专题复习——二次函数图象与几何变换

合集下载

二次函数知识点及典型例题

二次函数知识点及典型例题

二次函数一、二次函数的几何变换二、二次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求二次函数的解析式1、一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式。

2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

4、顶点在原点,可设解析式为y=ax 2。

5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。

6、顶点在x 轴上,可设解析式为()2h x a y -=。

7、抛物线过原点,可设解析式为y=ax2+bx 。

四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。

2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。

3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。

五、二次函数与一元二次方程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为一元二次方程02=++c bx ax ,一元二次方程的解就是二次函数与x 轴交点的横坐标。

要分三种情况:1、 判别式△=b 2-4ac >0⇔抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。

有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。

2、 判别式△=b 2-4ac=0⇔抛物线与x 轴有一个交点(ab 2-,0)。

3、 判别式△=b 2-4ac=0⇔抛物线与x 轴无交点。

六、二次函数与一元二次不等式的关系1、a >0:(1)02>c bx ax ++的解集为:x <x 1或x >x 2(x 1<x 2)。

初中数学专题复习(二次函数图象的几何变换)

初中数学专题复习(二次函数图象的几何变换)

初中数学专题复习(二次函数图象的几何变换)1.将抛物线y=(x+1)2+1平移,使平移后得到抛物线y=x2+6x+6.则需将原抛物线()A.先向左平移1个单位长度,再向上平移5个单位长度B.先向左平移2个单位长度,再向下平移4个单位长度C.先向右平移1个单位长度,再向上平移5个单位长度D.先向右平移2个单位长度,再向上平移4个单位长度解:抛物线y=(x+1)2+1的顶点坐标是(﹣1,1),抛物线y=x2+6x+6=(x+3)2﹣3的顶点坐标是(﹣3,﹣3).所以将点(﹣1,1)向左平移2个单位长度,再向下平移4个单位长度,得到点(﹣3,﹣3).所以需要将原抛物线先向左平移2个单位长度,再向下平移4个单位长度得到抛物线y=x2+6x+6.答案:B.2.已知抛物线C1:y=x2﹣2x+1,将抛物线C1绕着点(0,m)旋转180°得到抛物线C2,如果抛物线C2与直线y=x+4有两个交点且交点在其对称轴两侧,则m的取值范围是()A.m>B.m>C.m<D.m<解:∵y=x2﹣2x+1=(x﹣3)2﹣2,∴抛物线C1:y=x2﹣2x+1的顶点为(3,﹣2),将抛物线C1绕着点(0,m)旋转180°得到抛物线C2,则抛物线C2的顶点为(﹣3,2m+2),如图,∵抛物线C2与直线y=x+4有两个交点且交点在其对称轴两侧,∴当x=﹣3时,x+4<2m+2,即﹣+4<2m+2,解得m>.答案:A.3.在同一平面直角坐标系中,若抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,则m,n的值为()A.m=﹣6,n=﹣3B.m=﹣6,n=3C.m=6,n=﹣3D.m=6,n=3解:∵抛物线y=mx2+2x﹣n与y=﹣6x2﹣2x+m﹣n关于x轴对称,∴﹣y=﹣mx2﹣2x+n,∴y=﹣mx2﹣2x+n与y=﹣6x2﹣2x+m﹣n相同,∴﹣m=﹣6,n=m﹣n,解得m=6,n=3,答案:D.4.二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,则(a+1)2+(1+b)2的值为()A.9B.10C.20D.25解:∵二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,∴y=(x+a)2+(x+b)2的解析式为:y=(﹣x﹣1)2+(﹣x﹣3)2,即y=2x2+8x+10,又∵y=(x+a)2+(x+b)2=2x2+(2a+2b)x+a2+b2,∴2a+2b=8,a2+b2=10,∴(a+1)2+(1+b)2=a2+b2+2a+2b+2=10+8+2=20.答案:C.5.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵y=x2﹣(m﹣1)x+m=(x﹣)2+m﹣,∴该抛物线顶点坐标是(,m﹣),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m﹣﹣3),∵m>1,∴m﹣1>0,∴>0,∵m﹣﹣3===﹣﹣1<0,∴点(,m﹣﹣3)在第四象限;答案:D.6.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(5,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为20(图中的阴影部分),则新图象的函数表达式是()A.B.C.D.