毛细管电泳技术及应用 (2)-69页PPT资料
《毛细管电泳原理》课件
将样品溶液注入毛细管一端,施加电 场后,带电粒子在电场作用下开始电 泳迁移,经过一定时间后,到达毛细 管的另一端,经过检测器检测。
毛细管电泳的应用
环境监测
用于检测水体、土壤等环境样 品中的污染物,如重金属离子
、有机物等。
生物分析
用于蛋白质、DNA、RNA等生 物分子的分离和检测,可应用 于生物医学研究、临床诊断等 领域。
标准化处理
将数据转换为统一标准,便 于比较和分析。
统计分析
运用统计学方法对实验数据 进行处理,提取有意义的信 息。
结果分析与解读
趋势分析
分析实验数据的变化趋势,揭示潜在规律。
差异分析
比较不同样本或条件下的数据差异,找出关键影响因 素。
相关性分析
探究实验数据之间的关联性,揭示变量之间的相互作 用。
误差来源与控制
06
毛细管电泳的未来发展 与展望
技术创新与改进
高效分离技术的研发
01
通过改进分离介质、优化分离条件等手段,提高毛细管电泳的
分离效率。
检测技术的升级
02
研究新型检测方法,提高检测灵敏度和特异性,满足更多样品
的检测需求。
微型化与集成化
03
将毛细管电泳技术集成到微流控芯片中,实现微型化、便携式
分析。
应用领域的拓展
毛细管清洗
实验结束后,对毛细管进行必要的清洗,以 便下次使用。
数据整理与保存
将实验数据整理并保存,以便后续分析。
仪器清洁与保养
对仪器进行必要的清洁与保养,延长其使用 寿命。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
毛细管电泳分析解析PPT课件
第24页/共61页
(3)毛细管的改性: 通常在毛细管内壁涂一层亲水性非离子型聚合物(如:聚 丙烯酰胺、甲基纤维素等),这些涂层提高了对生物大分 子分离的效率。涂层的方法有两种。 物理涂层:将涂料经适当处理在毛细管内侧形成一层薄膜 化学涂层:是将涂料通过化学键偶联在毛细管的内侧。
第30页/共61页
图表面活性对分离的影响示意图 A: 未加表面活性的分离效果, B:加入表面活性的分离效果
第31页/共61页
5 进样方式 由于毛细管的内径非常细,其进样方式与常规电泳和层析 的进样方式有所不同。毛细管电泳的进样方式主要有两类 ,一类是电迁移进样,另一类是流体力学进样。
第32页/共61页
E = V/Lt V: 电压 Lt: 毛细管两端的总长度
第5页/共61页
(3)电泳淌度(Electric Field Mobility,简称ep ) 带电粒子在毛细管中,作定向运动的电泳速度与所在电 场强度之比。电泳淌度的单位用cm2/V.sec表示。
Ld/tm ep = Vep /E = ───
第25页/共61页
3.3检测器: 毛细管电泳配置的检测器与高效液相层析使用的检测器大 致相同,都属于超微量分析,对检测器的灵敏度要求比较 高,常用的检测器 . 紫外检测器 灵敏度可达到10-17g 激光诱发荧光检测器,灵敏度可达到10-19g 质谱检测器,灵敏度可达到10-21g 核磁共振检测器,灵敏度可达到10-21g
第13页/共61页
(8)热效应 (Joule Heating) 在高电场下毛细管中的电解质和电流发生剧烈的摩擦, 产生大量的热,这种自热现象,称之为热效应。
第14页/共61页
毛细管电泳技术及应用
毛细管电泳技术能够高效分离蛋白质 ,包括白蛋白、球蛋白、酶等,为生 物制药、蛋白质组学等领域提供有力 支持。
DNA和RNA分析
毛细管电泳可用于分析DNA和RNA片 段,在基因诊断、基因工程和生物信 息学等领域有广泛应用。
药物分析
药物成分分离
毛细管电泳能够分离和检测药物中的有效成分和杂质,有助于药物质量控制和研发。
仪器设备与操作
仪器设备
包括高压电源、进样系统、毛细管、检测器和数据采集系统等部分。
操作步骤
首先将样品注入毛细管一端,然后施加电压使带电粒子在电场中移动,同时通 过检测器对分离出的粒子进行检测,最后通过数据采集系统记录数据并进行分 析。
02
毛细管电泳的分离模式
区带电泳
总结词
