一次函数测试题及其答案

合集下载

一次函数测试题3套(有答案)

一次函数测试题3套(有答案)

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=.y=C .D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分) 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1). 23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢? 25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.班级_____________座号____________姓名_____________成绩_________ __一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( ) A 、y=2x-1 B 、y=3C 、y=2x 2D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b=+上,且0k <.若12x x >,则1y ,2y 的关系是:( ) A 、12y y > B 、12y y < C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( ) A 、(-1,-1) B 、(-1, 1) C 、(1, -1) D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 八年级上学期第十四章《一次函数》单元测试----------------------------精品word文档值得下载 值得拥有---------------------------------------------- 10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。

(完整版)初中数学一次函数练习题及答案

(完整版)初中数学一次函数练习题及答案

一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。

5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。

CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

一次函数经典测试题含答案

一次函数经典测试题含答案

一次函数经典测试题含答案一、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.2.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .32C .52D .7【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B .C .D .【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩ 5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.16.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.17.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.18.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.。

初中一次函数集中专题训练100题-含答案

初中一次函数集中专题训练100题-含答案

初中一次函数集中专题训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.对于一次函数y =3x ﹣1,下列说法正确的是( )A .图象经过第一、二、三象限B .函数值y 随x 的增大而增大C .函数图象与直线y =3x 相交D .函数图象与y 轴交于点(0,13) 2.下列各图象能表示y 是x 的一次函数的是( )A .B .C .D . 3.下列函数中,是一次函数的是( )A .y =1﹣xB .y =1xC .y =kx +1D .y =x 2+1 4.一条直线3y x =的图象沿x 轴向右平移2个单位,所得到的函数关系式是( ) A .22y x =+ B .32y x =- C .36y x =+ D .36y x =- 5.将直线y =﹣2x +1向上平移2个单位长度,所得到的直线解析式为( ) A .y =2x +1 B .y =﹣2x ﹣1C .y =2x +3D .y =﹣2x +3 6.已知一次函数()333m y m x -=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >,则m 的值为( )A .-3B .-4C .4D .4或-4 7.一次函数y =3x ﹣2的图象经过的象限是( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限8.关于一次函数26y x =-,下列说法正确的是( )A .y 随x 的增大而减小B .图象交x 轴于点()0,6-C .点(1,2)在此函数的图象上D .图象经过第一、三、四象限 9.一次函数()23y m x m =-+-的图象不经过第二象限,则m 的值可以是( ) A .1 B .2 C .3 D .410.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .7二、填空题11.下列函数:①y =2x -8;①y =-2x +8:①y =2x +8;①y =-2x -8.其中,y 随x 的增大而减小的函数是____(填序号).12.若一次函数y=kx+2的图象经过点(2,10),则k 的值为________________. 13.将直线y x =-向上平移3个单位长度,平移后直线的解析式为________. 14.当a =______时,y =x 2a -1是正比例函数.15.根据图象,不等式kx >﹣x +3的解集是_____.16.如图,直角坐标系中,直线2y x =+和直线y ax c =+相交于点P (m ,3),则方程组2y x y ax c=+⎧⎨=+⎩的解为______.17.把正比例函数3y x =-的图象向上平移2个单位长度,得到的函数图象的解析式是________.18.已知一次函数y=(m+2)x+3,若y 随x 值增大而增大,则m 的取值范围是________.19.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB 上的一点,且位于第二象限,当①OBC 的面积为3时,点C 的坐标为______.20.甲、乙两名大学生去距学校36km 的某乡镇进行社会调查,他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车继续步行向前走,乙骑电动车按原路返回,取到相机后马上骑电动车追甲,在距乡镇13.5km 处追上甲并同车前往乡镇,若电动车速度始终不变,设甲与学校相距y 甲km ,乙与学校相距y 乙km ,甲离开学校的时间为x min ,y 甲,y 乙与x 之间的函数图象如图,则下列结论:①电动车的速度为0.9km/min ;①甲步行所用的时间为45min ;①甲步行的速度为0.15km/min .其中正确的是___________(只填序号).21.如图,已知函数2y x b =+与函数6y kx =-的图象交于点P ,则不等式62kx x b -<+的解集是______.22.当自变量x 的值满足_______时,直线2y x =-+上的点在x 轴下方.23.如果P (2,m ),A (1, 1), B (4, 0)三点在同一直线上,则m 的值为_________. 24.若函数y kx b =+的图像如图所示,则关于x 的不等式0kx b -+<的解集是______.25.如图,直线y=-x+m 与y=nx+4n (n≠0)的交点的横坐标为-2.则下列结论:①m <0,n >0;①直线y =nx +4n 一定经过点(-4,0);①m 与n 满足m =2n -2;①当x >-2时,nx +4n >-x +m ,其中正确结论的个数是____个.26.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.27.如图,□OABC 的顶点A 在x 轴的正半轴上,点D (4,3)在对角线OB 上,反比例函数y =k x (k >0,x >0)的图像经过C 、D 两点.已知□OABC 的面积是283,则点B 的坐标为_____________.28.如图,在平面直角坐标系中,点1A ,2A ,3A ……都在x 轴上,点1B ,2B ,3B ……都在直线y x =上,11OA B ,112B A A △,212△B B A ,223B A A △,323B B A △……都是等腰直角三角形,且11OA =,则点2022B 的坐标是__________.三、解答题29.某商店销售A 、B 两种品牌书包.已知购买1个A 品牌书包和2个B 品牌书包共需550元;购买2个A 品牌书包和1个B 品牌书包共需500元.