解:曲线段AB扫过的面积=(x B﹣x A)×AA′=4AA′=20,则AA′=5,故抛物线向上平移5个单位,则;答案:D.7.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,答案:A.8.如图,将抛物线进行平移,使其经过点A(﹣4,0)和点O(0,0),设平移后的顶点为B,连接OB,以O为圆心、OB的长为半径作圆,交抛物线于点C,连接BC,则图中阴影部分的面积为()A.B.C.13π﹣6D.解:∵将抛物线进行平移,使其经过点A(﹣4,0)和点0(0,0),∴平移后的抛物线的对称轴为直线x=﹣2,∴设平移后的抛物线的解析式为y=(x+2)2+k,将O(0,0)代入,得(0+2)2+k=0,解得k=﹣3,∴平移后的抛物线的解析式为y=(x+2)2﹣3,顶点A的坐标为(﹣2,﹣3),由勾股定理,得OB==.连接OA、OC,由圆的对称性或垂径定理,可知C的坐标为(﹣2,3),阴影部分的面积=半圆的面积﹣△BOC的面积=•π•()2﹣6×2=π﹣6.答案:B.9.已知抛物线L:y=ax2﹣2ax+5(a≠0)的顶点为A,抛物线M与抛物线L关于B(2,0)成中心对称,若抛物线M经过点A,则a的值为()A.﹣2B.C.﹣5D.解:∵抛物线L:y=ax2﹣2ax+5=a(x﹣1)2+5﹣a,∴顶点A(1,5﹣a),∵抛物线M与抛物线L关于B(2,0)成中心对称,∴抛物线M的开口大小相同,方向相反,顶点为(3,a﹣5)∴M的解析式是:y=﹣a(x﹣3)2+a﹣5,∵抛物线M经过点A,∴5﹣a=﹣4a+a﹣5,解得a=﹣5,答案:C.10.将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为()A.y=(x+2)2﹣2B.y=(x﹣4)2+2C.y=(x﹣1)2﹣1D.y=(x﹣1)2+5解:由“上加下减”的原则可知,将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x﹣1)2+2+3,即y=(x﹣1)2+5;答案:D.11.已知抛物线y=ax2+2ax﹣b(a≠0),它关于点(0,12)对称的抛物线为y1,其顶点为A1;关于点(0,22)对称的抛物线为y2,其顶点为A2;…;关于点(0,n2)对称的抛物线为y n,其顶点为A n…(n为正整数).则A2020A2021的长为()A.2020B.2021C.8080D.8082抛物线y=ax2+2ax﹣b的顶点坐标为(﹣1,﹣a﹣b),∵点(﹣1,﹣a﹣b)关于点(0,n2)的对称点为(1,a+b+2n2),∴抛物线y n的顶点坐标A n为(1,a+b+2n2),同理:A n+1(1,a+b+2(n+1)2),∴A n A n+1=a+b+2(n+1)2﹣(a+b+2n2)=4n+2.∴A2020A2021的长为:4×2020+2=8082,答案:D.12.已知抛物线y=ax2+bx+m是由抛物线y=﹣x2+2x+2先关于y轴作轴对称图形,再将所得的图象向下平移3个单位长度得到的,点Q1(﹣2.5,q1)、Q2(1,q2)都在抛物线y=ax2+bx+m上,则q1,q2的大小关系是()A.q1>q2B.q1=q2C.q1<q2D.不能确定解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴顶点为(1,3)∴抛物线y=﹣x2+2x+2先作关于y轴的轴对称抛物线的顶点为(﹣1,3),再向下平移3个单位长度顶点为(﹣1,0),∴抛物线y=ax2+bx+m的解析式为y=﹣(x+1)2,∵点Q1(﹣2.5,q1)、Q2(1,q2)都在物线y=ax2+bx+m上,∴q1=﹣(﹣2.5+1)2=﹣,q2=﹣(1+1)2=﹣4,∴q1>q2,答案:A.13.如图,对于抛物线y1=﹣x2+x+1,y2=﹣x2+2x+1,y3=﹣x2+3x+1,给出下列结论:①这三条抛物线都经过点C(0,1);②抛物线y3的对称轴可由抛物线y1的对称轴向右平移1个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线y=1的交点中,相邻两点之间的距离相等.其中正确结论的序号是①②④.解:①当x=0时,分别代入抛物线y1,y2,y3,即可得y1=y2=y3=1;①正确;②y1=﹣x2+x+1,y3=﹣x2+3x+1的对称轴分别为直线x=,x=,由x=向右平移1个单位得到x=,②正确;③y1=﹣x2+x+1=﹣(x﹣)2+,顶点坐标(,),y2=﹣x2+2x+1=﹣(x﹣1)2+2,顶点坐标为(1,2);y3=﹣x2+3x+1=﹣(x﹣)2+,顶点坐标为(,),∴顶点不在同一条直线上,③错误;④当y=1时,则﹣x2+x+1=1,∴x=0或x=1;﹣x2+2x+1=1,∴x=0或x=2;﹣x2+3x+1=1,∴x=0或x=3;∴相邻两点之间的距离都是1,④正确;故答案为①②④.14.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是﹣5.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.15.把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.16.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.。

