2020数学学考一试卷6
2020-2021学年山东省临沂市兰陵县人教版六年级上册期末学业水平测试数学试卷(含答案解析)
2020-2021学年山东省临沂市兰陵县人教版六年级上册期末学业水平测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.()()()()40:580%40===÷=(小数)。
2.()吨是30吨的13,50米比40米多()%。
3.小红15小时行38千米,她每小时行()千米,行1千米要用()小时。
4.一个三角形内角度数比是1:2:3,这个三角形按角分是()三角形。
5.39410∶的比值是(),20kg :0.2t 的比值是()。
6.0.8∶0.2的最简整数比是(),132∶123的最简整数比是()。
7.4∶3的前项加上12,要使比值不变,比的后项应该加上()。
8.大圆与小圆的直径比是4∶3,则大圆与小圆的周长比是(),面积比是()。
9.用一根长12.56m 的绳子围成一个圆,这个圆的直径是()m ,面积是()m 2。
10.某班有男生25人,女生20人,女生比男生少()%。
11.一批零件有160个,检测后发现有8个零件不合格,合格率是_____%。
12.甲数的14与乙数的20%相等,乙数是100,甲数是_____。
13.一项工程,甲单独做要6天完成,乙单独做要8天完成。
甲乙合作,()天能完成这项工程的一半。
14.111111248163264+++++=()。
二、判断题15.一个数乘分数,积一定比这个数小。
()16.比的前项增加10%,要使比值不变,后项应乘1.1。
_____17.大牛和小牛的头数比是4∶5,表示大牛比小牛少15。
()18.双十一,某网店一种商品先提价20%,再降价20%,价格实际没变。
()19.1100和1%都是分母为100的分数,它们表示的意义完全相同。
()三、选择题20.若a 是非零自然数,下列算式中的计算结果最大的是()。
A .a×58B .a÷58C .a÷32D .32×a 21.两根同样长的绳子,第一根剪去12,第二根剪去1m 2,剩下的绳子()。
2020考研数学一真题参考2004答案解析
2020年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线上与直线垂直的切线方程为__________ . (2)已知,且,则=__________ .(3)设为正向圆周在第一象限中的部分,则曲线积分的值为__________.(4)欧拉方程的通解为__________ . (5)设矩阵,矩阵满足,其中为的伴随矩阵,是单位矩阵,则=__________ .(6)设随机变量服从参数为的指数分布,则= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D) (8)设函数连续,且则存在,使得(A)在(0,内单调增加 (B)在内单调减少 (C)对任意的有 (D)对任意的有ln y x =1=+y x (e )e x x f x -'=(1)0f =()f x L 222=+y x ⎰-L ydx xdy 2)0(024222>=++x y dx dyx dx y d x210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A B **2=+ABA BA E *A A E B X λ}{DX X P >+→0x dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβαγβα,,βγα,,γαβ,,αγβ,,()f x ,0)0(>'f 0>δ()f x )δ()f x )0,(δ-),0(δ∈x ()(0)f x f >)0,(δ-∈x ()(0)f x f >(9)设为正项级数,下列结论中正确的是(A)若=0,则级数收敛(B)若存在非零常数,使得,则级数发散(C)若级数收敛,则 (D)若级数发散, 则存在非零常数,使得(10)设为连续函数,,则等于 (A) (B) (C) (D) 0(11)设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得,则满足的可逆矩阵为(A)(B)(C)(D)(12)设为满足的任意两个非零矩阵,则必有 (A)的列向量组线性相关的行向量组线性相关 (B)的列向量组线性相关的列向量组线性相关 (C)的行向量组线性相关的行向量组线性相关 (D)的行向量组线性相关的列向量组线性相关(13)设随机变量服从正态分布对给定的,数满足,若,则等于∑∞=1n n a n n na ∞→lim ∑∞=1n n a λλ=∞→n n na lim ∑∞=1n n a ∑∞=1n n a 0lim 2=∞→n n a n ∑∞=1n n a λλ=∞→n n na lim ()f x ⎰⎰=t ty dx x f dy t F 1)()()2(F '2(2)f (2)f (2)f -A A B B C =AQ C Q ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110,A B =AB O A ,B A ,B A ,B A ,B X (0,1),N )10(<<αααu αα=>}{u X P α=<}{x X P x(A) (B)(C) (D)(14)设随机变量独立同分布,且其方差为 令,则(A) (B)(C) (D)三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设,证明.2αu 21α-u21α-u α-1u )1(,,,21>n X X X n .02>σ∑==ni i X n Y 1121Cov(,)X Y nσ=21Cov(,)X Y σ=212)(σnn Y X D +=+211)(σnn Y X D +=-2e e a b <<<2224ln ln ()eb a b a ->-(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)).100.66⨯=k(17)(本题满分12分)计算曲面积分其中是曲面的上侧.,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=∑)0(122≥--=z y x z(18)(本题满分11分)设有方程,其中为正整数.证明此方程存在惟一正实根,并证明当时,级数收敛.10n x nx +-=n n x 1α>1n n x α∞=∑(19)(本题满分12分)设是由确定的函数,求的极值点和极值.(,)z z x y =2226102180x xy y yz z -+--+=(,)z z x y =(20)(本题满分9分)设有齐次线性方程组试问取何值时,该方程组有非零解,并求出其通解.121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩a(21)(本题满分9分)设矩阵的特征方程有一个二重根,求的值,并讨论是否可相似对角化.12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A a A(22)(本题满分9分)设为随机事件,且,令求:(1)二维随机变量的概率分布. (2)和的相关系数,A B 111(),(|),(|)432P A P B A P A B ===;,,0,1不发生发生A A X ⎩⎨⎧=.,,0,1不发生发生B B Y ⎩⎨⎧=(,)X Y X Y .XY ρ(23)(本题满分9分) 设总体的分布函数为其中未知参数为来自总体的简单随机样本,求:(1)的矩估计量. (2)的最大似然估计量X ,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββn X X X ,,,,121 >βX ββ2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
2020年四川省宜宾市高考数学一诊试卷(理科)试题及答案(解析版)
∴ 时,g(x)取得最小值 ,
解 得,a≥4,显然a<4和a>4时,都不满足f(x)在(0,2)上是减函数,只有a=4时满足f(x)在(0,2)上是减函数,
∴满足条件的a的集合是{4}.
故答案为:{4}.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.
2020年四川省宜宾市高考数学一诊试卷(理科)
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.
1.已知集合U={1,2,3,4,5,6},A={1,3,4},则∁UA=( )
A.{5,6}B.{1,2,3,4}C.{2,5,6}D.{2,3,4,5,6}
(1)讨论f(x)在其定义域内的单调性;
(2)若a=1,且f(x1)=f(x2),其中0<x1<x2,求证:x1+x2+x1x2>3.
(二)选考题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]
22.如图所示,“8”是在极坐标系Ox中分别以 和 为圆心,外切于点O的两个圆.过O作两条夹角为 的射线分别交⊙C1于O、A两点,交⊙C2于O、B两点.
∴cos∠AOB= ,即∠AOB=60°.
(1)若λ>0,μ>0,
设 =2 , =2 ,则 = + ,
∵|λ|+|μ|=λ+μ≤2,故当λ+μ=2时,E,F,P三点共线,
故点P表示的区域为△OEF,
最新 2020年江苏省中职学业水平测试数学试卷
江苏省中等职业学校学业水平考试《数学》试卷(一)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1.数集{}Z x x x ∈<≤-,32,用列举法可表示为 ( )A .}3,2,1,0,1,2{--B .}2,1,,1,2{--C .{1,0,1,2,3}-D .}2,1,0,1,2{--2.若()=21f x x -,则()2f 等于 ( )A .-1B .1C .3D .5 3.若等比数列{}n a 中,14a =-,12q =,则4a 等于 ( ) A .21 B .41- C .21- D .2- 4.已知(2,5)A -,(2,7)B -,则线段AB 的中点M 的坐标为 ( )A .(-2,25) B .(-2,27) C .(-2,-1) D .(-2,6) 5.某小组有3名女生,2名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是 ( )A .15B .13C .16D .56 6.球的直径为6,则其体积为 ( )A .36πB .72πC .144πD .288π7.已知直线l 经过两个点(1,2)A ,(4,5)B ,则直线l 的斜率为 ( )A .33 B .1 C .3 D .-1 8.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x 的值为 ( )A .73B .74C .75D .769.若等差数列{}n a 中,38a =,414a =,则13a 等于 ( )A .68B .74C .80D .8610. 函数21-=x y 的定义域是 ( )A .),(+∞-∞B .()+∞,0C .[)∞+,0 D .(]0,∞- 11.设集合{}4≤=x x P ,集合{}a x x Q >=,若φ=Q P ,则实数a 的取值范围是 ( )A .4<aB .4≤aC .4>aD .4≥a12.已知偶函数()x f 的图象经过()3,2,则函数的图象必经过另一点 ( ) A .()32, B .()-23, C .()3-2-,D .()3-2, 二、填空题(本大题共2小题,每小题4分,共8分)13.求值 0.3log 4.3= .(精确到0.0001)14.圆柱的母线长和底面直径均为2,其表面积为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)已知角α的终边经过点(5,12)P -,求sin α,cos α和tan α的值.16.(满分10分)比较下列各组中两个数(式)的大小:(1)222)(x - 与 4254x x --; (2)2log 10 与2log 5.17.(满分10分)已知向量(1,2)a =-,(3,1)b =-,求:(1)2a b +,2(3)a b -;(2)a b ⋅;(3)向量a 与向量b 夹角.第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.1—1.下列给出的赋值语句中正确的是 ( )A .16x -=B .16x =-C .1x y +=D .a b c ==1—2.做“紫菜鸡蛋汤”有以下几道工序:A .破蛋(1分钟);B .洗紫菜(2分钟);C .水中放入紫菜加热至沸腾(3分钟);D .沸腾后倒入鸡蛋加热(1分钟);E .搅蛋(1分钟).需要的最短时间是 ( )A .5B .6C .7D .82.[选做题]在2-1和2-2两题中选答一题.2—1.cos()cos sin()sin =αββαββ--- ( )A .αcosB .βcosC .α2cosD .β2cos2—2.若1212a i bi +=-,则实数a ,b 的值分别为 ( ) A .2,2- B .2-,2 C .2-,2- D .2,23.[选做题]在3-1和3-2两题中选答一题.3—1.参数方程为参数)(t 221⎩⎨⎧+-=+=t y t x 表示的曲线是 ( ) A .圆 B .直线 C .抛物线 D .双曲线3—2.如图,三角形所围成的阴影部分为可行域,使得目标函数2z x y =+取得最小值的点是 ( ) A .点()5,3A B .点()1,1B C .点22(1,)5C D .点(0,0)O 二、填空题(本大题共1小题,共4分.)4.[选做题]在4-1和4-2两题中选答一题. 4—1.补充完成“按权展开式”:388448108=⨯+⨯ 10410410+⨯+⨯4—2. 某班从甲、乙、丙三名候选人中选举一名学生代表,每张选票上只能选一人或不选.全班50名同学都参加了投票,得票情况如图,则学生乙的得票数是 . x yO C (2215,)A (53,)B (11,)。