区带电泳是毛细管电泳中最简单的一种形式,其原理是将样 品加在毛细管的一端,然后施加电压,使样品在电场的作用 下进行分离。
详细描述
在区带电泳中,样品在毛细管中形成一色带,由于不同组分 在电场中的迁移率不同,因此会以不同的速度向另一端移动 ,从而实现分离。这种分离模式适用于简单样品,如氨基酸 、肽和蛋白质等。
胶束电动色谱
总结词
胶束电动色谱是在毛细管电泳中加入一种称为表面活性剂的物质,使溶液的离子 强度和粘度发生变化,从而影响离子的迁移率。
要点二
血液中成分分析
通过毛细管电泳技术,可以分析血液中的离子、小分子和 蛋白质等成分,为临床诊断和治疗提供依据。
04
毛细管电泳技术的优缺点
优点
高分离效率
毛细管电泳技术利用电场对带电粒子的作用力,使其在毛 细管中分离,具有极高的分离效率,特别适合于复杂样品 的分离。
高灵敏度
毛细管电泳技术结合了多种检测手段,如紫外-可见光谱 、荧光光谱等,可以实现高灵敏度的检测,有利于痕量物 质的检测。
《毛细管电泳法》PPT课件
;
毛细管凝胶电泳综合了电泳技术和平板 凝胶电泳的优点 :
电泳峰锋利,柱效极高 短柱上实现极好的分别 试样容量为10-12g
主要缺陷:制备柱较困难,寿命较短 已成为分别分析生物大分子如蛋白质、 多肽、核 酸、DNA等强有力的工具。 例运用CGE分别与激光诱导荧光检测相 结合,用于DNA序列快速分析。
;
5 毛细管等电聚焦 CIEF
1、毛细管内充有两性电解质〔合成的具有不同等电点 范围的脂肪族多胺基多羧酸混合物〕,当施加直流电压 〔6~8V〕时,管内将建立一个由阳极到阴极逐渐升高 的pH梯度;
2、氨基酸、蛋白质、多肽等的所带电荷与溶液pH有 关,在酸性溶液中带正电荷,反之带负电荷。在其等电 点时,呈电中性,淌度为零;
vT=vA=vB=vC=vL 或:
TET= AEA= BEB= CEC= LEL
式中, ,有效淌度, E,电场强度
由于
T〉 A〉 B〉 C〉 L,
所以有: E T < E A < E B < E C < E L
各区带的电场强度不同。前导电解质区带的电场强度最 小。
;
假设某一区带的离子进入前一区带, 由 于电场强度变小而减速,由假设进入到 下区带,由于电场强度变大而加速, 都 退回到原区带, 结果导致各区带构成鲜 明的界面.
毛细管电泳法
Capillary Electrophoresis, CE
;
毛细管电泳是带电粒子在电场力的 驱动下,在毛细管中按其淌度或分配系 数不同进展高效、快速分别的电泳新技 术,也称为高效毛细管电泳。
一、毛细管电泳的原理 二、分别方式
毛细管电泳的原理及应用(第二讲)毛细管电泳的原理及应用
5 0m增至 50m; 0 Z型可使光径从 5 0m增至
3 m, m 增加 了近 6 倍 , 0 可使信 噪 比提 高 至原来 的 6 倍 , 因体 积增 加 将 引起 2% 但 0 3 %的 谱带 扩 张 , 0 导致 柱效 下降[。 5 此外 , 毛细管价格昂贵也是需 ] 特殊 考虑 的。 对于普通毛细管 , 有以下两种设计来增加光 路 长度 : 向照射 是将光 束从毛 细管 末端 沿管 轴方 轴 向入 射 , 在毛细管侧面进行检测 [。 6 一般用激光作光 ] 源, 荧光检 测 , 5m 毛细管 , 法 可使光 路 长度 对 0 此 增 为 2 m, m 灵敏度可增加近 5 倍 , 效损失 2 0 但柱 5% ~ 0 %。另一种是多次 反射 池[, 7 毛细管壁 镀上银 , ]
溶液在几 千伏 电压作 用下 , 表面 带 电产 生库仑 排斥 力, 使液滴成雾状喷 出。 引入 离子 源中的热氮气流使 雾状液滴蒸发 , 形成离子流 , 经聚焦进入质谱仪[ 8。
C / 在肽链序列及蛋白结构、 EMS 分子量测定等
方面[] 卓越 的表现 , 多方 面 的研 究正 在开 展 , 1有 9 许 可以预见这是最有发展前途 的技术之 一。
(e- y p3, pnr l a a m ]可将光线聚焦到毛细管上, 对溶 菌酶的检测限可达 1fo 1-m l , 8m l 05 o L 线性范围 /
