材料力学性能材料摩擦与磨损性能
机械材料的特性及应用
机械材料的特性及应用机械材料是指用于制造机械零件和构件的材料。
它们通常需要具备一定的力学性能和耐久性,以承受各种力的作用并保持稳定性能。
机械材料的特性包括强度、刚度、韧性、耐磨性、耐腐蚀性等,不同材料的特性决定了它们在不同领域的应用。
下面将详细介绍机械材料的特性及应用。
首先是强度。
强度是机械材料最重要的性能之一,指材料抵抗外力破坏的能力。
在机械设计中,常常需要根据实际应力情况选择适当的材料,以确保零件不会发生破坏。
常用的高强度机械材料包括钢材、铝合金、镁合金等。
钢材具有良好的综合力学性能和加工性能,因此在机械结构、重型设备、汽车等方面有广泛的应用。
铝合金具有良好的强度和轻量化特性,常用于航空、汽车、船舶等领域。
镁合金具有高比强度和良好的耐磨性,常用于航空航天、汽车、电子等领域。
其次是刚度。
刚度是指材料在受力作用下的变形能力。
一般而言,刚度越大,材料的变形能力越小,适用于对形变要求较高的零件。
常用的高刚度机械材料包括钢材、钛合金、陶瓷等。
钢材在工程应用中广泛使用,其刚度高、稳定性好,适用于承受大变形的零件。
钛合金具有良好的抗变形性能和优异的耐腐蚀性,常用于航空航天、医疗器械等高端领域。
陶瓷具有极高的刚度和硬度,适用于高速运动零件和耐高温、耐磨损等特殊环境。
再次是韧性。
韧性是指材料抵抗断裂的能力,与材料的延性和断裂韧性密切相关。
韧性高的材料可以在受到冲击或载荷作用下变形而不破裂,适用于要求有一定可塑性的零件。
常用的高韧性机械材料包括塑料、橡胶、纤维复合材料等。
塑料具有良好的柔韧性和耐磨性,广泛应用于制造成型件、密封件等。
橡胶具有优异的弹性和缓冲性能,常用于减震、密封等方面。
纤维复合材料由纤维增强体和基体组成,具备高强度、高刚度和良好的韧性,适用于航空航天、体育器材等高性能领域。
此外,耐磨性和耐腐蚀性也是机械材料的重要特性。
耐磨性是指材料在摩擦和磨损过程中所能承受的能力,常用于制造需要经常与其他物体接触的零件,如轴承、齿轮等。
POM_TPU共混物的力学性能和摩擦磨损性能研究[1]
图 1 为 POM /TPU ( 质量 比 70 /30, 树脂总 质量 为 100份, 下同 ) 共混物缺口 冲击强度 随增容剂 Z 用量的变化曲线。由图可知, 加入增容剂后合金的冲 击强度提高, 当增容剂 Z 的用量为 5份时, 共混体系 的缺口冲击强度比在同条件下, 未加入增容剂 Z 的 缺口冲击强度提高了 50% 。这是由于增容剂 Z 促进 了分散相 TPU 的分散, 使 POM 和 T PU 很好地形成均 匀的海 - 岛结构; 能够在 POM 与 TPU 分子之间形成 一种类似于互穿网络结构的物理或化学或两者兼而有 之的区域, 从而大大提高了冲击强度。但是, 增容剂
# 10#
塑料工业 CH INA PLA ST ICS INDU STRY
第 37卷第 1期 2009年 1月
POM /TPU共混物的力学性能和摩擦磨损 性能研究
张 辉, 高西萍, 李瑞海
(四川大学高分子科学与工程学院, 四川 成都 610065)
摘要: 采用双螺杆挤出熔融共混的方 法制备了聚甲醛 ( POM ) 和热塑性聚氨酯弹性体 ( TPU ) /增容剂 Z 共混物。
摩擦 磨 损 性 能 的 改 性 POM 复 合 材 料, 近 年 来, P alan ive lu K 等 [ 6- 7] 采 用 了热 塑 性聚 氨 酯 弹性 体 对 POM 改性。本文以热塑性聚氨酯弹性体 ( T PU ) 与 POM 共混为研究对象, 研究了该共混 物的力学性能
以及摩擦磨损性能。
SEM 测试: 形态 样 品 经 液 氮低 温 脆 断, 断 口 在常温下经 N, N - 二甲基酰胺刻蚀处理后喷金; 磨损 表面直接喷 金, 然 后进行电 子显微 镜扫描 实验。
材料力学性能与耐磨性能的关系研究
材料力学性能与耐磨性能的关系研究材料的力学性能是指材料在外力作用下的变形和破坏行为,而耐磨性能是指材料在摩擦、磨损等力学作用下的抗磨损能力。
这两者之间存在着密切的关系,本文将探讨材料力学性能与耐磨性能之间的关系。
一、材料力学性能对耐磨性能的影响材料的力学性能对耐磨性能有着直接的影响。
首先,材料的硬度对耐磨性能起到了决定性的作用。
硬度是材料抵抗局部塑性变形的能力,硬度高的材料抗磨损性能也相对较好。
一个典型的例子是钢材与铝材的比较,钢材硬度高于铝材,因此在磨擦力作用下,钢材的耐磨性能明显优于铝材。
其次,强度和韧性也会影响材料的耐磨性能。
强度表示材料抵抗外力破坏的能力,韧性则表示材料在断裂前能吸收的能量。
材料强度高的话,能够更好地抵抗摩擦产生的破坏;而材料的韧性高,则能吸收更多的能量,减少磨损的程度。
此外,硬度、强度和韧性的相互作用也会影响材料的耐磨性能。
例如,一些高强度同时具有高硬度的合金材料,具有较好的耐磨性能。
这是因为高强度和高硬度共同抵抗磨擦力,从而减少磨损。