二次函数的图像与常见变化

二次函数的图像与常见变化

二次函数的图像与常见变化二次函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。

本文将从二次函数的图像和常见的变化入手,探讨其特点和应用。

首先,我们来看二次函数的图像。

一般来说,二次函数的图像是一个开口向上或向下的抛物线。

其标准形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a不等于零。

当a大于零时,抛物线开口向上;当a小于零时,抛物线开口向下。

在图像的形状上,二次函数的a值决定了抛物线的开口大小。

当a的绝对值越大时,抛物线越“扁平”,开口越大;当a的绝对值越小时,抛物线越“瘦长”,开口越小。

这一特点在实际应用中十分有用,例如在物理学中,通过调整抛物线的形状可以模拟不同的物体运动轨迹。

其次,我们来探讨二次函数的常见变化。

二次函数的图像可以通过平移、缩放和翻转等变换来改变其位置和形状。

这些变化可以通过调整函数中的常数来实现。

首先是平移变化。

当二次函数的图像沿x轴平移时,可以通过改变b的值来实现。

当b大于零时,图像向左平移;当b小于零时,图像向右平移。

这种变化在实际应用中常用于描述物体在坐标轴上的位置变化。

其次是缩放变化。

当二次函数的图像在x轴或y轴方向上进行缩放时,可以通过改变a和c的值来实现。

当a的绝对值大于1时,图像在y轴方向上缩放;当a 的绝对值小于1时,图像在x轴方向上缩放。

而c的值则决定了图像在y轴上的位置。

最后是翻转变化。

当二次函数的图像在x轴或y轴方向上进行翻转时,可以通过改变a的符号来实现。

当a大于零时,图像不发生翻转;当a小于零时,图像在x轴方向上发生翻转。

这种变化在实际应用中常用于描述对称性。

除了以上常见的变化,二次函数的图像还可以通过其他方式进行调整,如通过改变a、b和c的值的组合来实现复杂的变化。

这些变化在数学和实际问题中都有广泛的应用,例如在经济学中,通过分析二次函数的图像可以预测市场的变化趋势;在工程学中,通过调整二次函数的图像可以优化设计方案。

专题二次函数与几何变换

专题二次函数与几何变换
A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4
2、在平面直角坐标系中,先将抛物线y=x2+x-2
关于x轴作轴对称变换,再将所得的抛物线关于y
轴作轴对称变换,那么经两次变换后所得的新抛
物线的解析式为( )
A.y=-x2-x+2
B.y=-x2+x-2
(三)、抛物线的旋转
情况一:关于原点成中心对称(即绕原点旋转1800)
例题:若抛物线C:y=ax2+bx+c与抛物线 y=2x2-4x+3关于原点成中心对称,则抛物 线C的解析式为___________。
情况二:关于顶点成中心对称(即绕顶点旋转00)
若抛物线C:y=ax2+bx+c绕顶点旋转180后得 到抛物线y=2x2-4x+3,则抛物线C的解析式 为___________。
C.y=-x2+x+2 D.y=x2+x+2
3、将抛物线l:y=2x2-4x+3沿直线y=-1翻折 得到抛物线l′,则抛物线l′的解析式为 __________
4、已知二次函数y=x2+4x+3的顶点为A,与y 轴交于点B,作它关于以P(1,0)为中心的中 心对称的图象顶点为C,交y轴于点D,则四边 形ABCD面积为
(二)、抛物线的轴对称
情况一:关于x轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线y=2x24x+3关于x轴对称,则抛物线C的解析式为 ___________。
情况二:关于y轴对称:
例题:若抛物线C:y=ax2+bx+c与抛物线 y1=x2-4x+1关于y轴对称,则抛物线C的解析式 为___________。