2020年全国普通高等学校招生统一考试数学试卷 全国新高考Ⅰ卷 (含答案)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}2.2i 12i -= +A.1 B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2020届上海市普陀区中考数学一模试卷(有答案)
上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.123.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A.B.C.D.4.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A.B.C.D.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.8.计算:2(+)+(﹣)=.9.计算:sin245°+cot30°•tan60°=.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB 的值等于.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是.(填写序号)12.二次函数y=x2+2x﹣3的图象有最点.(填:“高”或“低”)13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF的长是.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC 相似,那么AP的长等于.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x 轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O 的半径长和sin∠BAD的值.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm (底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC【考点】平行线分线段成比例.【分析】根据比例式看看能不能推出△ABC∽△ADE即可.【解答】解:A、∵AE:EC=AD:DB,∴=,∴都减去1得:=,∵∠BAC=∠EAD,∴△ABC∽△ADE,∴∠D=∠B,∴DE∥BC,故本选项正确;B、根据AD:AB=DE:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;C、根据AD:DE=AB:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;D、根据BD:AB=AC:EC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;故选A.【点评】本题考查了平行线分线段成比例定理的应用,能理解平行线分线段成比例定理的内容是解此题的关键.2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.12【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的面积比等于相似比的平方可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=()2=,且S△ADE=3,∴=,∴S△ABC=12,故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据余角的性质,可得∠=∠BCD,根据余弦等于邻边比斜边,可得答案.【解答】解:A、在Rt△ABD中,cosA=,故A正确;B、在Rt△ABC中,cosA=,故B正确C、在Rt△BCD中,cosA=cos∠BCD=,故C错误;D、在Rt△BCD中,cosA=cos∠BCD=,故D正确;故选:C.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A.B.C.D.【考点】二次函数的图象.【分析】分a>0和a<0两种情况根据二次函数图象的开口方向、对称轴、与y轴的交点情况分析判断即可得解.【解答】解:a>0,b>0时,抛物线开口向上,对称轴x=﹣<0,在y轴左边,与y轴正半轴相交,a<0,b<0时,抛物线开口向下,对称轴x=﹣<0,在y轴左边,与y轴正半轴坐标轴相交,D选项符合.故选D.【点评】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键,注意分情况讨论.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心【考点】命题与定理.【分析】根据有关性质和定理分别对每一项进行判断即可.【解答】解:A、在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;B、不在一条直线上的三点确定一个圆,错误;C、平分弦的直径不一定垂直于弦,错误;D、弦的垂直平分线必经过圆心,正确;故选D【点评】此题考查了命题与定理,关键是熟练掌握有关性质和定理,能对命题的真假进行判断.6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣【考点】*平面向量.【分析】首先根据题意画出图形,然后连接BD,由三角形法则,求得,又由点M、N分别是边BC、CD 的中点,根据三角形中位线的性质,即可求得答案.【解答】解:如图,连接BD,∵在平行四边形ABCD中,=,=,∴=﹣=﹣,∵点M、N分别是边BC、CD的中点,∴MN∥BD,MN=BD,∴==(﹣)=﹣+.故选B.【点评】此题考查了平面向量的知识以及三角形的中位线的性质.注意结合题意画出图形,利用图形求解是关键.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.【考点】比例的性质.【分析】根据比例设x=2k,y=5k,然后代入比例式进行计算即可得解.【解答】解:∵=,∴设x=2k,y=5k,则===.故答案为:.【点评】本题考查了比例的性质,利用“设k法”表示出x、y可以使计算更加简便.8.计算:2(+)+(﹣)=3+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:2(+)+(﹣)=2+2+﹣=3+.故答案为:3+.【点评】此题考查了平面向量的知识.注意掌握去括号法则.9.计算:sin245°+cot30°•tan60°=.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=sin245°+cot30°•tan60°=()2+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB 的值等于.【考点】黄金分割.【分析】根据黄金分割的概念和黄金比是解答即可.【解答】解:∵点P把线段分割成AP和PB两段(AP>PB),AP是AB和PB的比例中项,∴点P是线段AB的黄金分割点,∴AP:AB=,故答案为:.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是④.(填写序号)【考点】二次函数的定义.【分析】根据形如y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:①a=0时y=ax2+bx+c是一次函数,②y=(x﹣1)2﹣x2是一次函数;③y=5x2﹣不是整式,不是二次函数;④y=﹣x2+2是二次函数,故答案为:④.【点评】本题考查了二次函数,形如y=ax2+bx+c(a≠0)是二次函数,注意二次项的系数不能为零.12.二次函数y=x2+2x﹣3的图象有最低点.(填:“高”或“低”)【考点】二次函数的最值.【分析】直接利用二次函数的性质结合其开口方向得出答案.【解答】解:∵y=x2+2x﹣3,a=1>0,∴二次函数y=x2+2x﹣3的图象有最低点.故答案为:低.【点评】此题主要考查了二次函数的性质,得出二次函数的开口方向是解题关键.13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于1.【考点】二次函数的性质.【专题】推理填空题.【分析】根据抛物线y=2x2+mx+n的顶点坐标为(1,3),可知,从而可以得到m、n的值,进而可以得到m+n的值.【解答】解:∵抛物线y=2x2+mx+n的顶点坐标为(1,3),∴,解得m=﹣4,n=5,∴m+n=﹣4+5=1.故答案为:1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的顶点坐标公式.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF的长是2.【考点】三角形的重心.【分析】连接BD并延长交AC于H,根据重心的性质得到=,根据相似三角形的性质求出AC,根据平行四边形的判定和性质求出AF,计算即可.【解答】解:连接BD并延长交AC于H,∵点G为△ABC的重心,∴=,∵DE∥AC,∴△BDE∽△BAC,∴==,又DE=4,∴AC=6,∵DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴AF=DE=4,∴CF=AC﹣AF=2,故答案为:2.【点评】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【考点】垂径定理;勾股定理.【分析】作MO交CD于E,则MO⊥CD.连接CO.根据勾股定理和垂径定理求解.【解答】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).【点评】作出辅助线,构造直角三角形,根据对称性,利用勾股定理解答.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC 相似,那么AP的长等于或.【考点】相似三角形的性质.【分析】根据勾股定理求出AB的长,根据相似三角形的性质列出比例式解答即可.【解答】解:∵AC=4,BC=3,∠C=90°,∴AB==5,当△APQ∽△ABC时,=,即=,解得,AP=;当△APQ∽△ACB时,=,即,解得,AP=,故答案为:或.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等、正确运用分情况讨论思想是解题的关键.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是8米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意首先得出AD,BD的长,再利用坡角的定义得出DC的长,再结合勾股定理得出答案.【解答】解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=ABsin45°=4×=4,∵坡度i=1:,∴==,则DC=4,故AC==8(m).故答案为:8.【点评】此题主要考查了勾股定理以及解直角三角形的应用等知识,正确得出DC,AD的长是解题关键.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x 轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是(2,).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,于是得到∠CHB=∠AFO=∠AED=90°,根据余角的性质得到∠DAE=∠FAB,推出△BCH∽△ABF,根据相似三角形的性质得到,求得BH=AF=1,CH=BF=,通过△BCH≌△ADE,得到AE=BH=1,DE=CH=,求得EG=3﹣1=2,于是得到结论.【解答】解:如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,∴∠CHB=∠AFO=∠AED=90°,∴∠GAF=90°,∴∠DAE=∠FAB,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BCH=∠ABF,∴△BCH∽△ABF,∴,∵A(3,2),∴AF=2,AG=3,∵点C的横坐标是a,∴OH=﹣a,∵BC:AB=1:2,∴BH=AF=1,CH=BF=,∵△BCH∽△ABF,∴∠HBC=∠DAE,在△BCH与△ADE中,,∴△BCH≌△ADE,∴AE=BH=1,DE=CH=,∴EG=3﹣1=2,∴D(2,).故答案为:(2,).【点评】本题考查了相似三角形的判定和性质,坐标与图形的性质,全等三角形的判定和性质,矩形的性质,正确的画出图形是解题的关键.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=﹣﹣(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)【考点】*平面向量.【分析】(1)由在梯形ABCD中,AD∥BC,AD=,可求得,然后由点M是边BC的中点,求得,再利用三角形法则求解即可求得;(2)首先过点A作AE∥CD,交BC于点E,易得四边形AECD是平行四边形,即可求得=2,即可知=2+.【解答】解:(1)∵在梯形ABCD中,AD∥BC,AD=,=,∴=3=3,∵点M是边BC的中点,∴==;∴=﹣=﹣(+)=﹣﹣;故答案为:,﹣﹣;(2)过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴==,∴=﹣=2,∴=+=2+.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.【考点】二次函数图象与几何变换.【分析】利用二次函数平移的性质得出平移后解析式,进而利用x=0时求出新抛物线与y轴交点的坐标.