(1)求这两种书包的单价.(2)某校准备购买同一种品牌的书包(10)m m >个,该商店对这两种品牌的书包给出优惠活动:A 种品牌的书包按原价的八折销售;若购买B 种品牌的书包10个以上,则超出部分按原价的五折销售.①设购买A 品牌书包的费用为1w 元,购买B 品牌书包的费用为2w 元,请分别求出1w ,2w 与m 的函数关系式;②根据以上信息,试说明学校购买哪种品牌书包更省钱.30.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式; (2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由. (3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?31.如图,直线113:4l y x m =-+与y 轴交于点(0,6)A ,直线2:1l y kx =+分别与x 轴交于点(2,0)B -,与y 轴交于点C ,两条直线交点记为D .(1)m = ,k = ;(2)求两直线交点D 的坐标;(3)根据图像直接写出12y y <时自变量x 的取值范围.32.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点()1,2P 一个跳步后对应点()2,0P '.已知点()1,4A -,()2,3B . (1)求点A ,B 经过1个跳步后的对应点A ',B '的坐标.(2)求直线AB 经过一个跳步后对应直线的函数表达式.33.如图所示,OA ,BA 分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程s (米)与时间t (秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)如果甲、乙两名学生所行驶的路程记为s 甲,s 乙,试写出s 甲,s 乙与t 之间的函数关系式.(3)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?34.学校准备购进一批节能灯,已知2只A 型节能灯和5只B 型节能灯共需45元;4只A 型节能灯和3只B 型节能灯共需41元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元.(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.35.某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克2.5元.小王携带现金3 000元到该市场采购苹果,并以批发价买进.如果购进的苹果是x 千克,小王付款后剩余现金y 元.(1)试写出x 与y 之间的函数关系式,并指出自变量的取值范围;(2)画出函数图象,指出图象形状和终点坐标;(3)若小王以每千克3元的价格将苹果卖出,卖出x 千克后可获利润多少元? 36.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案.(2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?37.如图,在平面直角坐标系中,函数883y x =-+的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴的正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)如果在直线AM 上有一点P ,使得ABP AOM S S =△△,请求出点P 的坐标.(3)在坐标平面内是否存在点N ,使以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有点N 的坐标;若不存在,请说明理由.38.甲、乙两车从A 城出发前往B 城,在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60km/h 的速度匀速行驶.(①)填空:①,?A B 两城相距_______km ; ①当02x ≤≤时,甲车的速度为_______km /h ;①乙车比甲车晚_______h 到达B 城;①甲车出发4h 时,距离A 城_______km ;①甲、乙两车在行程中相遇时,甲车离开A 城的时间为_______h ;(①)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式. (①)当1352x ≤≤时,两车所在位置的距离最多相差多少km ? 39.赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y (箱)与销售单价x (元)之间的函数关系式;(2)若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少40.如图,直线y =ax +b 与双曲线k y x=相交于两点A (1,2),B (m ,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax +b >k x的解集(直接写出答案) 41.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.42.如图,已知A (-3,n )、B (2,-3)是一次函数y kx b =+的图象和反比例函数m y x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求①AOB 的面积;(3)根据图象:直接写出使得 m kx b x+< 成立时,x 的取值范围; 43.已知关于x 、y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩. (1)若关于x 、y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩ 的解为13x y =-⎧⎨=⎩,直接写出原方程组的解为____________.(2)若2m n +=,且0x y >>,求32W x y =-的取值范围.44.已知:如图点(68)A ,在正比例函数图象上,点B 坐标为(12,0),连接AB ,10AO AB ==,点C 是线段AB 的中点,点P 在线段BO 上以每秒2个单位的速度由点B 向点O 运动,点Q 在线段AO 上由点A 向点O 运动,P Q 、两点同时运动,同时停止,运动时间为t 秒.(1)正比例函数的关系式为 ;(2)当1t =秒,且6OPQ S ∆=时,求点Q 的坐标;(3)连接CP ,在点P Q 、运动过程中,OPQ ∆与BPC ∆是否全等?如果全等,请求出点Q 的运动速度;如果不全等,请说明理由.45.先阅读材料,再解答问题:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式d (2,1)P -到直线23y x =+的距离.解:由直线23y x =+可知:2,3k b ==.所以点(2,1)P -到直线23y x =+的距离为d === 求:(1)已知直线21y x =+与25y x =-平行,求这两条平行线之间的距离;(2)已知直线443y x =--分别交,x y 轴于,A B 两点,C 是以(2,2)C 为圆心,2为半径的圆,P 为C 上的动点,试求PAB ∆面积的最大值.46.平面直角坐标系中,直线y ax b =+与x 轴、y 轴分别交于点B 、C ,且a 、b 满足:3a =,不论k 为何值,直线:2l y kx k =-都经过x 轴上一定点A . (1)=a __________,b =__________;点A 的坐标为___________;(2)如图1,当1k =时,将线段BC 沿某个方向平移,使点B 、C 对应的点M 、N 恰好在直线l 和直线24y x =-上,请你判断四边形BMNC 的形状,并说明理由;(3)如图2,当k 的取值发生变化时,直线:2l y kx k =-绕着点A 旋转,当它与直线y ax b =+相交的夹角为45°时,求出相应的k 的值.47.如图,已知点A (2,-5)在直线1l :y =2x +b 上,1l 和2l :y =kx ﹣1的图象交于点B ,且点B 的横坐标为8.(1)直接写出b 、k 的值;(2)若直线1l 、2l 与y 轴分别交于点C 、D ,点P 在线段BC 上,满足14BDP BDC SS =,求出点P 的坐标;(3)若点Q 是直线2l 上一点,且①BAQ =45°,求出点Q 的坐标.48.如图,在平面直角坐标系中,直线AB :y =kx +b 交y 轴于点A (0,1),交x 轴于点B (3,0).平行于y 轴的直线x =1交AB 于点D ,交x 轴于点E ,点P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C 的坐标.参考答案:1.B【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】①一次函数y=3x﹣1,①该函数图象经过第一、三、四象限,故选项A错误,函数值y随x的增大而增大,故选项B正确;函数图象与y=3x互相平行,故选项C错误;函数图象与y轴交于点(0,﹣1),故选项D错误,故选:B.