初三数学. 二次函数的图象判断和几何变换

初三数学. 二次函数的图象判断和几何变换

二次函数的图象判断和几何变换模块一:二次函数的图象判断1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然. (2)b 和a 共同决定抛物线对称轴的位置:“左同右异”当0b =时,抛物线的对称轴为y 轴;当a 、b 同号时,对称轴在y 轴的左侧;当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置当0c =时,抛物线与y 轴的交点为原点;当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数的图象信息(1)根据抛物线的开口方向判断a 的正负性. (2)根据抛物线的对称轴判断b 的正负性. (3)根据抛物线与y 轴的交点,判断c 的正负性. (4)根据抛物线与x 轴有无交点,判断24b ac -的正负性. (5)根据抛物线的对称轴可得2ba-与1±的大小关系,可得2a b ±的正负性. (6)根据抛物线所经过的已知坐标的点,可得到关于a ,b ,c 的等式.(7)根据抛物线的顶点,判断244ac b a -的大小.模块二:二次函数的几何变换 1.二次函数图象的平移平移规律:在原有函数的基础上“左加右减”,“上加下减”.2.二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达. (1)关于x 轴对称关于x 轴对称后,得到的解析式是.2()y a x h k =-+关于x 轴对称后,得到的解析式是2()y a x h k =---. (2)关于轴对称关于y 轴对称后,得到的解析式是.2()y a x h k =-+关于y 轴对称后,得到的解析式是2()y a x h k =++. (3)关于原点对称关于原点对称后,得到的解析式是.2y ax bx c =++2y ax bx c =---y 2y ax bx c =++2y ax bx c =-+2y ax bx c =++2y ax bx c =-+-2()y a x h k =-+关于原点对称后,得到的解析式是2()y a x h k =-+-. (4)关于点(,)m n 对称2()y a x h k =-+关于点(,)m n 对称后,得到的解析式是2(2)2y a x h m n k =-+-+- 3.二次函数图象的翻折函数的图象可以由函数通过关于x 轴的翻折变换得到.具体规则为函数图象在x 轴上方的部分不变,在x 轴下方的部分翻折到x 轴上方.|()|y f x =()y f x =()y f x =模块一 二次函数的图象判断题组一:(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数()y a b x ac =++的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限(2)二次函数2y ax bx c =++的图象如图1-2,则下列六个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -、24b ac -中,其值为正的式子的个数是( ) A .5个 B .4个 C .3个 D .2个(3)二次函数2y ax bx c =++的图象如图1-3,则22a b c a b c a b a b ++--+++--_______0.(填“>”、“<”或“=”).图1-1 图1-2 图1-3题组二:(1)如图2-1,二次函数2y ax bx c =++的图象经过点(1,2)-,下列结论:①420a b c -+<;②20a b -<;③2b <-;④22()a c b +<,其中正确的结论有________.(填序号)(2)如图2-2,已知二次函数2y ax bx c =++的图象经过点(1,2),下列结论:①20a b +<;②0abc <;③1a c +<-;④284b a ac +<,其中正确结论的有________.(填序号)(3)(成外半期)二次函数2(0)y ax bx c a =++≠的图象如图2-3所示,有下列5个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->;⑤()a b m am b +>+,(1m ≠的实数),其中正确的结论的有________.(填序号)图2-1 图2-2 图2-3题组三:(1)已知二次函数2(0)y ax bx c a =++≠的图像如图3-1所示,它与x 轴两个交点分别为(1,0)-,30(,).对于下列命题:①20b a -=;②0abc <;③102a b c --+<;④80a c +>.其中正确的有________.(填序号)(2)如图3-2,抛物线2(0)y ax bx c a =++≠的对称轴是1x =-,且过点1,02⎛⎫ ⎪⎝⎭,有下列结论:①0abc >;②240a b c -+=;③251040a b c -+=;④320b c +>.其中正确的结论有________.(填序号) (3)如图3-3,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(10A -,),对称轴为直线1x =,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当3x >时,0y <;②30a b +<;③213a -≤≤-;④248acb a ->;其中正确的结论是_________.(填序号)图3-1 图3-2 图3-3题组四:(1)已知二次函数y ax bx c 2=+++2的图象如图4-1所示,顶点为(,)-10,下列结论:①abc <0;②b ac 2-4=0;③a >2;④a b c 4-2+>0.其中正确结论的个数是____________.(填序号) (2)二次函数2y ax bx c =++的图象如图4-2所示,给出下列结论:①20a b +>;②若11m n -<<<,则bm n a+<-;③3||||2||a cb +<;④b ac >>,其中正确的结论有____________.(填序号)图4-1 图4-2yAO xx =1模块二 二次函数的几何变换题组一:(1)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( ). A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位D .向右移动1个单位,向下移动3个单位(2)一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.(3)如果将抛物线228y x =-+向右平移a 个单位后,恰好过点(3,6),那么a 的值为__________. 题组二:(1)如图6-1所示,已知抛物线0C 的解析式为22y x x =-,则抛物线0C 的顶点坐标____________;将抛物线0C 每次向右平移2个单位,平移n 次,依次得到抛物线1C 、2C 、3C 、…、n C (n 为正整数),则抛物线n C 的解析式为___________. (2)如图6-2,把抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和原点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q ,则图中阴影部分的面积为___________.图6-1 图6-2题组三:已知二次函数221y x x =--,求:(1)与此二次函数关于x 轴对称的二次函数解析式为_____________________; (2)与此二次函数关于y 轴对称的二次函数解析式为_____________________; (3)与此二次函数关于原点对称的二次函数解析式为_____________________. 题组四:已知二次函数2441y ax ax a =++-的图象是1C . (1)求1C 关于点(1,0)R 中心对称的图象2C 的解析式;(2)设曲线1C 、2C 与y 轴的交点分别为A ,B ,当||18AB =时,求a 的值.xyO…C nC 1C 0题组五:作出2|5|y x x =+的函数图象. 题组七:已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1()2y x b b k =+<与此图象有两个公共点时,b 的取值范围.复习巩固模块一 二次函数的图象判断(1)二次函数2y ax bx c =++的图象如图1-1,则一次函数by ax c =-的图象不经过第________象限.(2)如图1-2,二次函数2y ax bx c =++的图象经过点(1,2)-和(1,0),给出五个结论:①0abc <;②20a b +>;③1a c +=;④1a >;⑤9640a b c ++>.其中结论正确的是________.(3)二次函数2y ax bx c =++的图象如图1-3,小丹观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,其中结论正确的是________.图1-1 图1-2 图1-3(1)已知二次函数2y ax bx c =++的图象如图2-1所示,有下列结论:①240b ac ->;②0abc >;③20a b +>;④930a b c ++<;⑤80a c +>.其中结论正确的是________.(填序号即可)(2)如图2-2,抛物线2y ax bx c =++的图象交x 轴于1(,0)A x 、(2,0)B ,交y 轴正半轴于C ,且OA OC =.下列结论:①0a b c ->;②1ac b =-;③12a =-;④22bc +=,其中结论正确的是________.图2-1 图2-2Oyx模块二 二次函数的几何变换(1)(树德实验半期)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后的抛物线的解析式为________.(2)将函数2y x x =+的图象向右平移(0)a a >个单位,得到函数232y x x =-+的图象,则a 的值为________.(3)如图,在平面直角坐标xOy 中,抛物线1C 的顶点为(1,4)A --,且过点(3,0)B -: ①将抛物线1C 向右平移2个单位得抛物线2C ,则抛物线2C 的解析式_____________; ②写出阴影部分的面积S =_____________.(1)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,则经两次变换后所得的新抛物线的解析式为________.(2)已知二次函数234y x x =--的图象,将其函数图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,结合图象写出当直线(1)y x n n =+<与这个新图象有两个公共点时,n 的取值范围为__________.y xOyxO AB。