为4 个数 量级 ; 展吸光光路长度 : ③扩 可通过很多巧 妙的设计来扩展光路长度 , : 如 为了克 服圆柱形毛细 管表面 引起散射 、 失真 等不 利的光学 特性及 增加光
成。其检测限 以 L+计可达 1-m l 1- i 07 o/ 01 L 8
m l[] 柱尾检测 则在 分离毛细管后再接上 电导检 o 2。 0 测器 。还有 的是将柱尾 电导检测器和 安培检测器组
毛细管电泳的基本原理及应用(图文参照)
毛细管电泳的基本原理及应用摘要:毛细管电泳法是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法。
该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。
可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,比HPLC 分析高效、快速、微量。
关键词:毛细管电泳原理分离模式应用1概述毛细管电泳(Caillary Electrophoresis)简称CE,是一类以毛细管为分离通道,以高压直流场为驱动力的新型液相分离分析技术。
CE的历史可以追溯到1967年瑞典Hjerten最先提出在直径为3mm的毛细管中做自由溶液的区带电泳(Capillary Zone Electro-phoresis,CZE)。
但他没有完全克服传统电泳的弊端[1]。
现在所说的毛细管电泳(CE)是由Jorgenson和Lukacs在1981年首先提出,他们使用了75mm的毛细管柱,用荧光检测器对多种组分实现了分离。
1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支: 胶束电动毛细管色谱(MEKC)。
1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。
同年,Cohen 发表了毛细管凝胶电泳的工作。
近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
毛细管电泳和高效液相色谱(HPLC)一样,同是液相分离技术,因此在很大程度上HPCE与HPLC可以互为补充,但是无论从效率、速度、样品用量和成本来说,毛细管电泳都显示了一定的优势毛细管电泳(C E)除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外,其仪器结构也比高效液相色谱(HPLC)简单。
C E只需高压直流电源、进样装置、毛细管和检测器。
毛细管电泳具有分析速度快、分离效率高、试验成本低、消耗少、操作简便等特点,因此广泛应用于分子生物学、医学、药学、材料学以及与化学有关的化工、环保、食品、饮料等各个领域[2]。
《毛细管电泳原理》课件
分离的程度。
分辨率
02
分辨率是指毛细管电泳谱中相邻两峰之间的分离程度,分辨率
越高,分离效果越好。
检测限
03
指在毛细管电泳谱中能够检测到的最小样品浓度,检测限越低
,灵敏度越高。
定量分析
标准曲线法
通过绘制标准曲线,将毛细管电泳谱中的峰高或峰面积与样品浓度进行线性回归 分析,从而进行定量分析。
内标法
通过在样品中加入内标物,利用内标物与样品中各组分的分离度和响应因子相同 的特点,进行定量分析。
数据分析方法
峰高法
通过测量毛细管电泳谱中各组分的峰高,利用峰高与样品浓 度的线性关系进行定量分析。
峰面积法
通过积分毛细管电泳谱中各组分的峰面积,利用峰面积与样 品浓度的线性关系进行定量分析。
05
毛细管电泳的优缺点与展望
优点与缺点
高分离效能
毛细管电泳具有极高的分离效率,可 实现复杂样品的快速分离。
药物分析
毛细管电泳在药物分析中 可用于药物成分的分离和 检测,以及药物代谢产物 的分析。
食品安全
毛细管电泳可用于食品安 全检测,如食品添加剂、 农药残留等的检测。
02
毛细管电泳的仪器与实验条
件
仪器介绍
毛细管电泳仪的基本构成
检测器的选择
包括高压电源、进样系统、毛细管电 泳柱、检测器和数据采集系统等部分 。