【点睛】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.2.B【分析】一次函数的图象是直线.【详解】解:表示y是x的一次函数的图象是一条直线,观察选项,只有B选项符合题意.故选:B.【点睛】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.3.A【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:A、y=1-x是一次函数,故此选项符合题意;B、y=1x是反比例函数,故此选项不符合题意;C、当k=0时不是一次函数,故此选项不符合题意;D、y=x2+1是二次函数,故此选项不符合题意.故选:A.【点睛】本题考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.4.D【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,函数y=3x的图象沿x轴向右平移2个单位,所得直线的解析式为y =3(x -2),即y =3x -6.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.D【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y =﹣2x +1上平移2个单位长度后所得直线的解析式为:y =﹣2x +12,即y =﹣2x +3故选:D .【点睛】本题考查了一次函数图象的平移规律,理解平移规律是解题的关键.6.C【分析】根据题意:可得y 随x 的增大而减小,31m -=,即可求解.【详解】解:①一次函数()333m y m x-=-+的图象上有两点()11,A x y ,()22,B x y ,当12x x <时,12y y >, ①y 随x 的增大而减小, ①31m -=,且30m < ,解得:4m =± ,且3m > ,①4m = .故选:C【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数图象上点的坐标特点,和一次函数的性质是解题的关键.7.C【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象经过哪几个象限.【详解】解:①一次函数y =3x ﹣2,k =3>0,b =﹣2<0,①该函数的图象经过第一、三、四象限,故选C .【点睛】本题主要考查一次函数图象性质,解决本题的关键是要熟练掌握一次函数图象的性质.8.D【分析】根据一次函数的图象和性质,逐项判断即可求解.【详解】解:A 、①20,60>-<,①y 随x 的增大而增大,故A 选项错误,不符合题意;B 、当0x =时,y =-6,①图象交y 轴于点()0,6-,故B 选项错误,不符合题意;C 、当1x =时,21642y =⨯-=-≠,故C 选项错误,不符合题意;D 、图象经过第一、三、四象限,故D 选项正确,符合题意;故选:D.【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.9.C【分析】根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【详解】解:①()23y m x m =-+-的图象不经过第二象限,①2030m m ->⎧⎨-≤⎩, ①23m <≤.故选:C .【点睛】本题考查一次函数图象与系数的关系:由于y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.10.A【分析】把2x =-代入解析式即可.【详解】解:把2x =-代入23y x =+得,2(2)31y =⨯-+=-,故选:A .【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.11.①①【分析】根据一次函数(0)y kx b k =+≠的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小,可找出答案.【详解】①①①①①都是一次函数,①当y 随x 的增大而减小时,即0k <,①20k =>,①20k =-<,①20k =>,①20k =-<,①有①①满足,故答案为:①①.【点睛】本题考查一次函数的性质,掌握一次函数的增减性是解题的关键.12.4.【详解】试题解析:①一次函数y=kx+2的图象经过点(2,10),①10=2k+2,解得k=4.考点:一次函数图象上点的坐标特征.13.y =-x +3【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:将直线y =-x 向上平移3个单位长度,平移后直线的解析式为y =-x +3, 故答案为:y =-x +3.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键.14.1.【分析】根据正比例函数的定义可知2a-1=1,从而可求得a 的值.【详解】①y=x 2a-1是正比例函数,①2a-1=1,解得:a=1.故答案为1.【点睛】本题主要考查的是正比例函数的定义,由正比例函数的定义得到2a-1=1是解题的关键.15.1x >【分析】先根据函数图象得出交点坐标,根据交点的坐标和图象得出即可.【详解】解:根据图象可知:两函数的交点为(1,2),所以关于x 的一元一次不等式kx >﹣x +3的解集为1x >,故答案为:1x >.【点睛】本题主要考查一次函数与不等式,数形结合是解题的关键.16.13x y =⎧⎨=⎩【分析】首先求出P 点坐标,再根据两函数图象的交点坐标即为两函数组成的方程组的解.【详解】解:①直线y =x +2过点P (m ,3),①3=m +2,解得:m =1,①P (1,3),①方程组2y x y ax c =+⎧⎨=+⎩的解为13x y =⎧⎨=⎩. 故答案为:13x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程(组)与一次函数图象的关系.17.32y x =-+【分析】直线上下平移解析式时,要注意平移时k 的值不变,只有b 发生变化.【详解】解:根据题意,①正比例函数3y x =-的图象向上平移2个单位长度,①得到的函数图象的解析式是:32y x =-+;故答案为:32y x =-+.【点睛】本题要注意利用一次函数平移的特点,上加下减,比较基础.18.m >﹣2【详解】试题分析:根据一次函数的图象与系数的关系列出关于m 的不等式m+2>0,求出m 的取值范围m >﹣2.考点:一次函数图象与系数的关系19.()3,6-【分析】过点C 作CH ①x 轴于点H ,由题意易得1,3OB OA ==,然后根据①OBC 的面积可得点C 的纵坐标,进而问题可求解.【详解】解:过点C 作CH ①x 轴于点H ,如图所示:①直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,①令0x =时,则有y =-3,即OA =3, ①13OB OA =, ①1OB =,即()1,0B -,代入直线解析式得:03k =--,解得:3k =-;①直线AB 的解析式为33y x =--,①①OBC 的面积为3, ①132OB CH ⋅=, ①6CH =,即点C 的纵坐标为6,①336x --=,解得:3x =-,①()3,6C -;故答案为()3,6-.【点睛】本题主要考查一次函数与几何的综合,熟练掌握利用待定系数法求函数解析式是解题的关键.20.①①##①①【分析】①根据图象由速度=路程÷时间就可以求出结论;①先求出乙追上甲所用的时间,再加上乙返回学校所用的时间就是乙步行所用的时间; ①先根据第二问的结论求出甲步行的速度.【详解】解:①由图象,得18200.9÷=(km/min ),故①说法正确;①乙从学校追上甲所用的时间为:(3613.5)0.925-÷=(min ),①甲步行所用的时间为:202545+=(min ),故①说法正确;①由题意,得甲步行的速度为:(3613.518)450.1--÷=(km/min ),故①说法错误;综上,正确的是①①,故答案为:①①.【点睛】本题考查了一次函数的应用,速度与时间,追击问题,分析函数图象反应的数量关系是解题关键.21.2x >【分析】根据图象即可得出结论.【详解】解:由图象可知:在点P 的右侧,函数2y x b =+的图象在函数6y kx =-图象的上方①62kx x b -<+的解集是2x >故答案为:2x >.【点睛】此题考查的是一次函数与不等式,掌握利用图象解不等式是解题关键. 22.2x >【分析】直线y =-x +2上的点在x 轴下方时,应有-x +2<0,求解不等式即可.【详解】当直线2y x =-+上的点在x 轴下方,则y < 0,∴-x +2<0,解得:x >2,即当自变量x 的值满足x > 2时,直线2y x =-+上的点在x 轴下方,故答案为:2x >.【点睛】本题考查了一次函数与不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.23.23【详解】设直线的解析式为y =kx +b (k ≠0)①A (1,1),B (4,0)140k b k b +=⎧∴⎨+=⎩解得4313b k ⎧=⎪⎪⎨⎪=-⎪⎩①直线AB 的解析式为1433y x =-+ ①P (2,m )在直线上,1422333m ⎛⎫∴=-⨯+= ⎪⎝⎭. 