二、材料的组成与耐磨性能的关系材料的组成也与其耐磨性能密切相关。
一般来说,合金材料在耐磨性能方面比单一金属材料更具优势。
这是因为合金材料由两种或多种金属元素组成,可以调节材料的硬度、强度和韧性等性能,以满足不同的耐磨要求。
此外,添加一些特殊的元素或化合物也可以改善材料的耐磨性能。
例如,在钢材中添加适量的硬质碳化物,可以增加材料的硬度,从而提高耐磨性能。
另外,通过表面处理也可以改善材料的耐磨性能,如在材料表面涂覆陶瓷涂层等。
三、材料表面处理和耐磨性能的关系材料的表面处理是提高材料耐磨性能的一种有效手段。
表面处理可以增强材料的硬度、抗腐蚀性和耐磨性能,以应对各种外界摩擦力的作用。
常见的表面处理方法包括热处理、电镀、喷涂、溅射等。
热处理是利用材料本身的相变过程来改善性能,如淬火、回火等;电镀可以在材料表面形成一层保护膜,提高其耐磨性;喷涂和溅射则是利用高速喷射熔融的金属或陶瓷颗粒,形成坚固的涂层。
材料力学性能名词解释
材料力学性能名词解释名词解释1,循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力应力状态软性系数材料:最大切应力与最大正应力的比值,记为α。
:2,缺口效应:缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。
3,缺口敏感度:金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。
4,冲击吸收功:冲击弯曲试验中试样变形和断裂所消耗的功5,过载损伤界:抗疲劳过载损伤的能力用过载损伤界表示。
6,应力腐蚀:材料或零件在应力和腐蚀环境的共同作用下引起的破坏7,氢蚀:由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱而导8,金属脆化。
氢蚀断裂的宏观断口形貌呈氧化色,颗粒状。
微观断口上晶界明显加宽,呈沿晶断裂。
9,磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
10,耐磨性:耐磨性是材料抵抗磨损的性能。
论述1,影响屈服强度的因素:①内因:a金属的本性及晶格类型。
不同的金属其晶格类型,位错运动所受的阻力不同,故彼此的屈服强度不同。
b晶粒大小和亚结构晶粒尺寸↓→晶界↑→位错运动障碍数目↑→σs↑(细晶强化)c溶质元素.溶质原子和溶剂原子直径不同→形成晶格畸变应力场→该应力场和位错应力场产生交互作用→位错运动受阻→σs↑(固溶强化)d第二相的影响 1.第二相质点本身能否变形2.第二相的强化效果还与其尺寸、形状、数量、分布以及第二相与基体的强度、塑性和应变硬化特性、两相之间的晶体学配合和界面能等因素有关②外因:a温度,T↑→金属材料的屈服强度↓,但金属晶体结构不一样,其变化趋势不一样。
b应变速率,应变速率↑→金属材料的强度↑,但屈服强度随应变速率的变化比抗拉强度的变化要剧烈得多c应力状态,切应力分量愈大→愈有利于塑性变形→屈服强度愈低2,影响韧脆转变的因素:①冶金因素:a晶体结构,体心立方金属及其合金存在低温脆性。
第六章 材料的磨损解读
6.5.1 实验室试验的原理
1)
2)
3)
4)
5) 6)
耐磨试验在摩擦磨损试验机上进行,种类很多,代表性的: 销盘式磨损试验机,是将试样加上载荷压紧在旋转圆盘上,该 法试验速度可调,精度较高; 环块式磨损试验机,试样在圆环外表面做摩擦运动; 往复运动式磨损试验机,试样在静止平面上往复运动,可评定 导轨、缸套与活塞环等摩擦副的耐磨性; 滚子式磨损试验机,可测定材料在滑动、滚动、滚动和滑动复 合摩擦及间歇接触摩擦情况下的磨损; 砂纸磨损试验机,对磨材料为砂纸,简单易行; 快速磨损试验机,旋转圆轮用硬质合金制造,能较快测定材料 的耐磨性,也可测定润滑剂的摩擦及磨损性能。
6.1.1 摩擦 定义:两个相互接触的物体或物体与介质之 间在外力作用下,发生相对运动,或者具有 相对运动的趋势时,在接触表面上所产生的 阻碍作用称为摩擦。这种阻碍相对运动的阻 力称为摩擦力。
6.1.1.1 摩擦力
摩擦力的方向总是沿着接触面的切线方向,跟物体
相对运动方向相反,阻碍物体间的相对运动。 摩擦力(F)与施加在摩擦面上的法向压力(P)之比称
*减小零件使用时的磨损是我们学习材料磨损性能的最终目的。
薛群基院士
从事润滑失效研究,现为兰州化学物理研究所所 长,固体润滑国家重点实验室学术委员会主任,亚洲 摩擦学理事会主席,是我国材料摩擦学和摩擦化学领 域的主要学术带头人之一
6.1.2 摩损 定义:磨损是在摩擦的作用下,发生在材料 表面的局部反复进行的变形与断裂。
为摩擦系数,以μ表示,即μ=F/P。
μ静 μ μ动
μ静 >μ动
6.1.1.2 摩擦的分类 按照两接触面运动方式的不同,可以将摩擦 分为: ①滑动摩擦:指的是一个物体在另一个物 体上滑动时产生的摩擦。 ②滚动摩擦:指的是物体在力矩作用下, 沿接触表面滚动时的摩擦。