配制电解质溶液
按照所需的浓度和比例,配制 电解质溶液。
数据处理与分析
采集实验数据,进行数据处理 和分析,得出结论。
03
毛细管电泳的分离模式与分
离机制
分离模式
毛细管区带电泳(CZE)
胶束电动色谱(MEKC)
毛细管凝胶电泳(CGE)
毛细管电泳ppt课件
(electrophoresis) ”这一术语,他的实验是用
于测定蛋白质的等电点。
• 1937年,瑞典科学家A.Tiselius 成功研制出界 面电泳仪,并建立了移动界面电泳法,用于人血 清蛋白的分离。
• Tiselius于48年获诺贝尔化学奖。
整理版课件
24
uapuosuef uap uos uapuosuef
阴离子
电渗 流
中性分子
阳离子
整理版课件
25
四、 分离效率和谱带展宽
1. 柱效参数-理论塔板数和塔板高度
理论塔板数: n5.54(tm/W1/2)2
tm — 迁移时间, W1/2 —时间半峰宽
塔板高度: HLd /n
Ld ——进样口到检测器之间的距离
• 经典电泳法
自由界面电泳(无载体电泳)
区带电整理泳版课(件有载体支持电泳)
4
• 界面电泳 :在没有惰性支持物的液体接界面上 进行的电泳。
缺点:对流较严重,组分不能完全分离,检测困难
整理版课件
5
• 区带电泳: 是在溶液中加入一些惰性物质或凝胶 物质作为支持物,泳动物质在支持物间隙中移动 的电泳方法。 避免对流的干扰。
整理版课件
20
电渗的速度可以表示为: uos os•E
• eo—电渗率,单位电场下的电渗流的线速度
os
os
-介质的介电常数
-介质的粘度
-管壁的 Zeta 电势,即双 电层到管壁很近的地方之间的 电位差。
总之,Zeta 电势越大,介电常数越大,粘度越小,
电渗流越大。
在电场作用下,电泳和电渗同时存在,电渗流速度
一、毛细管电泳的分类 二、毛细管区带电泳法 三、胶束电动毛细管色谱 四、凝胶毛细管电泳法 五、毛细管电色谱法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毛细管电泳(CE)基本原理
电泳是指带电离子在电场中的定向移动,不同离子具有 不同的迁移速度,迁移速度与哪些因素有关?
当带电离子以速度ν 在电场中移动时,受到大小相等、
方向相反的电场推动力和平动摩擦阻力的作用。 电场力:FE = qE
阻 力:F = fν 故: qE = fν
q—离子所带的有效电荷; E —电场强度; ν—离子在电场中的迁移速度; f —平动摩擦系数 ( 对于球形离子: f =6πηγ;γ —离子的表观液态动力 学半径;η —介质的粘度; )
第一次的自由溶液电泳;第一台电泳仪; 1948年,获诺贝尔化学奖;
经典电泳
利用电泳现象对某些化学或生物物质进行分离分析的方 法和技术叫电泳法或电泳技术。
按形状分类:U型管电泳、柱状电泳、板电泳;
按载体分类:滤纸电泳、琼脂电泳、聚丙烯酰胺电泳、 自由电泳;
传统电泳分析:操作烦琐,分离效率低,定量困难,无 法与其他分析相比。
4.应用范围极广
有机物、无机物、生物、中性分子;生物大分子等; 分子生物学、医学、药学、化学、环境保护、材料等;
毛细管电泳理论基础
一、CE基本原理 二、电渗现象与电渗流electroosmotic flow 三、影响电渗流的因素 四、淌度mobility 五、CE中的参数与关系式 六、影响分离效率的因素
1.电渗流现象
当固体与液体接触时,固体表面由于某种原因带一种电 荷,则因静电引力使其周围液体带有相反电荷,在液-固界 面形成双电层,二者之间存在电位差。
当液体两端施加电压时, 就会发生液体相对于固体表面 的移动,这种液体相对于固体 表面的移动的现象叫电渗现象。
电渗现象中整体移动着的 液体叫电渗流(electroosmotic flow ,简称EOF)。
CE中电渗流的方向
电渗流的方向取决于毛细管内表面电荷的性质: 内表面带负电荷,溶液带正电荷,电渗流流向负极; 内表面带正负电荷,溶液带负电荷,电渗流流向正极; 石英毛细管;带负电荷,电渗流流向阴极; 改变电渗流方向的方法: (1)毛细管改性 表面键合阳离子基团; (2)加电渗流反转剂 内充液中加入大量的阳离子表面活性剂,将使石英毛细 管壁带正电荷,溶液表面带负电荷。电渗流流向正极。