【解答】解:由题意可得:y=(x+m)2+2,代入(﹣1,4),解得:m1=3,m2=﹣1(舍去),故新抛物线的解析式为:y=(x+3)2+2,当x=0时,y=,即与y轴交点坐标为:(0,).【点评】此题主要考查了二次函数图象与几何变换,正确利用二次函数平移的性质得出解析式是解题关键.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O 的半径长和sin∠BAD的值.【考点】垂径定理;解直角三角形.【分析】设⊙O的半径为r,根据垂径定理求出BE=CE=BC=4,∠AEB=90°,在Rt△OEB中,由勾股定理得出r2=42+(r﹣2)2,求出r.求出AE,在Rt△AEB中,由勾股定理求出AB,解直角三角形求出即可.【解答】解:设⊙O的半径为r,∵直径AD⊥BC,∴BE=CE=BC==4,∠AEB=90°,在Rt△OEB中,由勾股定理得:OB2=0E2+BE2,即r2=42+(r﹣2)2,解得:r=5,即⊙O的半径长为5,∴AE=5+3=8,∵在Rt△AEB中,由勾股定理得:AB==4,∴sin∠BAD===.【点评】本题考查了垂径定理,勾股定理,解直角三角形的应用,能根据垂径定理求出BE是解此题的关键.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm (底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.【考点】相似三角形的应用.【分析】作AM⊥BC于M,交DG于N,设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得出方程组求出BC和AM,再由平行线得出△ADG∽△ABC,由相似三角形对应高的比等于相似比得出比例式,即可得出结果.【解答】解:作AM⊥BC于M,交DG于N,如图所示:设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得:,解得:,或(不合题意,舍去),∴BC=60cm,AM=h=40cm,∵DG∥BC,∴△ADG∽△ABC,∴,即,解得:x=24,即加工成的正方形铁片DEFG的边长为24cm.【点评】本题考查了方程组的解法、相似三角形的运用;熟练掌握方程组的解法,证明三角形相似得出比例式是解决问题的关键.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.【解答】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,∴△ACE∽△BDE;(2)∵△ACE∽△BDE,∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴,∴BE•DC=AB•DE.【点评】本题考查了相似三角形的判定和性质,邻补角的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)把点A、B的坐标代入函数解析式求得系数a、c的值,从而得到函数解析式,然后把点C的坐标代入来求m的值;(2)由点A、C的坐标求得直线AC的解析式,然后根据直线与坐标轴的交点的求法得到点D的坐标,所以结合锐角三角函数的定义解答即可;(3)根据相似三角形的对应角相等进行解答.【解答】解:(1)把A(0,8)、B(6,2)代入y=ax2﹣,得,解得,故该二次函数解析式为:y=x2﹣x+8.把C(9,m),代入y=x2﹣x+8得到:m=y=×92﹣×9+8=5,即m=5.综上所述,该二次函数解析式为y=x2﹣x+8,m的值是5;(2)由(1)知,点C的坐标为:(9,5),又由点A的坐标为(0,8),所以直线AC的解析式为:y=﹣x+8,令y=0,则0=﹣x+8,解得x=24,即OD=24,所以cot∠ADO===3,即cot∠ADO=3;(3)在△APQ与△MDQ中,∠AQP=∠MQD.要使△APQ与△MDQ相似,则∠APQ=∠MDQ或∠APQ=∠DMQ(根据题意,这种情况不可能),∴cot∠APQ=cot∠MDQ=3.作BH⊥y轴于点H,在直角△PBH中,cot∠P==3,∴PH=18,OP=20,∴点P的坐标是(0,20).【点评】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数、一次函数解析式,相似三角形的判定与性质,锐角三角函数的定义.在求有关动点问题时要注意分析题意分情况讨论结果.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P 在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.【考点】几何变换综合题.【分析】(1)由PD∥AH得到=2,即可;(2)由PD∥AH得到,再由tan∠MBN=3,比例式表示出BC,CD,即可;(3)△ABC为等腰三角形时,分三种情况①AB=AC,②CB=CA,③BC=BA利用tan∠MBN=3,建立方程即可.【解答】解:(1)如图1,过点A作AH⊥BC,∵PD⊥BC,∴PD∥AH,∴=2,∴AH=2PD=6,(2)∵PD∥AH,∴=x,∴AH=PD×x=3x,∵tan∠MBN=3,∴BH=3,∵,∴,∴CD=,∴BC=BD+CD=9+=,∴S△ABC=AH×BC=×3x×=,∴y=(1<x≤9),(3)①当AB=AC时,∵tan∠PCB=tan∠MBC=3,∴=3,∴CD=1,∴BC=BD+CD=10,∴=10,∴x=5,②当CB=CA时,如图2,过点C作CE⊥AB,BE=AB=x,∵tan∠MBN=3,∴cos∠MBN=,∴=,∴,∴x=;③当BA=BC时,x=,∴x=1+,∴△ABC为等腰三角形时,x=5或或1+.【点评】此题是几何变换的综合题,主要考查平行线分线段成比例定理和锐角三角函数,由平行线分线段成比例定理建立方程是解本题的关键.。
2019-2020年高考(学业水平考试)数学试卷 含答案
2019-2020年高考(学业水平考试)数学试卷 含答案xx.1 一.填空题(本大题共12题,每题3分,共36分)1.复数3+4i (i 为虚数单位)的实部是 ;2.若=3,则x= ;3.直线y=x-1与直线y=2的夹角为 ;4.函数=的定义域为 ;5.三阶行列式121004531--中,元素5的代数余子式的值为 ; 6.函数的反函数的图像经过点(2,1),则实数a= ;7.在中,若A=,B=,BC=,则AC= ;8.4个人排成一排照相,不同排列方式的种数为 。
(结果用数值表示)9.无穷等比数列的首项为2,公比为,则的各项和为 ;10.若2+i (i 为虚数单位)是关于x 的实系数一元二次方程的一个虚根,则a= ; 11.函数y=在区间[0,m]上的最小值为0,最大值为1,则实数m 的取值范围是 ; 12.在平面直角坐标系xOy 中,点A,B 是圆上的两个动点,且满足|AB|=,则的最小值为 ;二.选择题(本大题共12小题,每题3分,共36分)13.满足且的角属于( )A.第一象限B.第二象限C.第三象限D.第四象限14.半径为1的球的表面积为 ( )A. B. C.2 D.415.在的二项展开式中,的系数是( )A.2B.6C.15D. 2016.幂函数的大致图象是( )17.已知向量,,则向量在向量方向上的投影为( )A.1B. 2C.(1,0)D.(0,2)18.设直线l 与平面平行,直线m 在平面上,那么( )A.直线l 平行于直线mB.直线l 与直线m 异面C.直线l 与直线m 没公共点D.直线l 与直线m 不垂直19.用数学归纳法证明等式)(223212*∈+=++++N n n n n 的第(ⅱ)步中,假设n=k 时原等式成立,那么在n=k+1时,需要证明的等式为( )A.)1()1(22)1(2232122+++++=++++++k k k k k kB.)1()1(2)1(223212+++=++++++k k k kC.)1()1(22)1(2)12(232122+++++=++++++++k k k k k k kD.)1()1(2)1(21223212+++=++++++++k k k k k )(20.关于与的焦距和渐近线,下列说法正确的是( )A.焦距相等,渐近线相同B.焦距相等,渐近线不同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=的定义域为R ,则“f (0)=0”是“y=f (x )”为奇函数的( )A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件22. 下列关于实数a ,b 的不等式中,不恒成立的是( )A. B.C. D.23.设单位向量和既不平行也不垂直,则非零向量,,有结论:①若,则;②若,则;关于以上两个结论,正确的判断是( )A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立24.对于椭圆:),0,(12222b a b a by a x ≠>=+,若点()满足,则称该点在椭圆内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆内或上,则满足条件的点A 构成的图形为( )A.三角形及其内部B.矩形及其内部C.圆及其内部D.椭圆及其内部三.解答题:(本大题共5小题,共8+8+8+12+12=48分)25.如图,已知正三棱柱的体积为,底面边长为3,求异面直线与AC 所成角的大小;26.已知函数=,求的最小正周期及最大值,并指出取得最大值是x 的值。
四年级数学考试试卷6
2019-2020学年第一学期模拟测试卷四年级数学(卷六)(考试时间80 分钟)评价等级一、填空,我细心又能干。
(每空 1 分,共 24 分)1、用0、4、5、6、7、8、9 这七个数字卡片组成的七位数中,最大的是(),读作();最小的是(),读作()。
2、计算453÷72时,一般把除数看作()来试商。
3、把锐角、平角、钝角、直角、周角按下列顺序排列。
()>()>()>()>()4、在同一平面内的两条直线,它们的位置关系是()或()。
5、速度=()÷()。
6、“鸟巢”的占地面积约为20(),()个“鸟巢”的占地面积约为1 平方千米。
7、与十万相邻的两个计数单位分别是()和()。
8、当平行四边形的一个角是直角时,这个平行四边形就变成了一个()或()。
9、在括号里填上“>”、“<”或“=” 。
63750○743000102 万○10200008200 万○1亿10、一个自然数省略万位后面的尾数约是70 万,这个数最大是()。
二、我会判断(你认为对的打“√”,错的打“×”)(5 分)1、直线和射线都没有端点,可以无限延伸。
()2、因为5÷2=2……1,所以50÷20=2……1。
()3、近似数比准确数小些。
()4、知道每件商品的价钱和买的件数,可以求出总价。
()5、梯形只有一组对边平行。
()三、选择(将正确答案的序号填在括号里)(5 分)1、用一副三角板可以拼成的角是()。
A、100°B、75°C、142°2、平行四边形的两组对边()。
A、平行B、相等C、平行且相等3、一捆铁丝长800 米,每80 米截成一段,截了()次。
A、9B、10C、114、350×14的积的最高位是()。
A、千位B、万位C、十万位5、煮一个鸡蛋需要8 分钟,一只锅一次可以煮40 个鸡蛋,那么煮40 个鸡蛋至少需要()分钟。
A、320 分钟B、8 分钟C、40 分钟四、眼明手快,细心计算(31 分)1、直接写出得数。
贵州省普通高中2020-2021学年高二7月学业水平考试数学试题-答案
贵州省2020年7月普通高中学业水平考试数学试卷参考公式∶柱体体积公式∶ V = Sh ;锥体体积公式∶1sh 3V =(S 为底西面积,h 为高)第I 卷一、 选择题∶每小题给出的四个选项中,只有一项是符合题意的1.已知集合{}2,3A =, B ={-2,-1,3}, 则A ∩B =( ) A .{-1,2,3} B .{-2,2} C .{-1,3} D .{3}2.sin 30=A B .C .12D .3.已知,,a b c 成等比数列,且4,2a b ==,则c =( ) A .1B .2C .3D .44.已知向量()()2,1,1,1a b →→==,则a b →→+= ( ) A .(4,3)B .(3,2)C .(0,0)D .(0,1)5.函数()f x = ) A .(-2, +∞)B .(-2, 0)C .[5, +∞)D .(0, 1]6.如图是由 6个边长为1 的正方形组成的矩形,在该矩形内随机取一点P ,则点P 取自阴影部分的概率为( )A .14B .12C .25D .277.函数y = cos2x 的周期是( ) A .πB .3π C .5π D .7π 8.某公司甲、乙、丙三个工种共有员工400人,人数比依次为5∶2∶1,现用分层抽样的方法从这400人中抽取16人参加社区志愿者活动,则丙工种被抽取的人数为( ) A .8B .6C .5D .29.函数y =ax (a >0, 且a ≠1)的图象过定点( ) A .(0,2)B .(1,1)C .(0,1)D .(0, 0)10.5log 25的值是( ) A .-1B .0C .1D .211.过点()0,0O 和点()1,7A 的直线的斜率为( ) A .-1B .3C .5D .712.如图,正方体1111ABCD A B C D -中,异面直线1A B 与11D C 所成的角为( )A .30B .45C .60D .9013.如图是6名工人在一天中生产某种零件数量的茎叶图,则这6名工人这一天生产这种零件的平均数为( )A .16B .15C .14D .1314.如图,三棱锥P -ABC 中,A 1,B 1,C 1分别是棱P A , PB , PC 的中点.若直线PC 与平面ABC 所成的角为60°,则直线PC 与平面A 1B 1C 1所成的角为( )A .90°B .60°C .45°D .30°15.已知f (x )是定义在R 上的偶函数.若f (5)=0,则f (-5)=( ) A .3.B .2C .0D .-216.已知a =30, b =32,13c =,则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .c <b <aD .a <c <b17.