机械制造基础3_材料的力学性能指标
机械制造基础3_材料的力学性能指标材料的力学性能指标是指材料在力学加载下的表现和性能参数,用来评估材料的强度、刚度、韧性、耐磨性、抗疲劳性等。
以下将介绍常见的材料力学性能指标。
1.强度:材料的强度指的是其所能承受的最大应力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
屈服强度是材料在弹性阶段的抗拉、抗压应力,即在材料开始发生塑性变形之前所能承受的应力。
抗拉强度是材料在拉伸过程中所能承受的最大应力,抗压强度是材料在受压过程中的最大应力。
2.刚度:材料的刚度指的是其抵抗变形的能力。
常见的刚度指标有弹性模量、切变模量等。
弹性模量是材料在弹性阶段的刚度大小,可以描述材料在拉伸或压缩时的回复能力。
切变模量是材料在剪切变形时的刚度大小,可以衡量材料的抗扭转能力。
3.韧性:材料的韧性指的是其在断裂前能够吸收的能量。
常见的韧性指标有延伸率、冲击韧性、断裂伸长率等。
延伸率表示材料在受拉时能够延长的程度,冲击韧性表示材料在受冲击载荷下的抵抗性能,断裂伸长率是材料在断裂前拉伸的长度与初始长度之比。
4.耐磨性:材料的耐磨性指的是其抗磨损能力。
常见的耐磨性指标有硬度、摩擦系数等。
硬度表示材料抵抗表面划伤、模具磨损等形变的能力,摩擦系数表示材料表面与其他物体接触时的磨擦阻力。
5.抗疲劳性:材料的抗疲劳性指的是其抵抗循环加载下疲劳破坏的能力。
常见的抗疲劳性指标有疲劳极限、疲劳寿命等。
疲劳极限是材料在疲劳加载下所能承受的最大应力,疲劳寿命表示材料在循环加载下能够承受的加载次数。
除了上述指标外,材料还有其他性能指标,如导热性能、热膨胀系数、电导率等,这些性能指标主要用于材料的特殊应用领域。
总而言之,材料的力学性能指标是评估材料力学特性的重要依据,不同的材料具有不同的力学性能指标,根据具体应用需求选择合适的材料和合适的力学性能指标是非常重要的。
材料力学性能
材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。
材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。
下面就常见的材料力学性能进行简要介绍。
1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。
强度是材料力学性能中最基本和重要的指标之一。
常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。
2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。
韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。
高韧性的材料具有良好的抗冲击和抗断裂性能。
3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。
材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。
常见的塑性材料有金属材料和塑料材料。
4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。
刚性材料具有较高的弹性模量和抗弯刚度。
常见的刚性材料有钢材和铝合金等。
5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。
弹性材料具有较高的弹性模量和较小的应变率。
常见的弹性材料有弹簧钢和橡胶等。
6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。
硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。
硬度高的材料具有较好的抗划伤和抗磨损性能。
7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。
耐磨性可以通过磨损试验来评价。
高耐磨性的材料具有较长的使用寿命。
总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。
在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。
材料力学性能-第七章-金属的磨损(1)
一、粘着磨损
1.定义与特点:粘着磨损又称咬合磨损,是在 滑动摩擦条件下,当摩擦副相对滑动速度较小 (1m/s)时发生的。它是因缺乏润滑油,摩擦副 表面无氧化膜,且单位法向载荷很大,以致接 触应力超过实际接触点的屈服强度而产生的一 种磨损。
2021年11月27日 星期六
第七章 金属的磨损
图7-2 粘着磨损表面损伤形貌
2021年11月27日 星期六
第七章 金属的磨损