24.6X <-【分析】观察函数图象得到即可.【详解】由图象可知函数y=kx+b 与x 轴的交点为(6,0),则函数y=-kx+b 与x 轴的交点为(-6,0),且y 随x 的增大而增大,①当x <-6时,-kx+b <0,所以关于x 的不等式-kx+b <0的解集是x <-6,故答案为:x <-6.【点睛】此题考查一次函数与一元一次不等式的关系,解题关键在于掌握从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.25.4【分析】①由直线y =−x +m 与y 轴交于负半轴,可得m <0;y =nx +4n (n ≠0)的图象从左往右逐渐上升,可得n >0,即可判断结论①正误;①将x =−4代入y =nx +4n ,求出y =0,即可判断结论①正误;①代入交点坐标整理即可判断结论①正误;①观察函数图象,可知当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,即nx +4n >−x +m ,即可判断结论①正误.【详解】解:①①直线y =−x +m 与y 轴交于负半轴,①m <0;①y =nx +4n (n ≠0)的图象从左往右逐渐上升,①n >0,故结论①正确;①将x =−4代入y =nx +4n ,得y =−4n +4n =0,①直线y =nx +4n 一定经过点(−4,0).故结论①正确;①①直线y =−x +m 与y =nx +4n (n ≠0)的交点的横坐标为−2,①当x =−2时,y =2+m =−2n +4n ,①m =2n −2.故结论①正确;①①当x >−2时,直线y =nx +4n 在直线y =−x +m 的上方,①当x >−2时,nx +4n >−x +m ,①()14n x m n +>-故结论①错误.故答案为:①①①.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象.解题的关键在于熟练掌握函数图象与性质.26.1x ≤【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2), ①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.27.(163,4) 【分析】由点D 坐标求出k =12,直线OB 的表达式为y =34x ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x,由平行四边形的面积公式列方程求出x 值即可解答.【详解】解:①反比例函数()0,0k y k x x =>>的图象经过点D (4,3), ①k =4×3=12,①反比例函数的表达式为12y x=, ①点D 在对角线OB 上, ①设直线OB 的表达式为y =mx ,①3=4m ,则m =34, ①直线OB 的表达式为y =34x , ①四边形ABCD 是平行四边形,①BC ①OA ,设B (x ,34x ),则C (16x ,34x ),BC =x ﹣16x, ①OABC 的面积是283, ①(x ﹣16x)·34x =283, 解得:x =163±, ①x >0,①x =163, ①点B 坐标为(163,4), 故答案为:(163,4).【点睛】本题考查待定系数法求函数解析式、反比例函数图象上点的坐标特征、平行四边形的性质、图形与坐标,一元二次方程的解法,熟练掌握反比例函数图象上点的坐标特征和平行四边形的性质是解答的关键.28.20212021(2,2)【分析】由11OA =得到点1B 的坐标,然后利用等腰直角三角形的性质得到点2A 的坐标,进而得到点2B 的坐标,然后再一次类推得到点2022B 的坐标.【详解】解:11,OA =∴点1A 的坐标为()1,0,11OA B 是等腰直角三角形,111,A B ∴=()11,1B ∴,112B A A 是等腰直角三角形,12121,A A B A ∴==212B B A 为等腰直角三角形,232A A ∴=,()22,2B ∴,同理可得,22331134(2,2),(2,2),,(2,2),n n n B B B --202120212022(2,2),B ∴故答案为:20212021(2,2).【点睛】本题考查了正比例函数图象上点的坐标特征、等腰直角三角形的性质,勾股定理的应用,解题的关键是通过等腰直角三角形的性质依次求出系列点B 的坐标找出规律. 29.(1)A 品牌书包单价为150元,B 品牌书包单价为200元(2)当1050m <<时,购买A 品牌书包更省钱;当50m =时,购买两种品牌书包花费相同;当50m >时,购买B 品牌书包更省钱【分析】(1)设A 品牌书包单价为x 元,B 品牌书包单价为y 元,根据所给等量关系列二元一次方程组,即可求解;(2)①根据优惠活动的规则列式即可;②分别计算12w w <,12w w =,12w w >得出m 的取值范围,即可得出结论.【详解】(1)解:设A 品牌书包单价为x 元,B 品牌书包单价为y 元,由题意知25502500x y x y +=⎧⎨+=⎩, 解得150200x y =⎧⎨=⎩, 即A 品牌书包单价为150元,B 品牌书包单价为200元;(2)解:①根据优惠活动的规则可知:10.8150120w m m =⨯⋅=,()210200102000.51001000w m m =⨯+-⨯⨯=+;②当12w w <时,1201001000m m <+,解得50m <, 又10m >,∴当1050m <<时,购买A 品牌书包更省钱;当12w w =时,1201001000m m =+,解得50m =,∴当50m =时,购买两种品牌书包花费相同;当12w w >时,1201001000m m >+,解得50m >,∴当50m >时,购买B 品牌书包更省钱.【点睛】本题考查二元一次方程组的应用,一次函数的应用,解一元一次不等式等知识点,解题的关键是理解题意,正确列出二次一次方程组及函数关系式.30.(1)y 甲=x +1500,y 乙=2.5x (2)选择乙印刷厂比较合算(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可; (3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,①y 甲>y 乙,①选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,①1500>1200,①选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.31.(1)6,12;(2)D 点坐标为(4,3);(3)>4x .【详解】试题分析:(1)将A (0,6)代入134y x m =-+即可求出m 的值,将B (−2,0)代入1y kx =+即可求出k 的值. (2)根据(1),得到两函数的解析式,组成方程组解求出D 的坐标;(3)由图可直接得出12y y <时自变量x 的取值范围.试题解析:(1)将A (0,6)代入134y x m =-+得,m =6; 将B (−2,0)代入1y kx =+得, 1.2k = (2) 联立12,l l 解析式,即364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:43x y =⎧⎨=⎩, 故D 点坐标为(4,3);(3)由图可知,在D 点右侧时,即4x >时,12y y <. 32.(1)()0,2A ',()3,1B ';(2)123y x =-+. 【分析】(1)根据坐标系中点平移坐标变化规律即可解答.(2)根据(1)点A ,B 经过1个跳步后的对应点A ',B '的坐标在直线AB 经过一个跳步后直线上.利用待定系数法即可求解【详解】解:(1)点()1,4A -经过1个跳步后对应点()0,2A ',点()2,3B 经过1个跳步后对应点()3,1B '.(2)设直线AB 经过一个跳步后对应直线A B ''的函数表达式为y kx b =+,由题意得:2132b k =⎧⎨=+⎩, ①13k =-,2b =. ①直线AB 经过一个跳步后对应直线A B ''的函数表达式为123y x =-+. 【点睛】本题考查了坐标与图形变化-平移和待定系数法求一次函数解析式,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键. 33.(1)12米;(2)s 乙=132t +12. (3)t<8秒;t=8;t>8秒. 【分析】(1)由图象可知,x =0时,y=12,即出发时乙在甲前面12米处.(2)因为甲的图象过点(0,0),(8,64),乙的图象过点(0,12),(8,64),利用待定系数法即可求解.(3)由图象可知它们的交点为(8,64),即8秒时两人相遇,再分别分析x <8和x >8时,两直线的位置即可求出答案.【详解】解:(1)出发时乙在甲的前面12米处.(2)学生甲所走的路程的图象是OA,设s 甲=k1t,当t =8时,s =64,①k1=8,①s甲=8t .学生乙所走路程的图象是BA ,设s甲=k2t+b,将点A (8,64)及点B(0,12)代入,可得2132k =,b =12, ①s甲=132t+12. (3)由图可知OA,BA 的交点A 的坐标是(8,64),则当t <8秒时,甲走在乙的后面;当t =8秒时,他们相遇;当t >8秒时,甲走在乙的前面.【点睛】本题主要考察函数图象信息分析,解决本题的关键是要熟练掌握分析函数图象的。