二次函数的图像和变换

二次函数的图像和变换

二次函数的图像和变换二次函数是数学中一个重要的概念,在数学中有着广泛的应用。

本文将以二次函数的图像和变换为主题,介绍二次函数的基本性质、图像的特征以及常见的变换方式。

一、二次函数的基本性质二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

二次函数的图像是一个抛物线,其开口方向由a的正负确定。

当a > 0时,抛物线开口朝上;当a < 0时,抛物线开口朝下。

二次函数的图像在坐标系中的对称轴为直线x = -b/2a,对称轴将图像分为两部分,称为左右分支。

当x值大于对称轴的x坐标时,函数值随x增大而增大;当x值小于对称轴的x坐标时,函数值随x增大而减小。

二、二次函数图像的特征1. 零点:二次函数的零点指的是函数图像与x轴(即y = 0)的交点,可以通过求解ax^2 + bx + c = 0的方程来确定。

二次函数的零点可能有0个、1个或者2个。

2. 非常数项c:二次函数的非常数项c代表了函数图像与y轴的交点,即在x = 0时的函数值。

如果c > 0,则函数图像与y轴正向交点在y轴上方;如果c < 0,则函数图像与y轴负向交点在y轴下方。

3. 极值点:二次函数的极值点是函数图像上离对称轴最近的点。

当a > 0时,函数的极值点为最小值;当a < 0时,函数的极值点为最大值。

极值点的横坐标为对称轴的横坐标,可通过对称轴方程得到。

三、二次函数的常见变换二次函数可以通过平移、伸缩、翻转等变换方式进行图像的调整。

1. 平移:沿着坐标轴的平移可以调整二次函数图像的位置。

平移的方式有水平平移和垂直平移两种。

水平平移可以通过在x轴上添加或减去常数来实现,例如f(x) = (x - a)^2 + b表示将二次函数图像沿x轴平移a个单位,并沿y轴平移b个单位。

垂直平移可以通过在函数整体上加或减常数来实现,例如f(x) = x^2 + c表示将二次函数图像沿y轴平移c个单位。

人教版九年级数学专题《二次函数图像和性质》(含答案及解析)

人教版九年级数学专题《二次函数图像和性质》(含答案及解析)

专题22.1 二次函数的图像和性质知识点解读 1.定义一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

其中x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数、常数项。

2.抛物线的三要素:开口方向、对称轴、顶点。

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。

3.几种特殊的二次函数的图像特征如下4.求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(ab ac a b 4422--,对称轴是直线abx 2-=。

②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。

③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=5.抛物线c bx ax y ++=2中, a 、b 、c 的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。

②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧。

③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab6.用待定系数法求二次函数的解析式一般情况下设二次函数的解析式为y=ax 2+bx+c ,结合题中条件解出a 、b 、c 就可以求出二次函数的解析式。

