大一高数公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

一些初等函数: 两个重要极限:

三角函数公式: a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='⋅-='⋅='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'⎰

⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222⎰

⎰⎰⎰⎰++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

π

π

·和差角公式: ·和差化积公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβ

αβαβ

αβαβαβ

αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=

±⋅±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ

·半角公式: ·正弦定理:

R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:

定积分应用相关公式: 微分方程的相关概念:

即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0

),(),(),(ϕϕϕ一阶线性微分方程:

全微分方程: 二阶微分方程:

二阶常系数非齐次线性微分方程 曲率半径k /1=ρ

中值定理。 1。洛尔定理

)('),()()(),(],[)(==εεf b a b f a f b a b a x f ,使一点内至少存在,则在可导,且上连续,在开区间满足在设函数 2。拉格浪日定理 3.柯西中值定理 4. 台劳公式

5.五种常见函数的台劳展开

(2))^()2/sin()^(!/1...3^!3/1sin n x o n n x n x x x +++-=π (3))^()2/cos()^(!/1....2^!2/11cos n x o n n x n x x +++-=π (4)

)^()^(/1)1()^1(....3^*3/12^*2/1)1ln(n x o n x n n x x x x +--+++-=+

(5)

)

^()^(!/)1)...(1(...)2^(!2/)1(*1)^1(n x o n x n n m m m x m m mx m x ++--++-++=+

相关文档
最新文档