一次函数练习及答案

一次函数练习及答案

一次函数练习及答案一.选择题1.对于函数y=2x+1,下列结论正确的是()A.它的图象必经过点(0,1)B.它的图象经过第一、三、四象限C.当x>时,y<0D.y的值随x值的增大而减小2.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知:实数x满足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,对于每一个x,p都取y1,y2中的较大值.若p的最小值是a2﹣1,则a的值是()A.0或﹣3 B.2或﹣1 C.1或2 D.2或﹣34.一次函数y=kx+b的图象如图,那么下列说法正确的是()A.x>0时,y>0 B.x<0时,y>0 C.x>2时,y>0 D.x<2时,y>0 5.如图中的直线l1:y=k1x+b1,l2:y=k2x+b2,l3:y=k3x+b3,则()A.k1<k3<k2B.k3<k1<k2C.k3<k2<k1D.k1<k2<k3 6.设min{a,b}表示a,b这两个数中的较小的一个,如min{﹣1,1}=﹣1,min{3,2}=2,则关于x的一次函数y=min{x,3x﹣4}可以表示为()A.y=x B.y=3x﹣4C.y=D.y=7.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4 B.﹣6 C.14 D.68.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1 B.2 C.3 D.49.设一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且y的值随x的值增大而增大,则该一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=﹣mx+10﹣m经过一、二、四象限,且关于x的分式方程的解为整数,则所有符合条件的m值是()A.1,2,5,7 B.1,5,7,8 C.1,2,7 D.1,2,7,8 11.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线,则一次函数y=(a+b)x+ac的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.已知:a,b,c满足关系式a=bc,下列说法:①如果a表示路程,b表示速度,c 表示时间,当速度b一定时,a随着c的增大而增大;②a、b、c一定满足b=;③a (a≠0)一定时,b和c成反比例关系;④当a=0时,则b=0,c=0.其中不正确的是()A.①B.②④C.③D.①③二.填空题13.若a、b、c是△ABC的三条边,且=k,则一次函数y=kx﹣1的图象不经过第象限.14.已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第象限.15.如图,直线y=﹣x+1与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点,且△ABP 的面积与△ABC的面积相等,则a的值为.16.如图所示,长方形OABC的顶点A在x轴上,C在y轴上,点B坐标为(4,2),若直线y=mx﹣1恰好将长方形分成面积相等的两部分,则m的值为.17.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y=2x+4,点P是y轴上一动点,当△PBD的周长最小时,线段OP的长为.三.解答题18.请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)结合所画函数图象,求方程|x|﹣2x﹣1=0的解.19.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=﹣4x+3的组合函数为;若一次函数y=ax﹣2,y =﹣x+b的组合函数为y=3x+2,则a=,b=.(2)已知一次函数y=﹣x+b与y=kx﹣3的组合函数的图象经过第一、二、四象限,求常数k、b满足的条件;(3)已知一次函数y=﹣2x+m与y=3mx﹣6,则不论何值,它们的组合函数一定经过的定点坐标是.20.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.参考答案一.选择题1.解:∵函数y=2x+1,∴当x=0时,y=1,故选项A正确;它的图象经过第一、二、三象限,故选项B错误;当x=时,y=1,故当x>时,y>1,故选项C错误;该函数y随x的增大而增大,故选项D错误;故选:A.2.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.3.解:解方程x+a=﹣2x+a+3,解得x=1,当x=1时,y1=a+1,所以直线y1=x+a,y2=﹣2x+a+3的交点坐标为(1,a+1),所以对任意一个x,若p都取y1,y2中的最大值,则p的最小值是a+1.所以a2﹣1=a+1所以(a﹣2)(a+1)=0.所以a=2或a=﹣1.故选:B.4.解:A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选:D.5.解:由题意得:k1为负数,k2>k3,∴k1,k2,k3的大小关系是k1<k3<k2.故选:A.6.解:根据已知,在没有给出x的取值范围时,不能确定2x和x+3的大小.当x<3x﹣4时,即x>2时,可表示为y=x.当x≥3x﹣4时,即x≤2时,可表示为y=3x﹣4.故选:D.7.解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.8.解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.9.解:因为一次函数y=kx+b的图象经过点(1,﹣3),且y的值随x值的增大而增大,所以k>0,b<0,即函数图象经过第一,三,四象限,故选:B.10.解:一次函数y=﹣mx+10﹣m经过一、二、四象限,则﹣m<0,10﹣m>0,解得:0<m<10,将分式方程两边同乘以x﹣8得:mx=8x﹣3(x﹣8),解得:x=,∵x≠8,故m≠8,当x=1,2,7时,0<m<10,故选:C.11.解:∵抛物线的开口向上,∴a>0;∵与y轴的交点为在y轴的负半轴上,∴c<0;∵对称轴为x=<0,∴b>0;所以函数y=(a+b)x+ac的图象必不经过第二象限.故选:B.12.解:∵a,b,c满足关系式a=bc,则①如果a表示路程,b表示速度,c表示时间,当速度b一定时,时间越长走的距离越远,因此正确;②当C≠0时,a、b、c一定满足b=,不正确;③因为a=bc,所以,a(a≠0)一定时,b和c成反比例关系,正确;④当a=0时,则a和c至少有一个为0,不正确.故选:B.二.填空题(共5小题)13.解:∵a、b、c是△ABC的三条边,∴b+c>a,c+a>b,a+b>c,∴=k>1,一次函数y=kx﹣1的图象经过一、三、四象限,∴一次函数y=kx﹣1的图象不经过第二象限;故答案为:二14.解:函数经过第一、二、四象限,则m﹣3<0,m+2>0,解得:﹣2<m<3,∴m+2>0,﹣m+3>0,∴关于x的一次函数y=(m+2)x﹣m+3经过第一,二、三象限;故答案为:一,二、三15.解:连接PO,由已知易得A(,0),B(0,1),OA=,OB=1,AB=2,∵等腰Rt△ABC中,∠BAC=90°,∴S△ABP=S△ABC=2,S△AOP=,S△BOP=﹣,S△ABP=S△BOP+S△AOB﹣S△AOP=2,即﹣=2,解得a=.故答案为:.16.解:∵直线y=mx﹣1恰好将长方形分成面积相等的两部分,∴直线y=mx﹣1经过长方形的对角线交点(2,1).把点(2,1)代入可得y=mx﹣1,得2m﹣1=1,解得m=1.故答案为:1.17.解:作点D关于y轴的对称点D′,连接BD′交y轴于点P,则点P即为所求,直线AC的解析式为y=2x+4,当x=0时,y=4,当y=0时,x=﹣2,∴点A的坐标为(﹣2,0),点C的坐标为(0,4),∴点D的坐标为(﹣1,2),点B的坐标为(﹣2,4),∴点D′的坐标为(1,2),设过点B和点D′的直线解析式为y=kx+b,,解得,,∴过点B和点D′的直线解析式为y=,当x=0时,y=,即点P的坐标为(0,),∴OP=,故答案为:.三.解答题(共3小题)18.解:(1)①填表;x…﹣3 ﹣2 ﹣1 0 1 2 3 …y… 3 2 1 0 1 2 3 …故答案为:3,2,1,0,1,2,3;②画函数图象如图:(2)①增减性:x<0时,y随x的增大而减小x>0时,y随x的增大而增大②对称性:图象关于y轴对称③函数的最小值为0;(3)由图象可得:方程|x|﹣2x﹣1=0的解为x=﹣;19.解:(1)一次函数y=3x+2与y=﹣4x+3的组合函数为y=(3﹣4)x+2×3,即y=﹣x+6;∵一次函数y=ax﹣2,y=﹣x+b的组合函数为y=(a﹣1)x﹣2b,∴a﹣1=3,﹣2b=2,∴a=4,b=﹣1;(2)∵一次函数y=﹣x+b与y=kx﹣3的组合函数为y=(﹣1+k)x﹣3b,又图象经过第一、二、四象限,∴﹣1+k<0,﹣3b>0,∴k<1,b<0;(3)∵一次函数y=﹣2x+m与y=3mx﹣6的组合函数为y=(﹣2+3m)x﹣6m,即y=m(3x﹣6)﹣2x,∴当x=2时,y=﹣4,∴此函数的图象一定过定点(2,﹣4).故答案为:(1)y=﹣x+6;4,﹣1;(3)(2,﹣4).20.解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.。