知识卡片-二次函数图象与几何变换

知识卡片-二次函数图象与几何变换

二次函数图象与几何变换能量储备● 二次函数的平移(1)几种二次函数解析式之间的平移关系:(2)将二次函数c bx ax y ++=2,向左平移m 个单位,函数解析式变为 c m x b m x a y ++++=)()(2;向右平移m 个单位,函数解析式变为c m x b m x a y +-+-=22)()(.将二次函数c bx ax y ++=2,向上平移n 个单位,函数解析式变为n c bx ax y +++=2;向下平移n 个单位,函数解析式变为n c bx ax y -++=2.(3)平移前后的的函数的开口方向与开口大小不改变,即a 不变● 二次函数的中心对称(1)关于原点对称 c bx ax y ++=2关于原点对称后,得到的解析式是c bx ax y -+-=2;k h x a y +-=2)(关原点对称后,得到的解析式是k h x a y -+-=2)(.(2)关于顶点对称c bx ax y ++=2关于顶点对称后,得到的解析式是a b c bx ax y 222-+--=; k h x a y +-=2)(关顶点对称后,得到的解析式是k h x a y +--=2)(.(3)关于点(m ,n )对称k h x a y +-=2)(关点(m ,n )对称后,得到的解析式是k n m h x a y -+-+-=222)(.二次函数的轴对称(1)关于x轴对称ax-=2;bx-y-bx=2关于x轴对称后,得到的解析式是caxcy++y-xa-=2)h(.-a(关于x轴对称后,得到的解析式是kkxh=2)-y+(2)关于y轴对称axy+=2;=2关于y轴对称后,得到的解析式是c-bx+cbxy+axxha(.(关于y轴对称后,得到的解析式是k+y+=2)=2)kxh-y+a通关宝典★基础方法点方法点1:二次函数旋转的规律当抛物线旋转后,其位置取决于顶点,开口方向取决于a的符号,故可利用变化后的顶点坐标与开口方向求旋转后的抛物线的解析式,注意抛物线绕顶点旋转180°后,保持|a|相等.例:将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是()A.y=-2x2-12x+16B.y=-2x2+12x-16C.y=-2x2+12x-19 D.y=-2x2+12x-20解析:抛物线y=2x2-12x+16=2(x-3)2-2,其顶点坐标为(3,-2),绕顶点旋转180°后抛物线顶点没有改变,只是开口方向与原来相反,即a=-2,所以抛物线的解析式为y=-2(x -3)2-2=-2x2+12x-20.答案:D★★易混易误点蓄势待发考前攻略主要考查利用平移、旋转、对称前后对应的二次函数的解析式及图象的顶点坐标.各个题型均有涉及,难度适中.完胜关卡。

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案一、单选题1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣22.将抛物线影响y=-x2向左平移2个单位后,得到的抛物线的解析式是()A.y=-(x+2)2B.y=-x2+2C.y=-(x-2)2D.y=-x2-23.若将抛物线y=5x2先向右平移2个单位,再向下平移3个单位,可得到新的抛物线是()A.y=5(x+2)2+3B.y=5(x−2)2+3C.y=5(x+2)2−3D.y=5(x−2)2−34.在平面直角坐标系内,将抛物线y=(x+2)2−3经过两次平移后,得到的新抛物线为y=(x−1)2−4.下列对这一平移过程描述正确的是()A.先向右平移3个单位长度,再向下平移1个单位长度B.先向左平移3个单位长度,再向下平移1个单位长度C.先向右平移3个单位长度,再向上平移1个单位长度D.先向左平移3个单位长度,再向下平移1个单位长度5.下列平移中,不能使二次函数y=2x2+4x−6经过原点的是()A.向左平移1个单位B.向右平移3个单位C.向上平移6个单位D.向上平移8个单位6.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+37.如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y= 12x2沿射线OC平移得到新抛物线y= 12(x-m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A.2,6,8B.0<m≤6C.0<m≤8 D.0<m≤2 或6 ≤ m≤88.将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A.y=3(x﹣2)2﹣5B.y=3(x﹣2)2+5C.y=3(x+2)2﹣5D.y=3(x+2)2+59.在平面直角坐标系中,对于二次函数y=(x−2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到10.抛物线y=12x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是()A.y=12(x+1)2﹣2B.y=12(x﹣1)2+2C.y=12(x﹣1)2﹣2D.y=12(x+1)2+211.将二次函数y=x2的图象如何平移可得到y=x2+4x+3的图象()A.向右平移2个单位,向上平移一个单位B.向右平移2个单位,向下平移一个单位C.向左平移2个单位,向下平移一个单位D.向左平移2个单位,向上平移一个单位12.把抛物线y=(x+2)2向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是()A.y=(x+2)2+2B.y=(x+1)2−2C.y=x2+2D.y=x2−2二、填空题13.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.14.抛物线y=-x2-2x+3可由抛物线y=ax2平移得到,则a的值是。

二次函数的像和变换

二次函数的像和变换

二次函数的像和变换二次函数是高中数学中重要的内容之一,它在数学和物理等领域中都有广泛的应用。

二次函数的图像呈现出特有的曲线形状,通过对二次函数进行变换,可以得到不同的曲线形状和位置。

本文将探讨二次函数的像和变换方面的知识。

一、二次函数的基本形式二次函数的一般形式为:$y=ax^2+bx+c$,其中$a$、$b$、$c$为实常数,$a$不等于零。

根据$a$的正负可以判断二次函数的开口方向:当$a>0$时,开口向上;当$a<0$时,开口向下。

二、二次函数的顶点二次函数的顶点是指曲线的最高点(开口向下)或最低点(开口向上)。

顶点坐标为$(h, k)$,其中$h$为曲线在$x$轴的对称轴上的坐标,$k$为曲线经过的最高点或最低点的纵坐标。

三、二次函数的平移平移是指在坐标平面上将曲线的位置向左、向右、向上或向下移动。

对于二次函数$y=ax^2+bx+c$,设原曲线上一点的坐标为$(x, y)$,经平移得到的新曲线上相应点的坐标为$(x+h, y+k)$,其中$(h, k)$为平移的量。