∶ABC 三内角 A ,B ,C 所对的边分别是a ,b ,c .若C =90°,a =b =4, 则B =( ) A .90°B .60°C .45°D .30°18.下列函数中, 在区间(1,3)上为增函数的是( ) A .1y x=B .1()2x y =C .2y x =-D .y =x19.已知直线1:3l y x =,2:1l y kx =+. 若12l l ⊥,则k 的值为( )A .13-B .0C .2D .420.如图, 在长方体ABCD - A 1B 1C 1D 1中,AB = AD =4,12AA =,则BD 1=( )A .6B .7C .10D .1121.函数f (x )=2x -5的零点所在的区间是( ) A .(-2,-1)B .(1, 2)C .(2, 3)D .(3, 4)22.已知直线:40l x y +-=与两坐标轴分别交于A ,B 两点,O 为坐标原点,则OAB 的面积为( ) A .16B .12C .8D .423.已知向量(4,2),(,2)a b x =-=.若a b ⊥,则x =( ) A .-3B .-2C .2D .124.已知∶ABC 的三边分别是a ,b ,c .若a =1, b =2,c =∶.ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定25.新冠疫情防控期间,贵州省通过开播“阳光校园·空中黔课”,实现“离校不高教,停课不停学”,根据某班50名学生平均每天收看“空中黔课”的时间,得到如图所示的频率分布直方图.将频率作为概率,从该班随机抽取一名同学,则该同学平均每天收看时间不少于...2小时的概率为( )A .0.9B .0.5C .0.4D .0.126.不等式()20x x -≥的解集是( ) A .()0,1B .()1,0-C .()(),30,-∞-⋃+∞D .(][),02,-∞+∞27.已知实数a ,b 满足1ab =,则22a b +的最小值为( ) A .4B .3C .2D .128.已知直线y =x 与圆O ∶x 2+y 2=9交于A , B 两点,则||AB =( ) A .6B .5C .4D .229.函数()log a f x x =(a >1)在区间[1,3]上的最大值是1,则a 的值是( ) A .5B .4C .3D .230.∶ABC 三内角 A ,B ,C 所对的边分别是a ,b ,c .若a =2, b =4,3C π=,则∶ABC 的面积为( )A .7B .4C .D .131.为了得到函数sin 6y x π⎛⎫=+ ⎪⎝⎭, x ∶R 的图象,只需把函数y =sin x , x ∶R 的图象上所有的点( )A .向左平移6π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向右平移3π个单位长度32.已知直线1:20l x y ++=,2:0l x y +=,则1l 与2l 间的距离为( )A.1BC D33.若向量,a b 满足||1a =,||2b =,,a b 的夹角为90°,则||a b +=( ) ABC .4D .734.若函数f (x )=x 2 +2x +m ,x ∶R 的最小值为0,则实数m 的值是( ) A .9B .5C .3D .135.已知函数22,0()2,0x mx x f x x x x ⎧-≥=⎨-<⎩,若关于x 的方程()()20f x f x +-+=有且仅有四个互不相等的实根,则实数m 的取值范围是( ) A .(-∞,7]B .(6, +∞)C .(2 +∞)D .[8, +∞)第II 卷二、填空题∶本大题共5小题,每小题3分,共15分,把答案填在答题卡上36.等比数列{an }的前n 项和为Sn ,若a 1=1,公比q =3,则S 3= _________. 37.执行如图所示的程序框图,当2x =,3y =时,输出S 的值是__________.38.已知实数x ,y 满足004x y y x y -≥⎧⎪≥⎨⎪+≤⎩,则z =3x -y 的最小值为__________.39.已知直线4x π=是函数()sin cos f x m x x =-图像的一条对称轴,则实数m 的值是________.40.如图,ABC 是边长为4的等边三角形,点D 在AB 边上,点E 在AC 边上,DE 将ABC分成面积相等的两部分,设AD x =,AE y =,则y 关于x 的函数解析式为__________(要求写出定义域)三、解答题∶本大题共3小题,每小题10分,共30分,解答应写出文字说明、证明过程或推演步骤.41.已知cos α=α为锐角. (1)求sin α的值; (2)求()sin 30α-的值.42.如图,三棱柱ABC - A 1B 1C 1的底面是边长为2的正三角形,侧棱BB 1∶底面ABC ,BB 1=2,D ,E 分别为CC 1, AA 1的中点.(1)求证∶ CE //平面BDA 1; (2)求四棱锥B -CAA 1D 的体积.43.已知数列{an }的通项n a pn q =+,其中p , q 是常数. (1)若a 3=3,a 5=5,求数列{an }的前n 项和n S ;(2)若数列{an }满足an >0, n ∶N *,且24143a a +=,记22422a z a =+, 求z 的最小值,并求出z 取得最小值时p 、q 的值.1.D 【分析】根据集合的交集运算选出答案即可. 【详解】因为{}2,3A =, B ={-2,-1,3},所以{}3A B ⋂= 故选:D 2.C 【分析】由特殊角的三角函数值即可求解. 【详解】由特殊角的三角函数值可得:sin 3012=, 故选:C. 3.A 【分析】根据等比中项求解即可 【详解】解:因为,,a b c 成等比数列,所以2b ac =,即44c =,所以1c = 故选:A 4.B 【分析】根据向量线性运算的坐标表示求解即可. 【详解】解:因为()()2,1,1,1a b →→==, 所以()3,2a b →→+= 故选:B 5.C 【分析】根据函数解析式可得50x -≥,求解即可【详解】由()f x =50x -≥, 解得5x ≥所以函数的定义域为[5)+,∞. 故选:C. 6.B 【分析】求出矩形与阴影部分的面积,利用几何概型求解即可. 【详解】6个边长为1 的正方形组成的矩形的面积为616⨯=, 阴影部分的面积为313⨯=,所以在该矩形内随机取一点P ,则点P 取自阴影部分的概率为3162=,故选:B. 7.A 【分析】直接利用周期公式求解即可. 【详解】函数y = cos2x 的周期是22T ππ==, 故选:A. 8.D 【分析】先求出丙工种员工的人数,再乘以抽样比即可求解. 【详解】甲、乙、丙三个工种共有员工400人,要抽取16人, 所以抽样比为16140025=, 丙工种员工的人数为140050521⨯=++人,所以丙工种被抽取的人数为150225⨯=, 故选:D.9.C 【分析】根据0x =时,总有01y a 可得答案. 【详解】因为0x =时,总有01y a ,所以函数y =ax (a >0, 且a ≠1)的图象过定点(0,1), 故选:C. 10.D 【分析】直接利用对数的运算性质求解即可. 【详解】因为255log 25log 52==,故选:D. 11.D 【分析】根据两点所在直线的斜率即可求解. 【详解】因为点()0,0O 、()1,7A , 所以斜率为70710-=-, 所以过点()0,0O 和点()1,7A 的直线的斜率为7, 故选:D. 12.B 【分析】由1111//A B D C ,可得11BA B ∠即为异面直线1A B 与11D C 所成的角,求11BA B ∠即可. 【详解】因为1111//A B D C ,所以11BA B ∠即为异面直线1A B 与11D C 所成的角, 在11Rt BA B 中,111A B BB =,所以11Rt BA B 为等腰直角三角形,所以1145BA B ∠=,即异面直线1A B 与11D C 所成的角为45. 故选:B. 13.A 【分析】直接利用平均数公式求解即可. 【详解】这6名工人这一天生产这种零件的平均数为: 91216182021166+++++=,故选:A. 14.B 【分析】先证明11//A B 平面ABC ,11//B C 平面ABC ,可得平面1A 11//B C 平面ABC ,从而可得答案. 【详解】A 1,B 1分别是棱P A , PB 的中点,所以11//A B AB , 又11A B ⊄平面ABC ,AB ⊂平面ABC , 所以11//A B 平面ABC , 同理,11//B C 平面ABC ,又因为11A B 与11B C 是平面1A 11B C 内的两条相交直线, 所以,平面1A 11//B C 平面ABC ,因为直线PC 与平面ABC 所成的角为60°, 直线PC 与平面A 1B 1C 1所成的角也为60°, 故选:B. 15.C 【分析】直接利用偶函数的性质求解即可. 【详解】因为f (x )是定义在R 上的偶函数且f (5)=0,所以f (-5)= f (5)=0,故选:C.16.A【分析】利用指数幂的运算求出a ,b 值即可.【详解】因为a =30=1, b =32=9, 13c =, 所以c <a <b ,故选:A.17.C【分析】先判断∶ABC 等腰直角三角形,从而可得答案.【详解】因为∶ABC 中C =90°,a =b =4,所以∶ABC 等腰直角三角形,所以角B =45°,故选:C.18.D【分析】根据幂函数与指数函数的性质即可判定函数的单调性.【详解】根据幂函数的性质,当a<0时,a y x =在区间()0,∞+上为减函数,当0a >时,a y x =在区间()0,∞+上为增函数;当1a >时,x y a =在区间R 上为增函数结合四个选项:y x =满足题意.故选:D19.A【分析】由题意可得两直线斜率乘积为1-即可求解.【详解】直线1:3l y x =的斜率为3,直线2:1l y kx =+的斜率为k ,由题意可得:31k =-,解得:13k =-, 故选:A.20.A【分析】利用勾股定理计算即可【详解】16BD ===故选:A21.C【分析】利用零点存在性定理判断即可.【详解】因为函数f (x )=2x -5是单调递增函数,且()210f =-<,()130f =>,即()()230f f <,所以函数f (x )=2x -5的零点所在的区间是(2, 3),故选:C.22.C【分析】分别求出直线与两坐标轴交点A ,B 的坐标,即可求解.【详解】直线:40l x y +-=中,令0x =可得4y =,令0y =可得4x =,所以()4,0A 、()0,4B ,所以OAB 的面积为14482⨯⨯=, 故选:C.23.D【分析】直接利用向量垂直的坐标表示列方程求解即可.【详解】因为(4,2),(,2)a b x =-=且a b ⊥,所以42201x x -⨯=⇒=,故选:D.24.B【分析】由勾股定理判断即可【详解】因为a =1, b =2,c =所以222+=a b c ,则∶ABC 为直角三角形故选:B25.A【分析】频率分布直方图求前面两组的频率即可【详解】由频率分布直方图可知,该同学平均每天收看时间不少于...2小时的概率为0.4+0.5=0.9, 故选:A26.D【分析】根据一元二次不等式的解法即可求解.【详解】()20x x -=的两根为0,2,所以原不等式的解集为:(][),02,-∞+∞,故选:D.27.C【分析】由重要不等式222a b ab +≥即可求解.【详解】由重要不等式可得:2222a b ab +≥=,当且仅当1ab a b =⎧⎨=⎩即11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩时等号成立, 所以22a b +的最小值为2,故选:C.28.A【分析】判断直线过圆心,可得弦长等于直径.【详解】圆O ∶x 2+y 2=9圆心为原点,半径为3,圆心在直线y =x 上,所以A , B 两点的距离等于直径的长,即||236AB =⨯=,故选:A.29.C【分析】由题意可得log 31a =,从而可求出a 的值,【详解】解:因为1a >,所以函数()log a f x x =在区间[1,3]上为增函数,因为函数()log a f x x =(a >1)在区间[1,3]上的最大值是1,所以log 31a =,解得3a =,故选:C30.C【分析】结合三角形面积公式直接计算即可.【详解】 由三角形面积公式in 12s S ab C =得,124sin 23ABC S π=⨯⨯⨯= 故选:C31.A【分析】直接利用三角函数图象的平移变换规律求解即可.【详解】 为了得到函数sin 6y x π⎛⎫=+ ⎪⎝⎭, x ∶R 的图象, 只需把函数y =sin x , x ∶R 的图象上所有的点向左平移6π个单位长度, 故选:A.32.B【分析】先根据斜率相等判断两直线平行,再根据两平行线间距离公式即可求解.【详解】由1:20l x y ++=可得直线1l 斜率为1-,2:0l x y +=斜率为1-, 所以1l 与2l 平行,所以1l 与2l = 故选:B.33.B【分析】直接由平面向量的模长公式计算即可【详解】因为向量,a b 满足||1a =,||2b =,,a b 的夹角为90°所以()222||214a b a b a a b b +=+=+⋅+=+故选:B34.D【分析】将原函数配方,求出最小值列方程求解即可.【详解】f (x )=x 2 +2x +m ()2111x m m =++-≥-,当=1x -时,函数f (x )的最小值为1m -,所以101m m -=⇒=,故选:D.35.B【分析】根据题意分析出关于x 的方程()()20f x f x +-+=有且仅有四个互不相等的实根,可转化为()222,0222,0x x x g x x x x ⎧++>⎪⎪=⎨⎪--+<⎪⎩与y =m 有四个不同的交点,在同一个坐标系作出()y g x =和y =m 的图像,即可求出实数m 的取值范围.【详解】当0x ≥时,()()20f x f x +-+=可化为22220x mx x x -+++=,x =0显然不成立,故0x >时,222m x x=++ 当0x <时,()()20f x f x +-+=可化为2222x x mx -+=, 所以222m x x=--+ 记函数()222,0222,0x x x g x x x x ⎧++>⎪⎪=⎨⎪--+<⎪⎩,由()()g x g x -=知,函数()y g x =为偶函数. 