由于从较软一方金属材料的表面脱离下来的 碎屑不一定全部成为磨屑,有时碎屑可能仍附于 金属表面上,因此,磨屑形成有个几率问题,设 此几率为K,则单位滑动距离内的磨损体积为:
V l
K
N
d 3
12
··················
式中:V-磨损体积;l-滑动距离;K-磨屑形成几率; d-磨屑直径
2021年11月27日 星期六
第七章 金属的磨损
图7-3中所示的粘着磨损过程是粘着点强
度比摩擦副一方金属强度高的情况,此时常在
较软一方本体内产生剪断,其碎片则转移到较
硬一方金属上,软方金属在硬方金属表面逐步
积累最终使不同金属的摩擦副滑动成为相同金
属间的滑动,故磨损量较大,表面较粗糙,甚
至可能产生咬死现象,铅基合金与钢之间的滑
粘附一层很薄的转移膜并伴有化学成分变化,这
是粘着磨损的重要特征。
2021年11月27日 星期六
第七章 金属的磨损
分三个阶段:
接触面凸起因塑性变形被
碾平,并在接触面之间形成
剪断强度高的分界面;
❖摩擦副一方金属远离分界
面内断裂,从该金属上脱落
并转移到另一方金属表面;
转移的碎屑脱落下来形成
磨屑。
材料力学性能教学课件材料的摩擦与磨损性能
结论及展望
通过对材料的摩擦与磨损性能的深入研究,可以为材料的选择和应用提供科学依据,进一步提高材料的性能和可靠 性。
金属材料
金属材料通常具有较高的摩擦系数,但也可以通过表面处理和润滑来减少磨损。
聚合物材料
聚合物材料具有较低的摩擦系数,但其耐磨性能相对较差。
陶瓷材料
陶瓷材料通常具有较低的摩擦系数和较高的耐磨性能,但也容易产生表面粉化。
影响摩擦与磨损的因素
1 接触压力
增加接触压力会增加摩擦力和磨损。
3 温度
高温环境下摩擦和磨损会加剧。
2 表面粗糙度
粗糙表面会增加摩擦力和磨损。
摩擦与磨损的测试方法
1
磨损实验
2
使用特定装置和试样进行磨损实验,以获得
材料的磨损特性和性能。
3
滑动摩擦测试
通过模拟实际工况下的滑动摩擦来评估材料 的摩擦和磨损性能。
表面分析
通过观察和分析材料表面的变化,了解摩擦 和磨损的影响。
改善材料的摩擦与磨损性能的 措施
材料力学性能教学课件 PPT材料的摩擦与磨损性 能
在本课程中,我们将探讨材料的摩擦与磨损性能。了解摩擦力与摩擦系数的 含义,并分析擦力与磨损之间的相互作用。探讨不同材料之间的摩擦和 磨损的特点,以及它们对材料性能和寿命的影响。
常见材料的摩擦与磨损性能比较
6-7第六和七讲 材料的其它力学性能-摩擦、磨损与蠕变
5.2 磨粒磨损-磨料磨损
根据磨粒所受应力大小分为: (1)低应力划伤式的磨料磨损-应力不超过磨 料压溃强度,材料表面被轻微划伤。 (2)高应力辗碎式的磨料磨损-磨料压溃。 (3)凿削式磨料磨损-磨料有冲击力,从表面 凿下较大颗料磨屑,如挖掘机斗齿。
金属表面 发生局部 塑性变形
磨粒嵌入金 属表面,切 割金属表面
功耗磨损温度局部烧毁磨损机理粘着磨损磨粒磨损腐蚀磨损微动磨损疲劳局部应力局部塑变碾平51粘着磨损咬合磨损转移脱落典型粘着磨损形貌举例内燃机中活塞环和缸套衬启动或停车换向及载荷运转不稳定或润滑条件不好几何结构参数不恰当而不能建立起可靠的油膜时环和套之间易发生局部直接接触处于边界摩擦或干摩擦的工作状态易粘着磨损
7
3. 4种滑动摩擦状态
干摩擦:表面无任何润滑剂或保护膜的纯接触摩擦。 →功耗↑ 磨损↑ 温度↑→局部烧毁
不允许出现干摩擦!
4. 磨损过程
5. 磨损机理
►粘着磨损 ►磨粒磨损 ►腐蚀磨损 ►微动磨损(疲劳)
5.1 粘着磨损-咬合磨损
局部应力
局部塑变, 碾平
转移,脱落
典型粘着磨损形貌
举例-内燃机中活塞环和缸套衬
1. 材料的摩擦与磨损
世界使用能源约1/31/2消耗于摩擦。减少无 用摩擦消耗,可大量节省能源。 易损零件,由于磨损超过限度而报废和更 换,控制和减少磨损既减少设备维修次数和费 用,又节省制造零件及其所需材料费用。
摩擦是磨损的原因,磨损是摩擦的结果。
2. 摩擦的分类
内摩擦:物质内部发生的阻碍分子间相对运动现象。 外摩擦:相对运动物体表面间发生的相互阻碍作用。 静摩擦:仅有相对运动趋势时的摩擦。 动摩擦:在相对运动进行中的摩擦。 滑动摩擦:物体表面间运动形式是相对滑动,常用。 滚动摩擦:物体表面间的运动形式是相对滚动,高速、 高精度、重载。
材料力学性能第七章金属的磨损ppt课件
➢ 根据剥落裂纹起始位置及形态不同,分为:
➢ (1) 麻点剥落(点蚀)
➢ (2) 浅层剥落
➢
(3) 深层剥落(表面压碎)
46
2. 接触应力
➢ 两物体相互接触时,在表面上产生的局部压入应力称 为接触应力,也称为赫兹应力。
➢ 线接触(齿轮)与点接触(滚珠轴承)
上图为温度对胶合磨损的影响,可以看出, 当表面温度达到临界值(约80℃)时, 磨损量 和摩擦系数都急剧增加。
17
润滑油、润滑脂的影响
在润滑油、润滑脂中加人油性或极压添加剂能提高润 滑油膜吸附能力及油膜强度,能成倍地提高抗粘着磨 损能力。
油性添加剂是由极性非常强的分子组成,在常温条件 下,吸附在金属表面上形成边界润滑膜,防止金属表 面的直接接触,保持摩擦面的良好润滑状态。
