大一高数公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式: a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰
⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C
a
x a x a x dx x a C
a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 22)ln(221
cos sin 22
2222222
2222222
22
2
22
2
π
π
·和差角公式: ·和差化积公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβ
αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ
·半角公式: ·正弦定理:
R C
c
B b A a 2sin sin sin === ·余弦定理:
C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:
定积分应用相关公式: 微分方程的相关概念:
即得齐次方程通解。
,
代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。
得:的形式,解法:
为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x
y
y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0
),(),(),(ϕϕϕ一阶线性微分方程:
全微分方程: 二阶微分方程:
二阶常系数非齐次线性微分方程 曲率半径k /1=ρ
中值定理。 1。洛尔定理
)('),()()(),(],[)(==εεf b a b f a f b a b a x f ,使一点内至少存在,则在可导,且上连续,在开区间满足在设函数 2。拉格浪日定理 3.柯西中值定理 4. 台劳公式
5.五种常见函数的台劳展开
(2))^()2/sin()^(!/1...3^!3/1sin n x o n n x n x x x +++-=π (3))^()2/cos()^(!/1....2^!2/11cos n x o n n x n x x +++-=π (4)
)^()^(/1)1()^1(....3^*3/12^*2/1)1ln(n x o n x n n x x x x +--+++-=+
(5)
)
^()^(!/)1)...(1(...)2^(!2/)1(*1)^1(n x o n x n n m m m x m m mx m x ++--++-++=+