要使关于x 的方程()()20f x f x +-+=有且仅有四个互不相等的实根,只需()y g x =和y =m 有四个不同的交点.在同一个坐标系作出()y g x =和y =m 的图像如图所示:所以:m >6即实数m 的取值范围是(6, +∞).故选:B【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.36.13【分析】结合等比数列前n 项和公式计算即可.【详解】由等比数列前n 项和公式得,3313(1)1(13)13113a q S q -⨯-===--. 故答案为:1337.1【分析】按照框图运行程序即可求解.【详解】当2x =,3y =时,0xy ≥成立,22231S x y =-=⨯-=,输出S 的值是1,故答案为:1.38.0【分析】由约束条件作出可行域,如图,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数即可.【详解】由约束条件作出可行域,如图,直线33z x y y x z =-⇒=-,由图可知,3y x z =-过点(0)0,时,直线在y 轴上的截距最大,z 取得最小值0. 故答案为:039.-1【分析】根据题意可知, ()02f f π⎛⎫= ⎪⎝⎭,代入计算即可求解. 【详解】 由直线4x π=是函数()sin cos f x m x x =-的一条对称轴,得()02f f π⎛⎫= ⎪⎝⎭, 即sin 0cos0sincos 22m m ππ-=-,因此1m =-.故答案为:1-.40.8y x=()24x ≤≤ 【分析】根据三角形的面积公式以及2ABC ADE SS =列方程即可求解. 【详解】因为ABC 是边长为4的等边三角形, 所以144sin 60432ABC S , 因为DE 将ABC 分成面积相等的两部分, 所以243ABC ADE S S ,可得23ADE S ,由三角形面积公式可得:11sin 60sin 602322AD AE xy ==,即8xy =, 由图分析可得:当点D 在AB 边上中点时,点E 与点C 重合,此时x 取最小值2, 所以24x ≤≤所以y 关于x 的函数解析式为:8y x =()24x ≤≤. 故答案为:8y x =()24x ≤≤.41.(12;(2 【分析】(1)由同角三角函数基本关系即可求解.(2)由两角差的正弦公式结合(1)即可求解.【详解】(1)因为cos α=,α为锐角,所以sin 0α>所以sin α=(2)由(1)知sin α=所以()sin 30sin cos30cos sin30ααα-=-12==42.(1)证明见解析;(2【分析】(1)先证明CE //DA 1,再利用线面平行的判定定理即可证明; (2)利用线面垂直的判定定理的判定定理证明BF ∶平面CAA 1D ,然后求出直角梯形CAA 1D 的面积,利用锥体体积公式即可求解.【详解】(1)在三棱柱111ABC A B C 中,AA 1 //CC 1,AA 1= CC 1 因为D ,E 分别是CC 1, AA 1的中点,所以CD //EA 1,CD = EA 1所以四边形CEA 1D 是平行四边形.所以CE //DA 1又因为CE ⊄平面BDA 1,DA 1 ⊂平面BDA 1所以CE //平面BDA 1.(2)设F 为AC 的中点,又∶ABC 为正三角形, 所以BF ∶AC .在三棱柱ABC -A 1B 1C 1中,AA 1//BB 1.因为BB ∶平面ABC ,所以AA 1∶平面ABC .又BF ⊂平面ABC所以AA 1∶BF .又BF ∶AC ,AA 1∩AC =A所以BF ∶平面CAA 1D .因此BF 是四棱锥B -CAA 1D 的高,因为正∶ABC 的边长为2,所以BF =.在三棱柱111ABC A B C 中,1112,AA CC BB ===,又D 是CC 1的中点,所以CD =1.于是直角梯形CAA 1D 的面积111()(12)2322S CD AA AC =+⋅=⨯+⨯=所以111333B CAA D V S BF -=⋅⋅=⨯=所以四棱锥B -CAA 1D43.(1)(1)2n n n S +=;(2)当12p =, q =0时, z 取得最小值3. 【分析】 (1)由353,5.a a =⎧⎨=⎩列方程组求出1,0.p q =⎧⎨=⎩,可得通项公式,再利用等差数列的求和公式可得答案; (2)设a 2=x ,a 4=y ,可得223z x y ≥+-2142()3()() 3.3x y x y x y=+-=++-利用基本不等式等号成立的条件列方程求解即可.【详解】 (1)因为353,5.a a =⎧⎨=⎩又n a pn q =+, 所以33,5 5.p q p q +=⎧⎨+=⎩解得1,0.p q =⎧⎨=⎩所以n a n =. 于是数列{an }是首项a 1=1,公差d =1的等差数列.所以数列{an }的前项和(1)2n n n S +=(2)设a 2=x ,a 4=y , 由已知有143x y +=,22.2y z x =+ 又an >0,n ∶N *, 所以x =a 2>0, y =a 4>0. 于是2222221(1)(2)322322y z x x y x y =+=+++-≥+- (当且仅当x =1, y =2时,等号成立.)214242()3()()35() 3.33y x x y x y x y x y ⎡⎤=+-=++-=++-⎢⎥⎣⎦因为x >0, y >0,所以4 4.y x x y +≥=. (当且仅当4y x x y =,即y =2x 时,等号成立) 又x =1, y =2时满足y =2x . 则2425()3(54)3 3.33y x z x y ⎡⎤≥++-≥+-=⎢⎥⎣⎦因为22a p q x =+=,44a p q y =+=,所以2p + q =1, 4p +q =2, 解得12p =,q = 0. 所以当且仅当12p =,q =0时,∶ z 取得最小值3.。
安徽省2020年中考数学试题(解析版)
【答案】75米
【解析】
【分析】
设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果.
【详解】解:设山高CD=x米,则在Rt△BCD中, ,即 ,
∴ ,
在Rt△ABD中, ,即 ,
故选:B.
【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.
8.如图, 中, ,点 在 上, .若 ,则 的长度为()
A. B。 C。 D。
【答案】C
【解析】
【分析】
先根据 ,求出AB=5,再根据勾股定理求出BC=3,然后根据 ,即可得cos∠DBC=cosA= ,即可求出BD.
【详解】解: 矩形 , 在 上,
把 代入:
把 代入:
由题意得:
解得: (舍去)
故答案为:
【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.
14。在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 沿过点 的直线折叠,使得点 落在 上的点 处,折痕为 ;再将 分别沿 折叠,此时点 落在 上的同一点 处.请完成下列探究:
∴四边形 是菱形,
∴OA=AB=OB,OA∥BC,
∴△OAB是等边三角形,
∴∠OAB=60º,
∴∠ABC=120º,
真命题;
C.∵ ,
∴∠AOC=120º,不能判断出弦 平分半径 ,
假命题;
D.只有当弦 垂直平分半径 时,半径 平分弦 ,所以是
假命题,
2020考研数学一真题及答案解析
I xf xy 2x ydydz yf (xy) 2y xdzdx zf xy z dxdy
.
【详解】将曲面 Z x2 y2 向 xoy 面投影得 Dxy
Dxy 为1
x2
y2
4
,又
Z
' x
x x2
y2
,
Z
' y
y x2 y2
I
{[ xf
(
xy)
又 G(0) G(1) 0 ,从而 G(x) 0 ,即 f (x) Mx , 0 x 1 .
因此 f(1) M ,从而 M 0 .
综上所述,最终 M 0
(20)(本题满分 11 分)
设二次型
f
x1, x2
x12
4 x1x2
4 x22
经正交变化
x1 x2
Q
y1 y2
化为二次型
,
AC A
1
B2 =3>0 0
x y
1 6 1 12
,为极小值点
f (1 , 1 ) 1 极小值为 6 12 216
(16)(本题满分 10 分)
I
计算
L
4x 4x2
y y
2
dx
x y 4x2 y2
dy
,其中
L为
x2
y2
2
,方向为逆时针方向.
【详解】补曲线 L1 : 4x2 y2 2 ,逆时针方向
(C)3 可由1 ,2 线性表示
(D)1,2 ,3 线性无关
【答案】(C).
(7)
PA
PB
PC
1 4
,
P AB
0,
P AC
江西省2020年中等学校招生考试数学样卷一(含答案)
江西省2020年中等学校招生考试数学样卷试题卷(一)说明:本卷共有六大题,23小题,满分120分,考试时间120分钟。
一、选择题(本大题共6小题,每小题3分,共18分。
每小题只有一个正确选项)1.计算:|﹣2|=( )A .﹣2B .2C .21D .—21 2.下图是由圆柱与半球组成的几何体,则这个几何体的俯视图为( )3.数轴上表示数215 的点与下列哪一点的距离最近? ( ) A . -1 B .0C .1D .2 4.某重点高中直升了一批品学兼优的初中毕业生,他们中不同年龄的人数见下表:年龄/岁14 15 16 17 人数 7 16 19 3关于这组年龄的数据,以下说法中正确的是( )A .平均数是15B .中位数是16C .众数是16D .方差是85.如图,在平面直角坐标系中,△AB C ≌△DOE ,点0(0,0), E (2,0),C (0,3),将△ABC 沿着某一直线平移,△ABC 的一边与△DOE 的一边重合。
下列叙述中错误的是( )A .将△ABC 向右平移1个单位可得AC 与OD 重合B .将△ABC 向右平移3个单位可得AB 与DE 重合C .将△ABC 向右平移2个单位,再向下平移3个单位可得BC与OE 重合D .将△ABC 沿着直线y = -23x 平移15个单位可得BC 与OE 重合 6.已知抛物线C :y =ax 2 -2ax +a -1,直线L :y =a -1,下列说法中正确的是( )A .直线L 与抛物线C 没有交点B .直线L 与抛物线C 有一个交点C .直线L 与抛物线C 必有一个交点在x 轴上D .直线L 与抛物线C 必有一个交点在y 轴上二、填空题(本大题共6小题,每小题3分,共18分)7.在2019年庆祝新中国成立70周年间兵式上,参加群众游行的人数约为10万。
10万可用科学记数法表示为___________8.分解因式:a 3-a =___________9.如图,AB // CD ,CA 平分∠BCD 。
2020年四川省绵阳市高考数学一诊试卷(理科)(解析版)
2020年四川省绵阳市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={x∈N*|x≤3},B={x|x2﹣4x≤0},则A∩B=()A.{1,2,3}B.{1,2}C.(0,3]D.(3,4]2.若b<a<0,则下列结论不正确的是()A.B.ab>a2C.|a|+|b|>|a+b|D.3.下列函数中的定义域为R,且在R上单调递增的是()A.f(x)=x2B.C.f(x)=ln|x|D.f(x)=e2x 4.等差数列{a n}的前n项和为S n,若a3=2,S3=3,则a6=()A.4B.5C.10D.155.已知函数,若f(﹣m)=2,则f(m)=()A.﹣2B.﹣1C.0D.6.已知命题p:函数的最小值为;命题q:若向量,,满足•=•,则=.下列正确的是()A.¬p∧q B.p∨q C.p∧¬q D.¬p∧¬q 7.若,b=3﹣0.8,c=ln3,则a,b,c的大小关系()A.b>c>a B.c>a>b C.c>b>a D.a>c>b8.已知x,y满足线性约束条件,则z=2x+y的最小值为()A..4B..2C..1D.9.设函数f(x)=ae x﹣lnx(其中常数a≠0)的图象在点(1,f(1))处的切线为l,则l 在y轴上的截距为()A.1B.2C.ae﹣1D.1﹣2ae10.某数学小组进行社会实践调查,了解某公司为了实现1000万元利率目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg7≈0.845)()A.y=0.25x B.y=1.002xC.y=log7x+1D.11.函数在上单调递增,且图象关于x=﹣π对称,则ω的值为()A.B.C.2D.12.在△ABC中,角A为,角A的平分线AD交BC于点D,已知,且,则在方向上的投影是()A.1B.C.3D.二、选择题:本大题共4小题,每小题5分.共20分.13.已知函数f(x)的定义域为R,且满足f(x)=f(x+2),当x∈[0,2]时,f(x)=e x,则f(7)=.14.已知向量=(﹣2,2),向量的模为1,且|﹣2|=2,则与的夹角为.15.2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,状军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西60°的方向上,1分钟后第二次观测到该飞机在北偏东75°的方向上,仰角为30°,则直升机飞行的高度为(结果保留根号).16.若函数有且仅有一个零点,则实数m的取值范围.三、填空题:共70分.17.已知函数f(x)=(cos x﹣sin x)2﹣2sin2x.(1)求函数f(x)的最小正周期与单调递减区间;(2)若f(x0)=﹣1,且,求x0的值.18.已知数列{a n}满足,且a1=1,a4=7,数列{b n}的前n项和.(1)求数列{a n}{b n}的通项公式;(2)设,求数列{c n}的前n项和T n.19.已知△ABC中三个内角A,B,C满足.(1)求sin B;(2)若,b是角B的对边,,求△ABC的面积.20.已知函数.(1)求函数f(x)在区间[1,+∞)上的值域;(2)若实数x1,x2均大于1且满足,求f(x1x2)的最小值.21.