磨损是一个复杂的系统工程
6
机件正常运行的磨损过程
(a)磨损量与 时间或行程关系曲线;
(b)磨损速率与 时间或行程关系曲线
7
3. 磨损的分类方法
粘着磨损 磨粒磨损
冲蚀磨损 疲劳磨损 微动磨损 腐蚀磨损
8
§7.2 磨损模型
一、粘着磨损 1. 磨损机理 ➢定义:在滑动摩擦条件下,当摩擦副相对滑动速 度较小(钢小于1m/s)时发生的, ➢原因:缺乏润滑油,摩擦副表面无氧化膜,且单 位法向载荷很大,σ接触>σs又称咬合磨损
36
主轴转速 : 60r/min ~ 12000r/min
主轴转速示值准确度: ± 2r/min
高温炉温度范围: 室温~ 800℃;
高温炉密封性能: 在连续充入氮气(纯度
99.9%以上)的条件下,炉内 氧气含量应能达到1%以下。 最大负荷:
材料力学性能指标
材料力学性能指标
材料力学性能指标是用于描述材料力学性能的数值指标,它们是评价材料在外力作用下变形和破坏行为的重要参数。
常见的材料力学性能指标包括强度、韧性、硬度、刚度等。
强度是材料抵抗本体破坏的能力,通常用屈服强度、抗拉强度、抗压强度等来衡量。
屈服强度是材料开始变形的强度,抗拉强度是在拉伸过程中材料破坏前所能承受的最大拉力,抗压强度是材料在受到压缩作用下承受的最大压力。
强度的高低决定了材料在受力环境下是否会发生破坏。
韧性是材料抵抗塑性变形能力的指标,一般用断裂延伸率和断裂韧性来描述。
断裂延伸率是材料在断裂前所能承受的最大拉伸变形与原始尺寸的比值,反映了材料在拉伸过程中的延展性;断裂韧性是材料在断裂前所能吸收的单位体积的能量,反映了材料的抗冲击能力。
硬度是材料抵抗划痕或穿刺的能力,常用硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。
硬度的高低反映了材料的抗刮擦和抗磨损能力。
刚度是材料抵抗变形的能力,常用刚度系数衡量。
刚度系数是指材料在单位应力下的相对应变,刚度系数越大,材料的刚性越高,变形能力越小。
除了上述指标外,还有一些其他的材料力学性能指标,如耐疲劳性、蠕变性、弹性模量、破裂韧度等,这些指标可以根据具
体的材料性质和使用环境来选择。
综上所述,材料力学性能指标是评价材料性能的重要参数,不同的指标反映了材料在力学应力下的不同特性。
在工程设计和材料选择中,需要根据具体需求和使用环境来选择合适的材料力学性能指标,以保证材料在使用过程中具有良好的性能。
材料的摩擦学性能研究
材料的摩擦学性能研究摩擦学是研究物体之间相对运动引发的力和现象的学科。
它在工程学和材料科学中具有重要作用,特别是在摩擦材料的研究和应用中更是必不可少。
材料的摩擦学性能研究主要涉及到材料的磨损、摩擦系数以及摩擦性能的改良等方面。
本文将对这些内容进行探讨。
首先,我们了解一下材料的磨损性能。
磨损是材料在相对运动下受到力的作用而逐渐失去物质的过程。
摩擦材料的磨损性能直接影响着材料的使用寿命和使用效果。
磨损性能的研究不仅涉及到材料的选择和设计,还包括磨损机理的分析和预测。
通过研究材料的磨损行为和机理,我们可以选择合适的材料来提高产品的寿命和性能。
其次,我们来探讨一下材料的摩擦系数。
摩擦系数是描述物体相对滑动时所受到的摩擦阻力与物体受到的压力之间的比值。
摩擦系数的大小既受材料本身特性的影响,也受到使用条件的影响。
对于摩擦材料的研究,我们需要了解材料摩擦系数随着温度、压力、速度等因素的变化规律。
这些规律不仅可以为设计和制造提供指导,还可以帮助我们选择合适的材料来满足特定工作条件下的摩擦性能要求。
最后,我们来谈一谈如何改良材料的摩擦性能。
在工程实践中,我们常常遇到需要改良材料的摩擦性能的情况。
有时候,我们需要增加材料的摩擦系数来提高物体之间的传递效率;有时候,我们又需要减小摩擦系数来降低能源消耗和减少磨损。
为了满足这些需求,科学家和工程师们通过改变材料的成分和结构来改良其摩擦性能。
例如,添加摩擦剂可以改变材料的表面特性和摩擦系数;使用复合材料结构可以在材料的摩擦性能和力学性能之间取得平衡。
这些方法都是为了优化材料的摩擦性能来满足特定工程需求。
综上所述,材料的摩擦学性能研究在现代工程学和材料科学中扮演着重要的角色。
它关注着材料在相对运动中的磨损行为、摩擦系数以及材料性能的改良。
通过深入研究摩擦学性能,我们可以优化材料的选择和设计,提高产品的寿命和性能,并满足各种工程需求。
摩擦学性能的研究不仅对于工业界有重要意义,同时也对于推动科学技术的发展具有深远影响。
材料力学性能课后题,参考看下
第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。
2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。
5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。