一次函数测试题及答案

一次函数测试题及答案

一次函数测试题及答案一、选择题1. 下列函数中,属于一次函数的是()A. f(x) = 2x^2 + 3x - 4B. f(x) = 4x - 1C. f(x) = √x + 2D. f(x) = 3/x答案:B2. 若一次函数y = kx + b在点P(-1, 3)上的函数值为3,则k和b的值分别为()A. k = 3, b = 1B. k = -3, b = 1C. k = 1, b = 3D. k = -1, b = 3答案:C3. 由点(-3, 2)和(1, 4)所确定的直线方程为()A. y = 2x + 4B. y = 0.5x + 2.5C. y = -0.5x + 4D. y = -2x + 4答案:A二、填空题1. 一次函数y = 2x + 1的x和y的交点为()答案:(-0.5, 0)2. 若一次函数y = kx + 3在点(2, 5)上的函数值为5,则k的值为()答案:13. 若直线y = 3x + b过点(-1, 1),则b的值为()答案:4三、解答题1. 已知一次函数y = 2x - 3和y = kx + 1,若两个方程有且只有一个解,则k的取值范围是多少?解答:两个方程有且只有一个解,即方程组无穷多解。

当且仅当两条直线重合时,才会满足要求。

由于y = 2x - 3和y = kx + 1均为一次函数,只有斜率相等、截距相等时,两条直线才会重合。

因此,k的取值范围为2。

2. 一根电线经过两个塔,从第一个塔底部拉出时与水平面夹角为30度,从第二个塔底部拉出时与水平面夹角为60度,两个塔之间的距离为10米。

假设电线处于水平状态,求电线的长度。

解答:设第一个塔底部坐标为A(0,0),第二个塔底部坐标为B(10,0)。

设电线的长度为L,线与水平面的夹角为α。

根据三角函数的定义,可以得出以下关系:tan30° = L / 10 => L = 10 * tan30° => L ≈ 5.77米3. 一辆汽车从A地到B地开了2小时,途中平均速度为60千米/小时。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

一次函数基础测试题及答案解析

一次函数基础测试题及答案解析

一次函数基础测试题及答案解析一、选择题1.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.2.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.7【答案】C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得m=12×3+1=52. 故选C. 【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C 【解析】 【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置. 【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b >0时图象在一、二、四象限.5.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D 【解析】 【分析】根据一次函数的性质即可得答案. 【详解】∵一次函数1y x =--中10k =-<, ∴y 随x 的增大而减小, ∵123y y y <<, ∴123x x x >>. 故选:D . 【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( )A .B .C .D .【答案】B 【解析】 【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能. 【详解】 根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.7.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C 【解析】 【分析】分k>0和k<0两种情况确定正确的选项即可. 【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误, 故选:C. 【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定【答案】C 【解析】 【分析】求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.【详解】解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b=+的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y kx b=+在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.9.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-12,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.10.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()(cm )A .y=0.5x+12B .y=x+10.5C .y=0.5x+10D .y=x+12【答案】A 【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y (cm )与所挂重物x (㎏)之间的函数关系式为y=0.5x+12. 故选A .点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.13.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A 【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.14.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .【答案】A 【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.15.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案. 【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x +b ,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x +2.显然当y=7.5时,x =275,故选B. 【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.16.对于一次函数24y x =-+,下列结论正确的是( ) A .函数值随自变量的增大而增大 B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4 【答案】C 【解析】 【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解. 【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确; B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确. 故选:C . 【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.下列函数:①y x =;②4zy =;③4y x=,④21y x =+其中一次函数的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据一次函数的定义条件进行逐一分析即可.【详解】①y=x 是一次函数,故①符合题意; ②4z y =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个, 故选:C .【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:3y x =-将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+ C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。

一次函数综合测试题及答案

一次函数综合测试题及答案

八年级一次函数测试题【1 】一.填空 (10×3´=30´)1.已知一个正比例函数的图象经由点(2,4),则这个正比例函数的表达式是.2.若函数y= 2xm+2是正比例函数,则m的值是.3.已知一次函数y=kx+5的图象经由点(1,2),则k= .4.已知y与x成正比例,且当x=1时,y=2,则当x=3时,y=____.5.点P(a,b)在第二象限,则直线y=ax+b不经由第象限.6.已知一次函数y=kxk+4的图象与y轴的交点坐标是(0,2),那么这个一次函数的表达式是______________.7.已知点A(1,a), B(2,b)在函数y=3x+4的象上,则a与b的大小关系是____.8.地面气温是20℃,假如每升高1000m,气温降低6℃,则气温t(℃)与高度h(m)的函数关系式是__________.9.一次函数y=kx+b与y=2x+1平行,且经由点(3,4),则表达式为: .10.写出同时具备下列两个前提的一次函数表达式(写出一个即可) .(1)y跟着x的增大而减小, (2)图象经由点(1,3).二.选择题 (10×3´=30´)11.下列函数(1)y=πx (2)y=2x1 (3)y=1x (4)y=213x中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个12.下面哪个点不在函数的图像上()(A)(5,13)(B)(0.5,2)(C)(3,0)(D)(1,1)13.直线y=kx+b在坐标系中的地位如图,则( ) (第13题图)(A)(B)(C)(D)14.下列一次函数中,跟着增大而减小而的是()(A)(B)(C)(D)15.已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0O x y12(第15题图)16.函数y=(m+1)x(4m3)的图象在第一.二.四象限,那么m的取值规模是( )(A)(B)(C)(D)17.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时光t (时)的函数关系的图象是( )(A) (B) (C)(D)18.下图中暗示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).19.一次函数y=ax+1与y=bx2的图象交于x轴上一点,那么a:b等于A. B. C.(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积.24.某市自来水公司为限制单位用水,每月只给某单位筹划内用水3000吨,筹划内用水每吨收费1.8元,超筹划部分每吨按2.0元收费.(1)写出该单位水脚y(元)与每月用水量x(吨)之间的函数关系式①当用水量小于等于3000吨函数关系式为:;②当用水量大于3000吨函数关系式为:.(2)某月该单位用水3200吨,水脚是元;若用水2800吨,水脚元.(3)若某月该单位缴纳水脚9400元,则该单位用水若干吨?25.已知函数y=(2m10)x+m 3(1)若函数图象经由原点,求m的值(2)若这个函数是一次函数,且图像经由一.二.四象限,求m的整数值.26.如图是某市出租车单程收费y (元)与行驶旅程x (千米)之间的函数关系图象,依据图象答复下列问题:(1)当行使旅程为8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①②(3)求出收费y (元)与行使旅程x (千米) (x≥3)之间的函数关系式.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时动身,匀速行驶.设行驶的时光为x(时),两车之间的距离为y(千米),图中的折线暗示从两车动身至快车到达乙地进程中y与x之间的函数关系.(1)依据图中信息,求线段AB地点直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时光为t时,求t的值;(3)若快车到达乙地后连忙返回甲地,慢车到达甲地后停滞行驶,请你在图中画出快车从乙地返回到甲地进程中y关于x的函数的大致图像答案1.y=2x2.13.34.65.三6.y=6x27.a>b 8.t=0.006h+20 9.y=2x+1010.y=3x或y=2x1等.二.选择题11.B 12.C 13.B 14.D 15.D 16.C 17.D 18.C 19.A 20.B三.盘算题21(1)y=4x,y=2x+6,(2)略22(1)y=8x+2 (2)a=0 23(1)a=1 (2)k=2,b=3 (3)3/424(1)①y=1.8x ②y=2x600(2)5800,5040(3)500025(1)m=3 (2)m=426(1) 11 (2) ①出租车的起步价是5元②出租车起步价的旅程规模是3公里之内(包含3公里)(3)y=1.2x+1.4(x≥3)27(1) 8,32 (2)57 (3) y=x+57(x≥25) (4) 30。