已知函数f(x)=e x﹣ax2,a∈R,x∈(0,+∞).(1)若f(x)存在极小值,求实数a的取值范围;(2)若,求证:f(x)>ax(lnx﹣x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点0为极点,x的正半轴为极轴,取相同长度单位建立极坐标系,直线l的极坐标方程.(1)求曲线C的普通方程与极坐标方程;(2)设射线OM:与曲线C交于点A,与直线l交于点B,求线段AB的长.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣m|+|x+1|+5(m∈R).(1)当m=2时,求不等式f(x)≥0的解集;(2)若f(x)≥﹣2,求实数m的取值范围.2020年四川省绵阳市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={x∈N*|x≤3},B={x|x2﹣4x≤0},则A∩B=()A.{1,2,3}B.{1,2}C.(0,3]D.(3,4]【解答】解:由题意得:A={x∈N*|x≤3}={1,2,3},B={x|x2﹣4x≤0}={x|0≤x≤4},∴所以A∩B={1,2,3},故选:A.2.若b<a<0,则下列结论不正确的是()A.B.ab>a2C.|a|+|b|>|a+b|D.【解答】解:∵b<a<0,∴<,ab>a2,由函数y=在R上单调递增,可得:<.设a=﹣2,b=﹣1时,|a|+|b|=|a+b|与C矛盾.因此只有C错误.故选:C.3.下列函数中的定义域为R,且在R上单调递增的是()A.f(x)=x2B.C.f(x)=ln|x|D.f(x)=e2x【解答】解:由f(x)=的定义域为[0,+∞),不符合题意,C:函数的定义域x≠0,不符合题意,A:y=x2在(﹣∞,0]单调递减,在[0,+∞)单调递增,不符合题意,故选:D.4.等差数列{a n}的前n项和为S n,若a3=2,S3=3,则a6=()A.4B.5C.10D.15【解答】解:由题意得,解得a1=0,d=1,∴a6=a1+5d=5.故选:B.5.已知函数,若f(﹣m)=2,则f(m)=()A.﹣2B.﹣1C.0D.【解答】解:∵,∴f(﹣x)+f(x)=+==1,∵f(﹣m)=2,∴f(m)=﹣1.故选:B.6.已知命题p:函数的最小值为;命题q:若向量,,满足•=•,则=.下列正确的是()A.¬p∧q B.p∨q C.p∧¬q D.¬p∧¬q【解答】解:由题意得:命题p:函数,由基本不等式成立的条件,y≥2=2,知等号取不到,所以p命题是假的;命题q:若向量,,满足=,∴,,有可能是零向量或者,所以q是错误的.∴¬p∧q,p∨q,p∧¬q,是假命题,¬p∧¬q为真命题;故选:D.7.若,b=3﹣0.8,c=ln3,则a,b,c的大小关系()A.b>c>a B.c>a>b C.c>b>a D.a>c>b【解答】解:由指数函数y=在R上单调递减,又,b=3﹣0.8=,∴1>a>b.c=ln3∈(1,2)∴c>a>b.故选:B.8.已知x,y满足线性约束条件,则z=2x+y的最小值为()A..4B..2C..1D.【解答】解:先根据x,y满足线性约束条件画出可行域,平移直线0=2x+y,当直线z=2x+y过点B(0,1)时,z取最小值为1.故选:C.9.设函数f(x)=ae x﹣lnx(其中常数a≠0)的图象在点(1,f(1))处的切线为l,则l 在y轴上的截距为()A.1B.2C.ae﹣1D.1﹣2ae【解答】解:由f(x)=ae x﹣lnx,得,∴f′(1)=ae﹣1,又x=1时,f(1)=ae,∴f(x)在点(1,f(1))处的切线方程为y﹣(ae)=(ae﹣1)(x﹣1),取x=0,得在y轴上截距y=(ae﹣1)(0﹣1)+ae=1.故选:A.10.某数学小组进行社会实践调查,了解某公司为了实现1000万元利率目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg7≈0.845)()A.y=0.25x B.y=1.002xC.y=log7x+1D.【解答】解:由题意得:有两个条件①奖金y≤5;②奖金y≤0.25x.且10≤x≤1000.A选项,当x≥20时,y≥5,不符合题意.B选项,当x=1000时,1.0021000≈7.37,也超出了5,不符合题意.D选项,当x=1000时,=y=tan(2)是一个负数,不符合题意.故选:C.11.函数在上单调递增,且图象关于x=﹣π对称,则ω的值为()A.B.C.2D.【解答】解:要使函数的递增,则,化简得:,已知在单增,所以.又因为图象关于x=﹣π对称,,所以,因为ω>0,此时k=﹣1,所以,故选:A.12.在△ABC中,角A为,角A的平分线AD交BC于点D,已知,且,则在方向上的投影是()A.1B.C.3D.【解答】解:由λ=﹣可得:=λ+,∵B,C,D三点共线,故λ+=1,即λ=.∴=+.以A为原点,以AB为x轴建立平面直角坐标系如图所示,则D(3,),设B(m,0),C(n,n),由=+得:,解得m=3,n=3.故B(3,0),∴在上的投影为|AB|cos30°=.故选:D.二、选择题:本大题共4小题,每小题5分.共20分.13.已知函数f(x)的定义域为R,且满足f(x)=f(x+2),当x∈[0,2]时,f(x)=e x,则f(7)=e.【解答】解:因为f(x)=f(x+2),周期T=2,当x∈[0,2]时,f(x)=e x,∴f(7)=f(1)=e.故答案为:e.14.已知向量=(﹣2,2),向量的模为1,且|﹣2|=2,则与的夹角为.【解答】解:由已知得:||=2,||=1,|﹣2|=2,2﹣4+42=4,∴设与的夹角为θ,θ∈[0,π],=2=2•1•cosθ,∴cosθ=,θ=,故答案为:.15.2019年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,状军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升机以千米/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西60°的方向上,1分钟后第二次观测到该飞机在北偏东75°的方向上,仰角为30°,则直升机飞行的高度为(结果保留根号).【解答】解:如图由题上条件可得线AC平行于东西方向,∠ABD=60°,∠CBD=75°;AC=72;∴∠ABC=135°;∠BAC=30°;在△ABC中,=⇒=⇒BC==72.如图D1C⊥平面ABC,在直角△BD1C中,tan∠D1BC==⇒h=BC•tan∠D1BC=72×tan∠30°=.故答案为:.16.若函数有且仅有一个零点,则实数m的取值范围{m|m=﹣或m≥0}.【解答】解:令u(x)=x﹣lnx,x>0;则u'(x)=,∴0<x<1时,u'(x)<0;x>1时,u'(x)>0;于是u(x)=x﹣lnx在(0,1)上递减,在(1,+∞)上递增;最小值为u(1)=1>0,∴∀x∈(0,+∞),x﹣lnx>0;由f(x)=0,即+m(lnx﹣x)﹣x=0,解得:m=;设g(x)=,y=m;由于函数有且仅有一个零点;所以直线y=m与函数g(x)有且只有一个交点;由g'(x)=,此时不能完全判断导函数值的正负;再令h(x)=x+2﹣2lnx,得h'(x)=,当x∈(0,2)时,h'(x)<0;当x∈(2,+∞)时,h'(x)>0;于是,h(x)在(0,2)上递减,(2,+∞)上递增.那么h(x)≥h(2)=2(2﹣ln2)>0.由此,g'(x)的正负只同x﹣1有关,由此得g(x)在(0,1)上递减,在(1,+∞)上递增,且g(x)的极小值为g(1)=﹣;又x→0时,g(x)→0;x→+∞时,g(x)→+∞;g(x)图象大值如图所示,结合g(x)的图象,得m≥0或m=﹣.故答案为:{m|m=﹣或m≥0}.三、填空题:共70分.17.已知函数f(x)=(cos x﹣sin x)2﹣2sin2x.(1)求函数f(x)的最小正周期与单调递减区间;(2)若f(x0)=﹣1,且,求x0的值.【解答】解:(1)函数f(x)=(cos x﹣sin x)2﹣2sin2x=1﹣2sin x cos x﹣2•=cos2x﹣sin2x=cos(2x+),所以函数f(x)的最小正周期为T==π,又函数y=cos x的单调减区间为[2kπ,2kπ+π],k∈Z;令2kπ≤2x+≤2kπ+π,k∈Z;解得kπ﹣≤x≤kπ+,k∈Z;所以f(x)的单调递减区间为[kπ﹣,kπ+],k∈Z;(2)若f(x0)=﹣1,则cos(2x0+)=﹣1,即cos(2x0+)=﹣,再由,可得2x0+∈(﹣,﹣);所以2x0+=﹣,解得x0=﹣.18.已知数列{a n}满足,且a1=1,a4=7,数列{b n}的前n项和.(1)求数列{a n}{b n}的通项公式;(2)设,求数列{c n}的前n项和T n.【解答】解:(1)数列{a n}满足,可得a n+2﹣a n+1=a n+1﹣a n,即{a n}为等差数列,a1=1,a4=7,可得公差d==2,则a n=1+2(n﹣1)=2n﹣1;数列{b n}的前n项和,可得b1=S1=4﹣2=2;n≥2时,b n=S n﹣S n﹣1=2n+1﹣2﹣2n+2=2n,则b n=2n,n∈N*;(2)=22n﹣1+n,则前n项和T n=(2+8+…+22n﹣1)+(1+2+…+n)=+n(n+1)=(4n﹣1)+(n2+n).19.已知△ABC中三个内角A,B,C满足.(1)求sin B;(2)若,b是角B的对边,,求△ABC的面积.【解答】解:(1)∵.sin(A+C)=sin B,∴cos B=sin B+1,又sin2B+cos2B=1,化为:3sin2B+2sin B﹣1=0,1>sin B>0.联立解得sin B=.(2),又A+B+C=π,可得:2A=﹣B,C为钝角.∴sin2A=cos B.又,∴===3,∴a=3sin A,c=3sin C,B为锐角,∴cos B=.∴△ABC的面积S=ac sin B=×3sin A×3sin C×=sin A sin(+A)=sin A cos A=sin2A=cos B=×=.∴∴△ABC的面积S为.20.已知函数.(1)求函数f(x)在区间[1,+∞)上的值域;(2)若实数x1,x2均大于1且满足,求f(x1x2)的最小值.【解答】解:(1)由题意得f(x)=,由x≥1,知lnx≥0,于是lnx+2≥2,∴0<,即﹣2≤﹣,∴﹣1≤1﹣<1,∴f(x)的值域为[﹣1,1).(2)f(x1)+f(x2)=1﹣+1﹣=,所以,又x1>1,x2>1,∴lnx1x2=lnx1+lnx2=lnx1+2+lnx2+2﹣4=,=≥,当且仅当,即x1=x2时,取“=”,故(x1x2)min=e,∵f(x)在(1,+∞)上是增函数,∴f(x1x2)min=.21.已知函数f(x)=e x﹣ax2,a∈R,x∈(0,+∞).(1)若f(x)存在极小值,求实数a的取值范围;(2)若,求证:f(x)>ax(lnx﹣x).【解答】解:(1):∵f′(x)=e x﹣2ax=x(﹣2a),令H(x)=,则H′(x)=,当0<x<1时,H′(x)<0,H(x)单调递减,且x→0时,H(x)→+∞,当x>1时,H′(x)>0,H(x)单调递增,且x→+∞时,H(x)→+∞,∴H(x)min=H(1)=e,①当2a≤e即a时,f′(x)≥0,f(x)在(0,+∞)上单调递增,没有极值,②当a>时,存在0<x1<1<x2,使得f′(x1)=f′(x2)=0,当x∈(0,x1),(x2,+∞)时,f′(x)>0,f(x)单调递增,当x∈(x1,x2)时,f′(x)<0,f(x)单调递减,∴x2是f(x)的极小值,综上可得,a(2)要证f(x)>ax(lnx﹣x),即证e x>axlnx,①当0<x≤1时,e x>1,axlnx≤0,显然成立,②当x>1时,xlnx>0,结合已知0<a可得,0<axlnx,于是问题转化为,即证,令g(x)=,则g′(x)=,令h(x)=2e x﹣2(x﹣1)﹣x,则h′(x)=2xe x﹣2﹣1,且在(0,+∞)上单调递增,∵<0,h′(2)=3>0,存在x0∈(1,2)使得h(x0)=0,即=1,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,又h(1)=﹣1<0,h(2)=0,故当x∈(1,2)时,g′(x)<0,g(x)单调递减,当x∈(2,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)≥g(2)=1﹣ln2>0,故g(x)>0,得证.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点0为极点,x的正半轴为极轴,取相同长度单位建立极坐标系,直线l的极坐标方程.(1)求曲线C的普通方程与极坐标方程;(2)设射线OM:与曲线C交于点A,与直线l交于点B,求线段AB的长.【解答】解:(1)由,两边平方作和得,,∴曲线C的普通方程为x2+y2=4.∵x2+y2=ρ2,∴ρ2=4,则ρ=2;(2)把代入,可得,解得.即B点的极径为.由(1)得ρA=2,∴|AB|=|ρA﹣ρB|=.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣m|+|x+1|+5(m∈R).(1)当m=2时,求不等式f(x)≥0的解集;(2)若f(x)≥﹣2,求实数m的取值范围.【解答】解:(1)当m=2时,f(x)=|x﹣2|+|x+1|=5,当x≤﹣1,f(x)=﹣(x﹣2)﹣(x+1)﹣5≥0,解得x≤﹣2;当﹣1<x<2,f(x)=﹣(x﹣2)+x+1﹣5≥0,无解;当x≥2时,f(x)=x﹣2+x+1﹣5≥0,解得x≥3;综上,不等式的解集为(﹣∞,﹣2]∪[3,+∞).(2)由f(x)=|x﹣m|+|x+1|﹣5≥|(x﹣m)﹣(x+1)|﹣5=|m+1|﹣5≥﹣2,所以|m+1|≥3,即m≥2或者m≤﹣4.。
云南省2019-2020学年年1月普通高中学业水平考试数学试题(原卷版)学考真题
24.已知圆 C : x2 + y2 − 2x + 4y − 4 = 0 和直线 l : 3x − 4y + 9 = 0 ,点 P 是圆 C 上的动点.