6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。
7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。
9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。
10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料——连续屑,脆性材料——断屑。
⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。
⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。
11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
工程材料的耐磨性能与材料磨损机理研究
工程材料的耐磨性能与材料磨损机理研究引言工程材料是各个行业中不可或缺的重要组成部分,其性能直接影响着产品的质量和寿命。
在工业生产过程中,材料的磨损问题一直是一个极具挑战的领域。
磨损导致材料失去原有的形状和功能,进而影响设备的性能。
因此,研究工程材料的耐磨性能和磨损机理对于解决这一问题具有重要意义。
一、材料的耐磨性能材料的耐磨性能是指材料在受到磨损作用时能够保持其原有性能和形状的能力。
耐磨性能是工程材料的一项重要指标,直接关系到材料在使用过程中的寿命和可靠性。
各种工程材料具有不同的耐磨性能,容器材料、建筑材料、造船材料等多种领域都需要考虑耐磨性能的问题。
1.1 耐磨性能测试方法为了评估材料的耐磨性能,科学家们发展了多种测试方法。
其中,最常用的方法是滑动磨损测试、刮擦磨损测试和冲击磨损测试。
滑动磨损测试通过模拟材料在实际工作条件中的滑动摩擦来评估材料的耐磨性能。
刮擦磨损测试则是以刮削行为为基础,通过刮擦材料来模拟材料受到的磨损情况。
冲击磨损测试则是通过在一定速度下对材料进行冲击来测试其抗冲击磨损性能。
1.2 影响耐磨性能的因素除了测试方法外,材料的耐磨性能还受到多种因素的影响。
首先是材料本身的物理化学性质,例如硬度、强度、韧性等。
材料的硬度越高,通常意味着它具有更好的耐磨性能。
其次是材料的结构,例如晶体结构和晶界结合等。
不均匀的结构容易引起应力集中,从而增加磨损的概率。
此外,材料的表面处理和涂层技术也对耐磨性能有着显著影响。
通过表面冶金处理和涂层技术,可以大大提高材料的耐磨性能。
二、材料磨损机理材料磨损机理研究是理解材料磨损现象并提出相应措施的基础。
磨损过程通常包括磨料的侵入、微裂纹的产生和扩展,以及材料的疲劳破坏等。
通过研究材料磨损机理,可以更好地理解和解决材料磨损问题。
2.1 磨料颗粒的侵入和疲劳破坏磨料颗粒是导致材料磨损的主要原因之一。
当磨料颗粒与材料表面接触时,产生的应力和压力会导致材料表面的塑性变形和微裂纹的产生。
摩擦和磨损
材料性能学
磨损试验方法
材料性能学
分类:点蚀,浅层剥落
渗层剥落
接触疲劳过程: 疲劳裂纹的形成; 疲劳裂纹的扩展
材料性能学
2 接触应力的概念
Hale Waihona Puke 相互接触的物体在局部便面产生的压应力成为 接触应力,又成为赫兹应力,分为线接触和点 接触类型。 (1)两接触物体在加载前为线接触(如圆柱与圆 柱、圆柱与平面接触)
材料性能学
材料性能学
材料性能学
三体磨损:其磨损料介于两个滑动零件表面, 或者介于两个滚动物体表面。前者如活塞与汽 缸间落人磨料,后者如齿轮间落人磨料。 这两种分类法最常用。
材料性能学
磨粒磨损机理
(1)微观切削磨损机理
(2)多次塑变导致断裂的磨损机理 (3)微观断裂磨损机理
材料性能学
影响磨粒磨损的因素
(1)磨料的硬度、大小及形状,磨粒的韧性、 压碎强度等。 (2)外界载荷大小、滑动距离及滑动速度。
材料性能学
第六章 金属的磨损与接触疲劳
任何机器运转时,相互接触的零件之间都将因
相对运动而产生摩擦,而磨损正是由于摩擦产
生的结果。由于磨损,将造成表层材料的损耗
,零件尺寸发生变化,直接影响了零件的使用
寿命。
材料性能学
近二三十年国外把摩擦、润滑和磨损,构成
了一门独立的边缘学科叫摩擦学。但从材料
学科特别是从材料的工程应用来看,人们更
材料性能学
压力超过钢的屈服强度时,K值急剧增大,磨损 也急剧增大,结果造成大面积的焊合和咬死。此 时整个表面发生塑性变形,接触面积不再与载荷 成正比。
材料性能学
4 影响粘着磨损的因素
(1)脆性材料的抗粘着磨损能力比塑性材料高。 (2)金属性质越是相近的,构成摩擦副时粘着磨 损也越严重。反之,金属间互溶程度越小,晶 体结构不同,原子尺寸差别较大,形成化合物 倾向较大的金属,构成摩擦副时粘着磨损就较 轻微。
橡胶材料的力学性能研究
橡胶材料的力学性能研究橡胶材料是一种具有特殊力学性能的材料,广泛应用于各个领域,如汽车制造、航天工程、建筑工程等。