一次函数测试题及答案

一次函数测试题及答案

一次函数 测试题(一)一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A)1,1 2k b=-=-(B)1,1 2k b=-=(C)1,1 2k b==-(D)1,1 2k b== 14、下列一次函数中,随着增大而减小而的是()(A)xy3=(B)23-=xy(C)xy23+=(D)23--=xy15、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A)34m<(B)314m-<<(C)1m<-(D)1m>-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C)(D)18、下图中表示一次函数y=mx+n与正比例函数y=m nx(m ,n是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值21、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= 12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

一次函数基础测试题含答案

一次函数基础测试题含答案

一次函数基础测试题含答案一、选择题1.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12 B.y=x+10.5 C.y=0.5x+10 D.y=x+12【答案】A【解析】分析:由上表可知12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.详解:由表可知:常量为0.5;所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.故选A.点睛:本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.2.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小3.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A .逐渐变大B .不变C .逐渐变小D .先变小后变大【答案】B【解析】【分析】 根据一次函数图象上点的坐标特征可设出点C 的坐标为(m ,-m+4)(0<m<4),根据矩形的周长公式即可得出C 矩形CDOE =8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.4.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.5.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A.2 B.8 C.﹣2 D.﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.=-+的图象大致是( )6.已知点(k,b)为第二象限内的点,则一次函数y kx bA.B.C.D.【答案】D【解析】【分析】根据已知条件“点(k,b)为第二象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=-kx+b的图象所经过的象限.【详解】解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴-k>0.∴一次函数y=-kx+b的图象经过第一、二、三象限,观察选项,D选项符合题意.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b <0时,直线与y轴负半轴相交.7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<4【答案】A【解析】【分析】求不等式kx+b >4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2, ∴不等式kx+b >4的解集是x>-2,故选A .【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .32C .52D .7【答案】C【解析】【分析】 把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.10.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( )A .﹣12B .﹣2C .﹣1D .1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可.【详解】解:∵正比例函数y =kx 的图象经过第二、四象限,∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ),∴2km 12k m =⎧⎨=⎩, 解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去). 故选:A .【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.11.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.12.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.超市有A,B两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A型瓶3个或以上,一次性返还现金5元,设购买A型瓶x(个),所需总费用为y(元),则下列说法不一定成立的是()A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 【答案】C【解析】【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个, ∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数,∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B 成立;设购买A 型瓶x 个,所需总费用为y 元,则购买B 型瓶的个数是(253x -)个, ④当0≤x<3时,y=5x+6×(253x -)=x+30, ∴k=1>0,∴y 随x 的增大而增大,∴当x=0时,y 有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x -)-5=x+25, ∵.k=1>0随x 的增大而增大,∴当x=3时,y 有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C 不成立,D 成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.14.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.15.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )A .50cmB .20cmC .16cmD .12cm【答案】C【解析】【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.【详解】解:设直线AC 的解析式为()0y kx b k =+≠∵()0,6A ,()30,12B∴61230b k b =⎧⎨=+⎩∴156k b ⎧=⎪⎨⎪=⎩ ∴165y x =+ ∴当50x =时,16y =∴该植物最高的高度是16cm .故选:C【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( ) A . B . C . D .【答案】B【解析】【分析】过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3;当y=0,x=4, ∴A (4,0),B (0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.18.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.19.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.20.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限【答案】A【解析】【分析】先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.【详解】∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。

答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。

答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。

解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。

7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。

解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。

解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。

四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。

一次函数单元测试题及答案

一次函数单元测试题及答案

一次函数测试题(含答案)一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=2x -B .y=12x - C .y=24x - D .y=2x +·2x - 2.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+13.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-38.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 17.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k的值为_____.18.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共36分) 19.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?20.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?x y1234-2-1C A-14321O21.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?22、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y=12x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。

一次函数练习题与答案

一次函数练习题与答案

一次函数练习题与答案一、选择题1. 一次函数y=kx+b的斜率k表示的是:A. 函数的截距B. 函数的斜率C. 函数的对称轴D. 函数的顶点2. 已知一次函数y=3x-5,当x=2时,y的值是:A. 1B. -1C. 7D. -73. 一次函数y=kx+b的图象过点(-1,6),且与y轴交于点(0,-2),则k 的值为:A. 4B. -4C. 8D. -84. 直线y=-2x+b与两坐标轴围成的三角形面积为1,且直线与y轴的交点在x轴上方,则b的值为:A. 1B. 2C. 3D. 45. 一次函数y=kx+b的图象不经过第三象限,那么:A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<0二、填空题6. 一次函数y=2x-3与x轴的交点坐标是_________。

7. 一次函数y=-4x+5的图象与x轴相交于点_________。

8. 若一次函数y=kx+b的图象过点(1,0)和(0,-1),则k=_______,b=_______。

9. 一次函数y=-x+3与直线y=2x-1的交点坐标是_________。

10. 一次函数y=-3x+4的图象与y轴的交点坐标是_________。

三、解答题11. 已知一次函数y=kx+b的图象经过点(-1,10)和(2,5),求k和b的值。

12. 直线y=kx+b经过原点,且与x轴相交于点(3,0),求k和b的值。

13. 一次函数y=kx+b的图象与x轴相交于点(a,0),与y轴相交于点(0,b),求k和b的值。

14. 已知一次函数y=kx+b的图象经过点(-2,15)和(1,-6),求k和b的值。

15. 一次函数y=kx+b的图象与两坐标轴围成的三角形面积为4,且直线与x轴的交点在y轴右侧,求k和b的值。

答案:1. B2. A3. B4. B5. D6. (3/2, 0)7. (5/4, 0)8. k=-1,b=19. (1, 2)10. (0, 4)11. k=-5,b=1512. k=-1/3,b=013. k=-a/b,b为y轴交点的y坐标14. k=-11,b=1715. k=4/3,b=-4【注】本练习题旨在帮助学生掌握一次函数的基本性质和求解方法,通过不同类型的题目,加强学生对一次函数图象和性质的理解与应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数测试题1. 函数y=1xx -中,自变量x 的取值范围是( ) A .x ≥0 B .x>1 C .x>0且x ≠1 D .x ≥0且x ≠1 2. 已知正比例函数y=-2x ,当x=-1时,函数y 的值是( ) A .2 B .-2 C .-0.5 D .0.5 3. 一次函数y=-2x-3的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行, 另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步 行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是( ) A .骑车的同学比步行的同学晚出发30分钟 B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时。