所以,迁移速度:
qE q E (球形离子) f 6π
物质离子在电场中差速迁移是电泳分离的基础。
淌度μ :单位电场强度下的平均电泳速度。Fra bibliotek q E 6π
q—离子所带的有效电荷; E —电场强度; γ —离子的表观液态动力学半径 η —介质的粘度;
电渗现象与电渗流
electroosmosis and electroosmotic flow
ν+ =ν电渗流 + ν+ef 阳离子运动方向与电渗流一致;
ν- =ν电渗流 - ν-ef 阴离子运动方向与电渗流相反;
ν0 =ν电渗流
中性粒子运动方向与电渗流一致;
(1)可一次完成阳离子、阴离子、中性粒子的分离;
(2)改变电渗流的大小和方向可改变分离效率和选择性,如 同改变LC中的流速;
1981年,Jorgenson和Luckas,用75μm内径石英毛细 管进行电泳分析,柱效高达40万/m,促进电泳技术发生了根 本变革,迅速发展成为可与GC、HPLC相媲美的崭新的分离 分析技术——毛细管电泳。
毛细管电泳(Capillary Electrophoresis, CE)
高效毛细管电泳在技术上采取了两项重要改进: 1. 采用了25-100μm内径的毛细管; 2. 采用了高达数千伏的电压。 • 毛细管的采用使产生的热量能够较快散发,大大减小了
电泳
在电解质溶液中,位于电场中的带电离子在电场力的作 用下,以不同的速度向其所带电荷相反的电极方向迁移的现 象,称之为电泳。由于不同离子所带电荷及性质的不同,迁 移速率不同,可实现分离。
1808年,Reuss(俄国)首次发现电泳现象。 1937年,Tiselius(瑞典)用于人血清蛋白质混合液的 分离: 发现样品的迁移速度和方向由其电荷和淌度决定;
温度效应,使电场电压可以很高。 • 电压升高,电场推动力大,又可进一步使柱径变小,柱
长增加, • 毛细管电泳的柱效远高于HPLC,理论塔板数高达几十万
块/米,特殊柱子可以达到数百万。
分离过程
电场作用下,毛细
管柱中出现:电泳现 象和电渗流现象。
带电粒子的迁移速度=电泳+电渗流;两种速度的矢量和。 阳离子:两种效应的运动方向一致,在负极最先流出; 中性粒子无电泳现象,受电渗流影响,在阳离子后流出; 阴离子:两种效应的运动方向相反。ν电渗流 >ν电泳时,阴
ν电渗流 = μ E
电渗淌度取决于电泳介质及双电层的Zeta电势,即
μ = ε0εξ
ε0—真空介电常数;ε—介电常数;ξ—毛细管壁的Zeta电势。
ν电渗流 = ε0εξ E
实际电泳分析,可在实验测定相应参数后,按下式计算
ν电渗流 = Lef/teo
Lef —毛细管有效长度; teo—电渗流标记物(中性物质)的迁移时间。
4. CE中电渗流的流形
电荷均匀分布,整体移动,电渗流的流动为平流,塞式 流动(谱带展宽很小);
液相色谱中的溶液流动为层流,抛物线流型,管壁处流 速为零,管中心处的速度为平均速度的2倍(引起谱带展宽 较大)。
5. CE中电渗流的作用
电渗流的速度约等于一般离子电泳速度的5~7倍;
各种电性离子在毛细管柱中的迁移速度为:
离子在负极最后流出
除中性粒子外,同种类离子由于受到的电场力大小不一样也
同时被相互分离。
毛细管电泳的特点
1.仪器简单、易自动化
电源、毛细管、检测器、溶液瓶
2.分析速度快、分离效率高
在3.1min内分离36种无机及有机阴离子,4.1min内分 离了24种阳离子;
3.操作方便、消耗少
进样量极少,水介质中进行;
2.HPCE中的电渗现象与电渗流
石英毛细管柱,内充液pH>3时,表面电离成-SiO-,管 内壁带负电荷,形成双电层。
在高电场的作用下,带正电荷的溶液表面及扩散层向阴 极移动,由于这些阳离子实际上是溶剂化的,故将引起柱中
的溶液整体向负极移动,速度ν电渗流。
3. CE中电渗流的大小与方向
电渗流的大小用电渗流速度ν电渗流表示,取决于电渗淌 度μ和电场强度E。即