SISO: Single Input and Single Output
60 ~70年代 现代控制理论(状态空间法) 核心:状态变量的能控、能观性,
系统性能的最优化 特点:时域法,统一处理SISO、MIMO系统,
有完整的理论体系 数学基础:线性代数,矩阵理论 缺点:对系统的数学模型精度要求高,
实际性能达不到设计的最优, 所需状态反馈难以直接实现
MIMO: Multi-Input and Multi-Output
智能控制(intelligent control)
控制系统具有拟人智能(学习、记忆、判断、推 理等)
大系统控制、复杂系统控制等
被控系统具有高维数、强关联、多约束、多目标 、不确定性、分散性、非线性、大时滞、难建模 等特征,如电力系统、城市交通系统、网络系统 、制造系统、经济系统等
自动控制技术的应用,推动了控制理论的发展;而 自动控制理论的发展,又指导了控制技术的应用, 使其进一步完善。随着科学技术的发展,自动控制 技术及理论已经广泛的应用于机械、冶金、石油、 化工、电子、电力、航空、航海、航天、核反应等 各个学科领域。近年来,控制科学的应用范围还扩 展到生物、医学、环境、经济管理和其他许多社会 生活领域,并为各学科之间的相互渗透起了促进作 用。可以毫不夸张地说,自动控制技术和理论已经 成为现代化社会不可缺少的组成部分。
50年代开始,由于空间技术的发展,各种高速、 高性能的飞行器相继出现,要求高精度地处理多变 量、非线性、时变和自适应等控制问题,60年代初 又形成了现代控制理论。现代控制理论的基础是: 1956年庞特里亚金提出了极大值原理,1957年贝 尔曼(R.Bellman)提出了动态规划,1960年卡尔 曼(R.E.Kalman)提出了最优滤波理论以及状态 空间方法的应用。从60年代至今40多年来,现代控 制理论又有巨大的发展,并形成了若干学科分支, 如线性控制理论、最优控制理论、动态系统辨识、 自适应控制、大系统理论等。
比如:人造地球卫星的 发射成功与安全返回。
导弹的准确击中目标, 雷达系统的准确跟踪目标;
交通系统:
安全、快捷、舒适、准点
钢 铁 生 产
制造系统:
数控机床
加工生产线
自动包装机器人
自动码垛机器人
家用电器:
电扇:控制转速 洗衣机:控制水位、强弱、时间等 电冰箱、空调、电饭煲:控制温度
智能建筑:
随着自动控制技术的广泛应用和迅猛发展,出 现了许多新问题,这些问题要求从理论上加以解决。 自动控制理论正是在解决这些实际技术问题的过程 中逐步形成和发展起来的,它是研究自动控制技术 的基础理论,是研究自动控制共同规律的技术科学。 按其发展的不同阶段,可把自动控制理论分为经典 控制理论和现代控制理论两大部分。
展和科学技术进步的重要因素。
事实上,任何技 术设备、工作机械或 生产过程都必须按要 求运行。例如:要使 火炮能自动跟踪并命 中飞行目标,炮身就 必须按照指挥仪的命 令而作方位角和俯仰 角的变动;
要把数吨重人造卫星送入数百公里高空的轨道, 使其所携带的各种仪器能长期使用、准确地工作, 就必须保持卫星的正确姿态,使它的太阳能电池一 直朝向太阳,无线电发射天线一直指向地球;
70年代~现在 多种新型控制理论
多变量频域控制理论 ① 经典SISO→MIMO; ② 基于互质分解的全新的频域优化理论
鲁棒控制(robust control) 鲁棒性(robustness):系统存在模型误差或 受到扰动时仍能保持良好性能的能力 鲁棒控制:使系统具有良好鲁棒性的控制
70年代~现在 多种新型控制理论
要使数控机床能加工出高 精度的工件,就必须保证 其工作台或刀架的进给量 准确地按照程序指令的设 定值变化;
要想使轮船安全顺利 的航行,就必须按照 领航员的命令改变尾 舵的方向;
要使炼钢炉提供优质的产品,就必须严格控制炉 温……等等。
所有这一切都是以高水平的自动控制技术为前提的。
自动控制理论的发展概况
经典控制理论也就是自动控制原理,是20世纪 40年代到50年代形成的一门独立学科。早期的控制
系统较为简单,只要列出微分方程并求解之,就可 以用时域法分析他们的性能。第二次世界大战前后, 由于生产和军事的需要,各国均在大力研制新型武 器,于是出现了较复杂的控制系统,这些控制系统 通常是用高阶微分方程来描述的。由于高阶微分方 程求解的困难,各种控制系统的理论研究和分析方 法就应运而生。1932年奈奎斯特(H.Nyquist)在 研究负反馈放大器时创立了有名的稳定性判据,并 提出了稳定裕量的概念。
通信 电梯 供水 通风 空调 安防 抄表 …
工业机器人:
其他机器人:
排爆
步行
灵巧手
吹笛
拉提琴
足球比赛
自动控制的应用领域
军事工业 航空航天 制造业 机器人 流程工业
钢铁、石化、 造纸、制药等 电子工业 家用电器
交通系统,楼宇系统,经济系统,社会系统 …
随着生产和科学技术的发展,自动控制技术可
以说已渗透到各种学科领域,成为促进当代生产发
在此基础上,1945年伯德(H.W.Bode)提出
了分析控制系统的一种图解方法即频率法,致使研 究控制系统的方法由初期的时域分析转到频域分析。 随后,1948年伊文斯(W.R.Evans)又创立了另 一种图解法即有名的根轨迹法。追溯到1877年,劳 斯(E.Routh)和1895年赫尔维茨(A.Hurwitz) 分别独立地提出了关于判断控制系统稳定性的代数 判据。这些都是经典控制理论的重要组成部分。50 年代中期,经典控制理论又添加了非线性系统理论 和离散控制理论,从而形成了完整的理论体系。
自动控制系统 基本知识
引言
自动控制学科由自动控制技术和自动控 制理论两部分控制装置,使 机器、设备、生产过程等按照预定的规律运 行,完成要求的任务,就叫自动控制。
近几十年来,自动控制技术正在迅猛的 发展,并在工农业生产、交通运输、国防建
设和航空航天事业等领域中获得广泛应用。