在日常生活中,我们也可以看到橡胶材料的存在,比如橡胶管、橡胶垫等。
了解橡胶材料的力学性能对于材料的设计和应用至关重要。
本文将从橡胶材料的弹性、拉伸和耐磨性等方面进行研究,探讨橡胶材料的力学性能。
首先,我们来讨论橡胶材料的弹性。
橡胶材料具有高度的弹性,即使在受力后可以迅速恢复原状。
这是因为橡胶材料的分子结构中含有许多橡胶弹簧,当受到外力作用时,这些弹簧会发生变形,但当力消失时,它们会迅速恢复原来的形状。
这使得橡胶材料在各种应用中具有良好的缓冲和隔振效果。
此外,橡胶材料的弹性还使得其能够适应各种形状和尺寸的物体,提供更好的密封性能和稳定性。
接下来,我们将研究橡胶材料的拉伸性能。
橡胶材料具有出色的拉伸强度和延展性,能够在受到拉力时承受很大的变形而不断裂。
这是因为橡胶材料中的分子链结构具有很高的延展性,可以通过变形和滑动来适应外界力的作用。
同时,橡胶材料由于其柔软性能,使得其在受到外力时能够分散应力,降低材料的应力集中程度,提高材料的耐用性和寿命。
橡胶材料的拉伸性能对于工程设计和应用中的安全性和可靠性至关重要。
除了弹性和拉伸性能,我们还需要关注橡胶材料的耐磨性。
橡胶材料的耐磨性是指材料在摩擦和磨损过程中的性能表现。
橡胶材料通常具有较好的抗磨损性能,可以在高速摩擦和重负荷下保持其形状和性能。
这主要是由于橡胶材料的分子结构中的交联结构和分散相的存在,能够在摩擦过程中吸收和分散热量,减小摩擦表面的磨损。
同时,橡胶材料的耐老化性能也是其耐磨性的重要因素,较好的耐老化性能可以提高材料的使用寿命和稳定性。
综上所述,橡胶材料的力学性能研究十分重要。
通过对橡胶材料的弹性、拉伸和耐磨性等方面进行研究,我们可以更好地了解橡胶材料的特性和工作原理,从而设计出更加适用的材料和产品。
此外,深入研究橡胶材料的力学性能还可以为相关的工程领域提供依据和指导,提高设备和结构的稳定性和安全性。
第四章 材料力学性能(材料科学基础)
对于某一确定的点,其应力由K1决定,K1越 大,则应力场各点的应力也越大。
按线弹性断裂力学的分析,裂纹尖端应力场强度因子K1的一般表达式为: K1 = Yσa1/2(MN/m3/2)
• δ=ΔL/L0=[(L-L0)/L0]×100% (是塑性“伸长”的度量) • 式中L0为试样原始标距长度;L为试样断裂后标距的长度。 •
ψ=ΔAf/A0=[(A0-Af)/A0] ×100% (是塑性“收缩”的度量) • 式中A0为试样原始截面积;Af为试样断裂处的截面积。
• 材料的延伸率和断面收缩率数值越大,表示材料的塑性越好。 塑性好的材料可以发生大量塑性变形而不被破坏,这样当受力 过大时,由于首先产生塑性变形而不致发生突然断裂,比较安 全。
材料的刚度和零件的刚度不是一回事,零件刚度的大小取决于零件的 几何形状和材料的弹性模量。
(2)弹性行为 • 弹性变形的特点是当载荷卸除后,试样的尺寸形状完全回复到原始状态。 • 根据材料的不同,其变形行为可分为三类:线弹性、非线弹性以及滞弹性。
理想的线弹性行为,应力 非线性弹性行为,如橡胶
和应变之间满足虎克定律。 之类的变形能力极好的弹
反映,用焦耳(J)来表示 • 在强度相等的情况下,延性材料断裂时所需要的能量比脆
性材料多,因此它的韧性也比脆性材料高。 • 评定材料韧性高低的方法,最常用的有两种: ➢ 一是用冲击试验所得的冲击韧性; ➢ 二是用断裂力学方法与试验测得的断裂韧性。
冲击韧性
一只重摆锤从高度h开始,沿着弧形轨迹向下摆动,冲击到试样上并把试 样打断,最后达到一个比较低的高度h` 。知道摆锤的初始高度h和最终高 度h`,就能算出势能差别。这一差别就是试样在断裂过程中所吸收的冲击 能Ak(冲击总功),如果除以缺口处试样的截面积,即得材料的冲击韧 性,用αk表示,单位为J/cm2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 材料的摩擦与磨损性能
图片一:油门踏板,可以看出,丰田车用的两种油
门踏板(一个是美国CTS公司,一个是日本Denso
公司)外表是差不多的,也是可以互换的。
6
第七章 材料的摩擦与磨损性能
图片二: CTS油门踏板Fra bibliotek工作原理。这个设计是由丰田自
己的工程师设计的,可不要埋怨CTS公司。而它的要命的地
一旦换了电脑,那个部位也要换才成。这样,每 部车需要数千美元(工钱加上零件钱), 900万 辆的规模,那就是数百亿美元,丰田没有那么多 现金,就只好破产保护了。
14
第七章 材料的摩擦与磨损性能
丰田油门踏板的毛病,根本原因可能是“两层皮”
导致的 同样都是油门踏板,同样是CTS一家出的,
为何美国车德国车就没这个问题?因为人家要求所
机关:两种钢材没问题,只是在A的背面或B的背面用另一弹簧
顶着,而非现在的铸在一起。那样的话,不论温度怎么变化,
A和B的接触是恒定的,是靠背面的弹簧压住的。
18
第七章 材料的摩擦与磨损性能
其实,这么简单的构想,丰田就没在意。毕竟不是