5. 已知一次函数y=(m+2)x+(1-m ),若y 随x 的增大而减小,且此函数图像与y 轴的交点在x 轴上方,则m 的取值范围是( )A .m>-2B .m<1C .<-2D .-2<m<16. (2007福建福州)已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( )A .1a >B .1a <C .0a >D .0a <7. (2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <8. (2007陕西)如图,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--9. (2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。

CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2) 10. 已知两点M (3,5),N (1,-1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 的坐标点是( ) A .(0,-4) B .(23,0) C .(43,0) D .(32,0)Oxy A B1- y x =-2Ox y二、填空题 11. 若点A (2,,-4)在正比例函数y=kx 的图像上,则k=_____ 。

12. 某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________ 。

13. 在平面直角坐标系中,把直线y=2x 向下平移3个单位,所得直线的解析式_ 。

14. (2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。

15. (2007广西南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降, 即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 . 16. (2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .17. (2007上海)如图7,正比例函数图象经过点A ,该函数解析式是 .18. 若函数y=(m+3)x 2m+1+4x-5是关于x 的一次函数,则m 的值为__________。

三、解答题19. 已知直线L 与直线y=2x+1交点的横坐标为1,与直线y=-x-8的交点的纵坐标为-4,求直线L 的解析式。

20. 已知直线y=kx+b 经过点A (0,6),且平行于直线y=-2x 。

(1) 求该函数的解析式,并画出它的图像; (2) 如果这条直线经过点P (m ,2),求m 的值; (3) 若O 为坐标原点,求直线OP 的解析式;(4) 求直线y=kx+b 和直线OP 与坐标轴所围成的图形的面积。

(第16题图)图7xy AO1321. 某广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户缴纳上网费的方式有:方式一:每月80元包月;方式二:每月上网费y (元)与上网时间x (小时)的函数关系用如图所示的折线表示;方式三:以0小时为起点,每小时收费1.6元,月收费不超过120元。

若设一用户每月上网x 小时,月上网费为y 元。

(1) 根据图像,写出方式二中y (元)与x (小时)的函数关系式;(2) 试写出方式三中y (元)与x (小时)的函数关系式; (3) 若此用户每月上网60小时,选用哪种方式上网其费用最少?最少费用是多少?22. (2007浙江温州)为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B 公司每月1600元基本工资,另加销售额的4%作为奖金。

已知A 、B 公司两位销售员小李、小张1~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李1~6月份的销售额1y 与月份x 的函数关系式是1120010400,y x =+小张1~6月份的销售额2y 也是月份x 的一次函数,请求出2y 与x 的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资。

时)23. 某医药研究生开发了一种新药,在实验药效时发现,如果成人按规剂量服用,那么服用药后2h 时血液中含药量最高,达每毫升6ug ,接着逐步衰减,10h 时血液中含药量每毫升3ug ,每毫升血液中含药量y (ug )随时间x (h )的变化如图所示,当成人按规定剂量服药后。

(1) 分别求出x ≤2和x>2时,y 与x 之间的函数关系式; (2) 如果每毫升血液含药量为4ug 或4ug至少吃几次药疗效最好?24. 如图,直线L 1过A (0,2),B (2,0)两点,直线L 2:y=mx+b 过点C (1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S ,求S 关于m 的函数解析式,及自变量m 的取值范围。

h)1-10 DAABC ABBCC11.-2, 12.y=x+3 13.y=2x-3 14.y=-2x 15.y=3x 16.x<2 17.y=3x 18.0,-3,-0.5 19解:与y=2x+1交点坐标为(1,3),与y=-x-8的交点坐标为(-4,-4) 设L 解析式为y=kx+b ,则有3=k+b ,-4=-4k+b ,解得k=75,b=85, 20解:(1)∵y=kx+b 与直线y=-2x 平行,∴k=-2,将A (0,6)代入y=-2x+b ,解得b=6∴该函数解析式为y=-2x+6,图像如图所示。

(2)将(m ,2)代入解析式,则有2=-2m+6,解得m=2.(3)设此解析式为y=kx ,将P 点代入,2=2k ,解得k=1,即此解析式为y=x (3)设直线y=-2x+6与x 轴交点为B ,与y 轴交点为A,则A (0,6)B (3,0)。

过P 点分别做与x 轴和y 轴的垂线,分别交x 轴y 轴于点E 、F 则OA=6,OB=3,EP=2,FP=2∴两直线与x 轴围成的图形为△OPB ,面积为:12OB ·PE=12×3×2=3 两直线与y 轴围成的图形为△OPA ,面积为:12OA ·PF=12×6×2=621解:(1)设此函数解析式为:y=kx+b 。

由图像可知0≤x ≤50时,y=58 x ≥50时,图像过点(50,58)(100,118),代入y=kx+b 58=50k+b ,118=100k+b ,解得k=65,b=-2,即此时解析式为y=65x-2. 方式二中y (元)与x (小时)的函数关系式为:58(050)62(50)5y x y x x =≤≤⎧⎪⎨=-≥⎪⎩。

(2)设函数解析式为y=kx ,则图像过点(1,1.6),故y=1.6x (x ≥0). (3)方案一:80元。

方案二:y=65×60-2=70(元).方案三:y=1.6×60=96(元) ∴选方案二最好。

22解:(1)小李3月份工资=2000+2%×14000=2280(元)小张3月份工资=1600+4%×11000=2040(元)(2)设2y kx b =+,取表中的两对数(1,7400),(2,9200)代入解析式,得274001800560092002,k b k y x k b b =+⎧⎧=+⎨⎨=+⎩⎩=1800 解得 即=5600(3)小李的工资120002%(120010400)242208w x x =++=+小李的工资216004%(18005600)721824w x x =++=+ 当小李的工资211824242208w w x x >+>+时,即72,解得,x>8答:从9月份起,小张的工资高于小李的工资。

23解:(1)设x ≤2和x>2时,y 与x 之间的函数关系式分别为y=k 1x ,y=k 2x+b将点(2,6)代入y=k1x,解得k1=3将点(2,6)(10,3)代入y=k2x+b,则6=2k2+b,3=10k2+b解得k2=-38,b=274。

即x≤2时解析式为y=3x(0≤x≤2)。

x>2时,解析式为y=-38x+274(x>2)。

(2)将y=4,分别代入上述两个解析式,4=3x,解得x=43,4=-38x+274,解得x=223。

故有效时间为223-43=6(小时),每天至少吃24÷6=4(次)24解:将点C(1,0)代入直线L2:y=mx+b,得0=m+b,b=-m 即L2:y=mx-m,与y轴交点为D(0,-m)S=12O C·OD=12×(-m)×1=-12m。

当L2与y轴交点超过A时,围成面积不是三角形,当过点A时,-m=2,m=-2,故m≥-2。

当为y轴负半轴时,不在△AOB内,故m<0.即-2≤m<0.。

相关文档
最新文档