(1)求圆 C 的圆心坐标及半径;
(2)求点 P 到直线 l 的距离的最小值.
25.已知函数 f (x) = 1 sin 2x + 3 cos 2x .
云南省 2020 年 1 月普通高中学业水平考试数学试卷
选择题(共 57 分) 一、选择题:本大题共 19 个小题,每小题 3 分,共 57 分.在每个小题给出的四个选项中,只 有一项是符合题目要求的,请在答题卡相应的位置上填涂
1.已知集合 S={0,1,2},T ={2,3},则 S T = ( )
A. -2
B. 1
C. 2
)
D. 4D. − 12 Nhomakorabea2
7. sin 790 cos340 − cos790 sin 340 的值为( )
A. 1
B. 3
C. 2
1
D.
2
2
2
8.某人在 5 次上班途中所花的时间(单位:分钟)分别为 x , y ,10, 11,9.已知这组数据的平均数为 10,则 x + y 的值为( )
ab
9
A.
2
B. 3 + 2 3
C. 4 + 3
D. 6
非选择题(共 43 分) 二、填空题:本大题共 4 个小题,每小题 4 分,共 16 分.请把答案写在答题卡相应的位置上.
20.昆明市某公司有高层管理人员、中层管理人员、一般员工共 1000 名,现用分层抽样的方法从公司的员工 中抽取 80 人进行收入状况调查.若该公司有中层管理人员 100 名,则从中层管理人员中应抽取的人数为 ________________.
2023年浙江省普通高校招生学业水平考试数学试卷(1月份)+答案解析(附后)
2020年浙江省普通高校招生学业水平考试数学试卷(1月份)一、单选题(本大题共18小题,共54分。
在每小题列出的选项中,选出符合题目的一项)1.已知集合,,则( )A. B. C. D.2.( )A. B. C. D.3.( )A. 0B. 1C.D.4.圆的半径是( )A. 2B. 3C. 6D. 95.不等式的解集是( )A. B.C. 或D. 或6.椭圆的焦点坐标是( )A. ,B. ,C. ,D. ,7.若实数x,y满足不等式组则的最大值是( )A. 1B. 2C. 3D. 48.已知直线平面,,那么过点P且平行于l的直线( )A. 只有一条,不在平面内B. 只有一条,在平面内C. 有两条,不一定都在平面内D. 有无数条,不一定都在平面内9.过点且与直线垂直的直线方程是( )A. B. C. D.10.在中,角A,B,C所对的边分别是a,b,c,若,,,则( )A. 1B.C. 2D.11.函数的图象大致是( )A.B.C.D.12.某几何体的三视图如图所示单位:,则该几何体的体积单位:是( )A.B.C. 1D. 213.设a,,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件14.设点、分别是双曲线、的左、右焦点.若双曲线上存在一点P,使得,且,则该双曲线的离心率是( )A. B. C. D.15.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如右图所示,那么点P所走的图形是( )A. B. C. D.16.设数列满足,,,,则满足的n 的最大值是( )A. 7B. 9C. 12D. 1417.设点A ,B 的坐标分别为,,P ,Q 分别是曲线和上的动点,记,,( )A. 若,则B. 若,则C.若,则D. 若,则18.如图,在圆锥SO 中,点A 、B 是上的动点,是的直径,点M 、N 是线段SB 的两个三等分点,,记二面角、的平面角分别为、,若,则的最大值是( )A. B. C. D.二、填空题(本大题共4小题,共15分)19.设等比数列的前n 项和为,若,,则__________,__________.20.设,分别是平面,的法向量,,若,则实数__________.21.在中国古代数学著作《九章算术》中,鳖臑ēnà是指四个面都是直角三角形的四面体.如图,在直角中,AD为斜边BC上的高,,,现将沿AD翻折至的位置,使得四面体为一个鳖臑,则直线与平面ADC所成角的余弦值是__________.22.已知函数若存在,使得在上恰有两个零点,则实数b的最小值是__________.三、解答题(本大题共3小题,共31分。
四川省成都市高新区2020年中考数学一诊试卷(含解析)
2020年四川省成都市高新区中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.平行四边形D.圆2.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中红球的数量是()A.4B.5C.6D.73.如图所示的四棱柱的主视图为()A.B.C.D.4.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm5.某学习小组利用三角形相似测量学校旗杆的高度.测得身高为1.6米小明同学在阳光下的影长为1米,此时测得旗杆的影长为9米.则学校旗杆的高度是()A.9米B.14.4米C.16米D.13.4米6.已知反比例函数的图象经过点(2,3),那么下列各点在该函数图象上的是()A.(﹣,3)B.(2,﹣)C.(9,)D.(4,2)7.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°8.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形9.二次函数y=x2﹣2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是﹣2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点10.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若2a=3b,则a:b=.12.二次函数y=2(x﹣2)2﹣1的顶点坐标是.13.在△ABC中与△DEF中,已知===,则三角形△ABC与△DEF的周长之比为.14.如图:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B、D,依次连接A,B,C,D和BD.若AB=5,AC=8,则BD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=016.已知:如图,在▱ABCD中,BA=BD,M,N分别是AD和BC的中点.求证:四边形BNDM是矩形.17.2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.18.如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行3km达到B处(AB=3km),测得小岛C位于它的北偏东45°方向.小岛C 的周围8km内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?(参考数据:sin53°≈,cos53°≈,tan53°≈)19.如图,在平面直角坐标系xOy中,一次函数y=x﹣1与x轴交于点C,与反比例函数y =(k>0)交于点A(2,m)和点B.(1)求反比例函数表达式及点B的坐标;(2)点P是x轴上的一点,若△PAB的面积是6,求点P的坐标.20.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数的图象有公共点,则k1k20(填“>”、“=”或“<”).22.一元二次方程x2﹣3x﹣2=0的两根分别是m、n,则m3﹣3m2+2n=.23.如图,在菱形ABCD四个顶点的字母中,任取两个字母相互交换它们的位置,交换后能使字母A、B在同一条对角线上的概率是.24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA =6,OC=4,点Q是AB边上一个动点,过点Q的反比例函y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是.25.已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形A′B′C′D′,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如表:x(元)1011121314y(件)10090807060(1)求y与x之间的关系式;(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?27.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.28.在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C(0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.2020年四川省成都市高新区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.平行四边形D.圆【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、平行四边形不是轴对称图形,是中心对称图形;D、圆是轴对称图形,是中心对称图形.故选:D.2.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中红球的数量是()A.4B.5C.6D.7【解答】解:由题意可得,红球的概率为=70%,则这个口袋中红球的个数:10×70%=7(个),故选:D.3.如图所示的四棱柱的主视图为()A.B.C.D.【解答】解:由图可得,几何体的主视图是:故选:B.4.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm【解答】解:因为a,b,c,d是成比例线段,可得:d=cm,故选:A.5.某学习小组利用三角形相似测量学校旗杆的高度.测得身高为1.6米小明同学在阳光下的影长为1米,此时测得旗杆的影长为9米.则学校旗杆的高度是()A.9米B.14.4米C.16米D.13.4米【解答】解:∵同一时刻物高与影长成正比例.∴1.6:1=旗杆的高度:9,∴旗杆的高度为:14.4米.故选:B.6.已知反比例函数的图象经过点(2,3),那么下列各点在该函数图象上的是()A.(﹣,3)B.(2,﹣)C.(9,)D.(4,2)【解答】解:∵反比例函数的图象经过点(2,3),∴k=2×3=6.A、∵﹣×3=﹣6≠6,∴此点不在函数图象上;B、∵2×(﹣)=﹣6≠6,∴此点不在函数图象上;C、∵9×=6,∴此点在函数图象上;D、∵4×2=8≠6,∴此点不在函数图象上;故选:C.7.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°【解答】解:∵△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.8.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.9.二次函数y=x2﹣2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是﹣2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点【解答】解:A、a=1>0,则抛物线y=x2﹣2的开口向上,故本选项错误,不符合题意;B、当x=0时,函数的最小值是﹣2,故本选项错误,不符合题意;C、抛物线的对称轴为直线x=0,故本选项错误,不符合题意;D、当y=0时,x2﹣2=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,故本选项符合题意;故选:D.10.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若2a=3b,则a:b=3:2.【解答】解:∵2a=3b,∴a:b=3:2.故答案为:3:2.12.二次函数y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).【解答】解:二次函数y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1),故答案为:(2,﹣1).13.在△ABC中与△DEF中,已知===,则三角形△ABC与△DEF的周长之比为.【解答】解:∵===∴△ABC∽△DEF∴△ABC与△DEF的相似比为∵△ABC与△DEF的周长之比等于△ABC与△DEF的相似比∴△ABC与△DEF的周长之比为故答案为:.14.如图:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B、D,依次连接A,B,C,D和BD.若AB=5,AC=8,则BD=6.【解答】解:由作法得AB=AD=CB=CD=5,所以四边形ABCD为菱形;∵四边形ABCD为菱形,∴OA=OC=4,OB=OD,AC⊥BD,在Rt△AOB中,OB==3,∴BD=2OB=6.故答案为:6.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=0【解答】解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.16.已知:如图,在▱ABCD中,BA=BD,M,N分别是AD和BC的中点.求证:四边形BNDM是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,BA=DC,∵BA=BD,∴BA=BD=DC,∵M、N分别是AD和BC的中点,∴BM⊥AD,DM=AD,BN=BC,∴DM=BN,又∵DM∥BN,∴四边形BMDN是平行四边形,∵BM⊥AD,∴∠BMD=90°,∴四边形BMDN是矩形.17.2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补图如下:(2)根据题意得:1000×=50(人),答:该校对视力保护“非常重视”的学生人有50人;(3)画树状图如下:共有12种可能的结果,恰好抽到一男一女的结果有8个,则P(恰好抽到一男一女的)==.18.如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行3km达到B处(AB=3km),测得小岛C位于它的北偏东45°方向.小岛C 的周围8km内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点C作CD⊥AB,垂足为点D,由题意可得:∠ACD=53°,∠BCD=∠CBD=45°,故BD=CD,设BD=CD=x,则AD=3+x,在Rt△ACD中,tan∠ACD=,则tan53°=,故≈,解得:x≈9≥8,∴如果渔船不改变航向继续向东航行,渔船无触礁的危险.19.如图,在平面直角坐标系xOy中,一次函数y=x﹣1与x轴交于点C,与反比例函数y =(k>0)交于点A(2,m)和点B.(1)求反比例函数表达式及点B的坐标;(2)点P是x轴上的一点,若△PAB的面积是6,求点P的坐标.【解答】解:(1)把A(2,m)代入一次函数y=x﹣1,得m=2﹣1=1,∴A(2,1),把A(2,1)代入反比例函数y=(k>0),得k=2,∴反比例函数解析式为y=,解方程组得,,∴B(﹣1,﹣2);(2)设点P的坐标为(m,0),在y=x﹣1中,令y=0,得x=1,∴点C的坐标为(1,0),∵S△PAB =S△PAC+S△PBC=,∴|m﹣1|=4,∴m=5或﹣3,∴点P的坐标为(5,0)或(﹣3,0).20.