平移的规律如下:1. 左平移$h$个单位:将曲线上所有点的$x$坐标减去$h$,保持$y$坐标不变。

2. 右平移$h$个单位:将曲线上所有点的$x$坐标加上$h$,保持$y$坐标不变。

3. 上平移$k$个单位:将曲线上所有点的$y$坐标加上$k$,保持$x$坐标不变。

4. 下平移$k$个单位:将曲线上所有点的$y$坐标减去$k$,保持$x$坐标不变。

四、二次函数的伸缩伸缩是指通过调整二次函数的系数$a$,$b$或$c$,改变曲线的形状。

设原曲线上一点的坐标为$(x, y)$,经伸缩得到的新曲线上相应点的坐标为$(kx, ky)$,其中$k$为伸缩的比例因子。

伸缩的规律如下:1. 纵向伸缩:将曲线上所有点的$y$坐标乘以$k$,保持$x$坐标不变。

2. 纵向压缩:将曲线上所有点的$y$坐标除以$k$,保持$x$坐标不变。

二次函数的性质与图像变换

二次函数的性质与图像变换

二次函数的性质与图像变换二次函数是高中数学中重要的一个概念,它在代数学和几何学中都有广泛的应用。

二次函数的性质与图像变换是我们对二次函数的深入了解的重要方面。

本文将从二次函数的性质以及图像变换两个方面来展开讨论。

首先,我们来了解二次函数的性质。

二次函数的一般形式可以表示为:f(x) =ax^2 + bx + c,其中a,b,c分别为实数,且a ≠ 0。

二次函数的性质可以总结为以下几点:1. 对称性:二次函数的图像关于抛物线的顶点对称。

这意味着如果(x, y)是抛物线上的一个点,那么(2h - x, y)也是抛物线上的一个点,其中h为抛物线的顶点的横坐标。

2. 奇偶性:二次函数关于y轴是偶函数,即满足f(-x) = f(x);关于x轴是奇函数,即满足f(-x) = -f(x)。

这个性质可以从二次函数的图像中看出来。

3. 零点:二次函数的零点是使得函数值为0的x值。

可以通过求解二次方程ax^2 + bx + c = 0来求得二次函数的零点。

当判别式D = b^2 - 4ac为正时,二次函数有两个不相等的实根;当D = 0时,二次函数有两个相等的实根;当D为负时,二次函数没有实根。

4. 极值:二次函数的顶点是函数的极值点。

当二次函数的导数为0时,即f'(x) = 0,解这个方程可以得到函数的极值点。

通过了解这些性质,我们可以更好地理解二次函数的特点,进一步应用于实际问题的解决中。

其次,我们来讨论二次函数的图像变换。

二次函数的图像可以通过改变系数a,b,c来进行平移、伸缩、翻转等操作。

1. 平移:二次函数的图像可以沿x轴和y轴进行平移。

当抛物线的顶点的横坐标加上一个常数h时,抛物线向左移动h个单位;当抛物线的顶点的纵坐标加上一个常数k时,抛物线向上移动k个单位。

2. 伸缩:二次函数的图像可以沿x轴和y轴进行伸缩。

当系数a的绝对值增大时,抛物线变得更加狭长;当系数a的绝对值减小时,抛物线变得更加扁平。

初二数学二次函数与图形变换知识点

初二数学二次函数与图形变换知识点

初二数学二次函数与图形变换知识点图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形改变(平移、轴对称、旋转)的'过程中,如何完成解析式的确定呢?解决此类问题的方法许多,关键在于解决问题的着眼点。

笔者认为最好的方法是用顶点式的方法。

因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再依据详细图形变换的特点,确定改变后新的顶点坐标及a值。

1、平移:二次函数图像经过平移变换不会转变图形的外形和开口方向,因此a值不变。

顶点位置将会随着整个图像的平移而改变,因此只要根据点的移动规律,求出新的顶点坐标即可确定其解析式。

例1.将二次函数y=*2-2*-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____分析:将y=*2-2*-3化为顶点式y=(*-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不转变二次函数的图像的外形和开口方向,因此a值不变,故平移后的解析式为y=(*-2)2-2。

2、轴对称:此图形变换包括*轴对称和关于y轴对称两种方式。

二次函数图像关于*轴对称的图像,其外形不变,但开口方向相反,因此a值为原来的相反数。

顶点位置转变,只要依据关于*轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

二次函数图像关于y轴对称的图像,其外形和开口方向都不变,因此a值不变。

但是顶点位置会转变,只要依据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

例2.求抛物线y=*2-2*-3关于*轴以及y轴对称的抛物线的解析式。

分析:y=*2-2*-3=(*-1)2-4,a值为1,其顶点坐标为(1,-4),假设关于*轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(*-1)2+4;假设关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(*+1)2-4。

(完整版)二次函数图像与性质专题复习

(完整版)二次函数图像与性质专题复习

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法 【例1】求作函数64212++=x x y 的图象 【例2】求作函数342+--=x x y 的图像。