发动机,也不是变速箱,一个踏板而已。所以,不
起眼的地方,大意了,说不定就把公司给毁了。对
。
16
第七章 材料的摩擦与磨损性能
那么,到底是CTS的油门踏板档次高,还是日本Denso塑料
芯踏板档次高?其实还是CTS的档次高!因为金属的寿命要
比塑料长多了。问题在于:丰田在设计油门踏板的时候用的
材料是两种,而美国车德国车用的是一种。一种材料,由于
热胀冷缩的系数一样,就没有丰田车的问题。日本人偷工减
就像用改锥支起这个杠杆结构一样
13
第七章 材料的摩擦与磨损性能
这样,如果丰田把召回的车换成Denso的油门踏 板,那个电脑里边的信号处理器要更换的。在美 国,修车店里的人不会拆开电脑去换里边的部件 的,要换就得把整个电脑换掉。我担心的是:在 日本出的用Denso油门踏板的车,不仅仅油门踏 板不同而导致的电脑里的信号处理器不同,而且 还有其它零件不同,比如电子油门开关。
第七章 材料的摩擦与磨损性能
槽状结构啮合的图片
为了避免上面的槽状结构卡死, 丰田就在这个空隙增加了金属片
10
第七章 材料的摩擦与磨损性能
图片五:Denso的油门踏板。这个设计不存在粘住 问题。要是出了问题的话,那可不是靠加一个铁片 就能解决的。
11
第七章 材料的摩擦与磨损性能
那么,为何丰田不把召回的车统统换成Denso的 油门踏板呢?有人抱怨说如果换成新的油门踏板 ,丰田要出更多的血,买踏板要比买铁片贵多了 。这是所谓的“内行”们非常恼火丰田的地方。 然而,这两种油门踏板给出的信号可能是不一样 的。
缺陷/偷工减料 丰田召回问题未根本解决
第七章 材料的摩擦与磨损性能
4
第七章 材料的摩擦与磨损性能
丰田因为突然加速并刹不住车而引发的“丰田 安全危机”风暴席卷全球,目前我们知道丰田 已经开始维修和解决问题了,但是,如何解决 成了大家关注的焦点,而丰田的做法那就是在 油门踏板上加一个铁片!为了说明到底是怎么 回事,丰田加一个铁片的道理,是不是真的能 解决问题?
CTS出的那个踏板是金属的,测出的是A与B之间
的接触面积(踩油门越大,接触面积越大),也
就是测出的是“电流”然后送给电脑。而Denso
出的那个,中间是塑料的,测出来的不是金属与
金属之间的电流,而是光学原理。中间那个塑料
滚轮滚动的角度大小可以用简单的光学信号交给
电脑。
12
第七章 材料的摩擦与磨损性能
料,降低成本,又没有在意油门踏板,导致了这样19人死
亡的悲剧。
17
第七章 材料的摩擦与磨损性能
丰田油门踏板设计者太大意了,日本人只是知道中国人有“好
钢用在刀刃上”的成语,不知道有“大意失荆州”的典故。如
果丰田不是大意而理所当然地认为美国车德国车都用这个设计
没问题,他们也不会有问题,那么,他们就会把A和B分成两个
不走,等你再加大油门,接触面积加大后突然车子窜 出去。
等到车子过热的时候,油门踏板的A与B由于热胀系数
不同,一下子就把A与B靠在一起了,你即使松开油门
踏板,踏板也回不来了,因为A与B之间太紧密了,摩
擦力太大了,超过了弹簧的张力。那为何丰田车子会
突然加速呢?按照物理学常识,油门踏板由于A与B过
紧而不能弹回来,那油门也不会加大,虽然不会减小
于丰田汽车来说,我们更希望看到的是态度。愈演
愈烈的丰田召回事件,对丰田汽车的影响可谓是致
命的。
19
第七章 材料的摩擦与磨损性能
20
第七章 材料的摩擦与磨损性能
摩擦的定义: 两个接触物体表面在外力作用下相互接触并 作相对运动或有运动趋势时,在接触面之间 产生的切向运动阻力称为摩擦力,这种现象 就是摩擦。
主讲人: 张宁
1
28,000,000,000 $ ------ 0.02 $
丰田汽车的召回门
丰田公司接连爆出油门踏 板、刹车等部件缺陷,先后 宣布在全球范围内召回多款 车辆合计 850 万辆。
丰田汽车上月在美国销量 下降16%,召回的直接损失 高达20亿美金,丰田汽车公 司需要承担几十起诉讼费用 ,未来一年其财务方面的损 失总计可能超过50亿美元。
有的钢材都是一样的。
15
第七章 材料的摩擦与磨损性能
而丰田的油门踏板,摩擦的部位是好钢,而不摩擦的 部位是软铁。由于A和B钢材的材料不同,导致由于温 度变化热胀冷缩的程度不同,在温度特低的时候,由 于A与B钢材密度有异,冷缩的系数不同,可能导致接 触不上。这就使得有时候你加油踩下油门踏板,车子
方在于:A与B之间不能有空隙。这样,就容易“粘连”在
一起。为何 CTS 给美国、德国等汽车制造厂生产的油门踏
板就没问题?请看后面的解释您就明白了。
7
第七章 材料的摩擦与磨损性能
图片三:丰田召回的900万辆车后,就是在那个地方加一个 铁片。
8
第七章 材料的摩擦与磨损性能
图片四:示意图。可看出铁片加的地方。对丰田来说,这个活太 容易了。一个铁片造价很低。丰田计算的是成本。加一个铁片的 目的就是不让A过多进入B,这样虽然这个问题解决了,但又出 现了新的问题,那就是最大油门得不到了,也就是没有办法进行 全油门,虽然日常驾驶够用;但这样也绝对是会有安全隐患的!9