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质

高中教材知识点:二次函数的图像与性质一、知识点介绍二次函数是高中阶段数学学习的重要内容之一,它是一种关于自变量的二次多项式函数。

了解二次函数的图像与性质对于理解函数的变化规律和应用具有重要意义。

本文将详细介绍高中教材中二次函数的图像与性质,包括基本定义、图像特点、性质及常见的例题解析。

二、基本定义1. 二次函数:二次函数是一个关于自变量x 的函数,一般可以表示为f(x) = ax^2 + bx + c,其中a、b、c 是实数且 a ≠0。

2. 二次函数的图像:二次函数的图像是平面直角坐标系中的一条曲线,通常是开口向上或向下的抛物线。

三、图像特点1. 抛物线的开口方向:二次函数中的系数a 决定了抛物线的开口方向。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

2. 邻域与单调性:二次函数的图像在抛物线的开口处有一个顶点,抛物线在这个顶点的邻域内是单调递增或单调递减的。

四、性质1. 零点与因式分解:二次函数的零点是方程f(x) = 0 的解,可以通过因式分解或求根公式来得到。

2. 对称性:二次函数的图像关于顶点对称。

即,若(h, k) 是抛物线的顶点,则点(2h, k) 也在抛物线上。

3. 最值:当抛物线开口向上时,最小值为顶点的纵坐标;当抛物线开口向下时,最大值为顶点的纵坐标。

五、例题解析1. 图像特点例题:题目:根据二次函数的表达式f(x) = 2x^2 - 3x + 1,确定该二次函数的开口方向和顶点。

解析:根据系数 a 的值,可以确定开口方向。

由题目中的系数可知 a = 2,因此抛物线开口向上。

顶点可以通过求解抛物线的顶点坐标得到。

根据顶点公式,顶点的横坐标为x = -b/2a,纵坐标为f(x) = f(-b/2a)。

代入系数的值,得到顶点的坐标为(-(-3)/2(2), f(-(-3)/2(2))) = (3/4, 13/8)。

2. 性质应用例题:题目:已知二次函数f(x) = ax^2 + bx + c,其图像与x 轴交于两点,且顶点的纵坐标为4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(2)将抛物线 C1 绕点(3,1)旋转 180 得到抛物线 C2 ,若抛物 线 C2 与直线有 y x b 两个交点且交点在其对称轴两侧, 求b 的 取值范围.
2016/4/15
2016/4/15
.
2.已知抛物线 C1 : y x 2 x 3
2
(1)把抛物线 C1 向左平移 2 个单位,向上平移 3 个单位, 得到的抛物线的表达式为 ; ; ; ; (2)把抛物线 C1 沿 x 轴翻折,得到的抛物线的表达式为 (3)把抛物线 C1 沿 y 轴翻折,得到的抛物线的表达式为 (4)把抛物线 C1 沿直线 x= -2 翻折,得到抛物线 C3 的表达式为
2016/4/15
例2.已知关于 x 的方程 a(x+m)2+b=0 的解是
x1=-2,x2=1( a,m,b 均为常数,a≠0),
求方程 a(x+m+2)2+b=0 的解.
a(x+m)2+b=0 an2+b=0
a(x+m+2)2+b=0
a(n+2)2+b=0
b n a b x m a
b n -2 a b x m2 a
例2.已知 关于 x 的方程 a(x+m)2+b=0 的解是
顶点(-m,b)
x1=-2,x2=1( a,m,b 均为常数,a≠0),
顶点(-m-2,b)
求方程 a(x+m+2)2+b=0 的解.
y’=a(x+m+2)2+b
y=a(x+m)2+b
-4
-1
(2014 石景山一模改编)已知:抛物线 C1 y x 4 x 4
2
(1)若抛物线 C1 向下平移 mm 0个单位后,过点 1, n 和点
2,2n 1,求 m 的值;
2016/4/15
(2014 石景山一模改编)已知:抛物线 C1 y x 4 x 4
利用函数图像变换解决有关问题
1.已知点 A(1,3) (1)把点 A 向左平移 3 个单位,向下平移 5 个单位, 得到点 B 的坐标为 ; (2)点 A 关于 x 轴的对称点的坐标为 ; 点 A 关于 y 轴的对称点的坐标为 ; 点 A 关于直线 x=2 的对称点的坐标为 , (3)点 A 关于原点的对称点的坐标为 ; 点 A 关于点(-1,0)的对称点的坐标为
(5)把抛物线 C1 绕原点旋转 180°,得到的抛物线的表达式为 (6)把抛物线 C1 绕点(1,0)旋转 180°,得到抛物线 C5 的例 1. (2014 通州期末第 8 题改编)已知二次函数 y = x 2 x 8 的
2
图象为抛物线 C ,将抛物线 C 沿 x 轴平移得到新的抛物线 C . 如果两 个抛物线 C 、 C 关于直线 x 1 对称,请问抛物线 C 是如何平移的?
相关文档
最新文档