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.【解答】解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数的图象有公共点,则k1k2>0(填“>”、“=”或“<”).【解答】解:∵正比例函数y=k1x的图象与反比例函数的图象有公共点,∴k1、k2同号,∴k1k2>0.22.一元二次方程x2﹣3x﹣2=0的两根分别是m、n,则m3﹣3m2+2n=6.【解答】解:由题意可知:m+n=3,mn=﹣2,m2=3m+2,∴m3=3m2+2m,∴原式=3m2+2m﹣3m2+2n=2(m+n)=6,故答案为:6.23.如图,在菱形ABCD四个顶点的字母中,任取两个字母相互交换它们的位置,交换后能使字母A、B在同一条对角线上的概率是.【解答】解:共有AB互换,AC互换,BC互换,AD互换,CD互换,BD互换6种情况,符合条件的是BC互换,AD互换2种情况,所以交换后能使字母A、B在同一条对角线上的概率是=;故答案为:.24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA =6,OC=4,点Q是AB边上一个动点,过点Q的反比例函y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是y=(x>0).【解答】解:∵四边形OABC是矩形,OA=6,OC=4,∴BC=OA=6,AB=OC=4,∴B(6,4),设P(,4),Q(6,),∴PC=,AQ=,∴PB=6﹣,BQ=4﹣,∴tan∠BQP===,∵tan∠BAC===,∴tan∠BQP=tan∠BAC,∴∠BQP=∠BAC,∴PQ∥AC,连接BE,∵将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,∴BH=EH,∴AQ=BQ=2,∴=2,∴k=12,∴反比例函数的解析式是y=,故答案为:y=.25.已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形A′B′C′D′,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是6.【解答】解:设矩形A′B′C′D′的长和宽分别为x、y,则,由①得:y=﹣x③,把③代入②得:x2﹣+=0,b2﹣4ac=﹣4×≥0,∴(n﹣3)2≥8,∵n是正整数,∴n的最小值是6,故答案为:6.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如表:x(元)1011121314y(件)10090807060(1)求y与x之间的关系式;(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?【解答】解:(1)设y与x的一次函数是y=kx+b,由表得:,解得:k=﹣10,b=200,∴y与x的一次函数是y=﹣10x+200;(2)根据题意得:w=(x﹣8)(﹣10x+200)=﹣(x﹣14)2+360,∴w是关于x的二次函数,且二次项系数为﹣1<0,∴当x=14时,w去掉最大值360,∴当每天销售单价定为14元时利润最大.27.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD =,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.【解答】(1)证明:∵,∠ABC=∠EBD=90°,∴∠ABE=∠CBD,∵AB=6,BC=3,EB=2,BD=,∴==2,∴△ABE∽△CBD.(2)解:如图,设DE交BC于M.∵AB∥DE,∠ABC=90°,∴∠DMB=∠ABC=∠DMC=90°,在Rt△DEB中,∵∠EBD=90°,BE=2,BD=,∴DE===5,BM===2,∴DM===1,∴CM=CD=1,CD=,∴∠CDM=∠DCM=45°,∵△ABE∽△CBD,∴==2,∠CDB=∠AEB,∴AE=2,∵∠AEB+∠PEB=180°,∴∠CDB+∠PEB=180°,∵∠EBD=90°,∴∠APC=90°,∴PE=PD=DE=,∴PC=PD﹣CD=MPA=PE+AE=,∴tan∠PAC==.(3)由(2)可知当点P与C重合时,PA的值最大,最大值PA=AC===3,如图,当AE在AB的下方且与⊙B相切时,∠CAP的值最大,此时PA=AC•cos∠CAP 的值最小,∵∠BEP=∠DPE=∠DBE=90°,∴四边形BEPD是矩形,∴BD=PE=,∵AE===4,∴PA的最小值为4﹣,28.在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C(0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为y=kx+b.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.【解答】解:(1)将C(0,﹣)代入y=a(x﹣3)(x+1),得﹣3a=﹣,∴a=,∴抛物线的函数表达式为y=(x﹣3)(x+1)=x2﹣x﹣;(2)①如图1,过点F作FN⊥DG,垂足为点N,在y=(x﹣3)(x+1)中,令y=0,得x1=3,x2=﹣1,∴B(3,0),设直线BC的解析式为y=mx﹣,将点B(3,0)代入y=mx﹣,得0=3m﹣,∴m=,∴直线BC的表达式为y=x﹣,∵抛物线y=(x﹣3)(x+1)的对称轴为x=1,∴D(1,0),∴CD==2,∴CD=BD=2,在Rt△COD中,tan∠ODC=,∴∠ODC=60°,∠CDB=120°,∵△DGF∽△BDC,∴DG=FG,∠DGF=120°,设DG=FG=2m,在Rt△NGF中,∠NGF=60°,FG=2m,∴NG=m,NF=m,∴F(1+m,3m),将点F(1+m,3m)代入y=(x﹣3)(x+1)中,得m1=﹣(不合题意,舍去),m2=,∴点F(5,4),∵EF∥BC,∴EF的表达式为y=x+b,将点F(5,4),代入y=x+b,得4=×5+b,∴b=,∴k=1,b=;②如图2,分别过点F、H、E作y轴的垂线,垂足分别为P、Q、S,联立,得点H(,),联立,得x2﹣3x﹣3﹣b=0,设点E、F的横坐标分别为x1,x2,则,由ES∥HQ∥FP,可得△MHQ∽△MES,△MHQ∽△MFP,∴==,==,∵﹣=,∴﹣=1,∴﹣=1,∴=﹣1,∴b=2.。
2020年陕西省中考数学试卷(附答案与解析)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2020年陕西省初中学业水平考试数 学一、选择题(本大题10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.18-的相反数是( )A .18B .18-C .118D .118-2.若23A =︒∠,则A ∠余角的大小是( )A .57︒B .67︒C .77︒D .157︒3.2019年,我国国内生产总值约为990 870亿元,将数字990 870用科学记数法表示为( )A .59.908710⨯B .49.908710⨯C .499.08710⨯D .399.08710⨯4.如图,是A 市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )A .4℃B .8℃C .12℃D .16℃5.计算:3223x y ⎛⎫-= ⎪⎝⎭( )A .632x y -B .63827x y C .63827x y -D .54827x y -6.如图,在33⨯的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC △的高,则BD 的长为( )ABCD7.在平面直角坐标系中,O 为坐标原点.若直线3y x =+分别与x 轴、直线2y x =-交于点A 、B ,则AOB △的面积为( )A .2B .3C .4D .68.如图,在ABCD 中,5AB =,8BC =.E 是边BC 的中点,F 是ABCD 内一点,且90BFC =︒∠.连接AF 并延长,交CD 于点G .若EF AB ∥,则DG 的长为 ( )A .52B .32C .3D .29.如图,ABC △内接于O ,50A =︒∠.E 是边BC 的中点,连接OE 并延长,交O 于点D ,连接BD ,则D ∠的大小为( )A .55︒B .65︒C .60︒D .75︒10.在平面直角坐标系中,将抛物线()()211y x m x m m =--+>沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限二.填空题(共4小题,每小题3分,共12分)11.计算:(22=________.12.如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则BDM ∠的度数是________.13.在平面直角坐标系中,点()2,1A -,()3,2B ,()6,C m -分别在三个不同的象限.若毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题---------------无-----------效------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)反比例函数()0ky k x=≠的图象经过其中两点,则m 的值为________. 14.如图,在菱形ABCD 中,6AB =,60B ∠=︒,点E 在边AD 上,且2AE =.若直线l 经过点E ,将该菱形的面积平分,并与菱形的另一边交于点F ,则线段EF 的长为________.三.解答题(共11小题,共78分,解答应写出过程)15.解不等式组:()36,25 4.x x ⎧⎨-⎩>>16.解分式方程:2312x x x --=-.17.如图,已知ABC △,AC AB >,45C ∠=︒.请用尺规作图法,在AC 边上求作一点P ,使45PBC =︒∠.(保留作图痕迹.不写作法)18.如图,在四边形ABCD 中,AD BC ∥,B C =∠∠.E 是边BC 上一点,且DE DC =.求证:AD BE =.19.王大伯承包了一个鱼塘,投放了2 000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(1)这20条鱼质量的中位数是________,众数是________. (2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN .他俩在小明家的窗台B 处,测得商业大厦顶部N 的仰角∠1的度数,由于楼下植物的遮挡,不能在B 处测得商业大厦底部M 的俯角的度数.于是,他俩上楼来到小华家,在窗台C 处测得大厦底部M 的俯角2∠的度数,竟然发现∠1与2∠恰好相等.已知A ,B ,C 三点共线,CA AM ⊥,NM AM ⊥,31m AB =,18m BC =,试求商业大厦的高MN .21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y (cm )与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种瓜苗长到大约80cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率; (2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题---------------无-----------效------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)23.如图,ABC △是O 的内接三角形,75BAC =︒∠,45ABC =︒∠.连接AO 并延长,交O 于点D ,连接BD .过点C 作O 的切线,与BA 的延长线相交于点E . (1)求证:AD EC ∥;(2)若12AB =,求线段EC 的长.24.如图,抛物线2y x bx c =++经过点()3,12和()2,3--,与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l . (1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与AOC △全等,求满足条件的点P ,点E 的坐标.25.问题提出(1)如图1,在Rt ABC △中,90ACB =︒∠,AC BC >,ACB ∠的平分线交AB 于点D .过点D 分别作DE AC ⊥,DF BC ⊥.垂足分别为E ,F ,则图1中与线段CE 相等的线段是________. 问题探究(2)如图2,AB 是半圆O 的直径,8AB =.P 是AB 上一点,且2PB PA =,连接AP ,BP .APB ∠的平分线交AB 于点C ,过点C 分别作CE AP ⊥,CF BP ⊥,垂足分别为E ,F ,求线段CF 的长. 问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知O 的直径70m AB =,点C 在O 上,且CA CB =.P 为AB 上一点,连接CP 并延长,交O 于点D .连接AD ,BD .过点P 分别作PE AD ⊥,PF BD ⊥,垂足分别为E ,F .按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP 的长为x (m ),阴影部分的面积为y (2m ). ①求y 与x 之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP 的长度为30m 时,整体布局比较合理.试求当30m AP =时,室内活动区(四边形PEDF )的面积.数学试卷 第9页(共22页) 数学试卷 第10页(共22页)2020年陕西省初中学业水平考试数学答案解析一、 1.【答案】A【解析】直接利用相反数的定义得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高中学业水平考试
数学试卷
【考生注意】
考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效。
参考公式:
如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 球的表面积公式:2
4S R π=,其中R 表示球的半径.
柱体的体积公式:V Sh =,其中是柱体的底面积,h 是柱体的高.
锥体的体积公式:1
3
V Sh =
,其中是锥体的底面积,h 是锥体的高. 第一部分选择题(共54分)
一、选择题:本大题共18个小题,每小题3分,共54分。
在每小题给出的四个选项中,只有一
项符合题目要求,请在答题卡相应的位置上填涂。
1. 设集合{}3,5,6,8,A =集合{}5,7,8,B A B =则等于I
A. {5,8}
B. {3,6,8}
C. {5,7,8}
D. {3,5,6,7,8}
2. 如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那
么这个几何体的表面积为 A. 3π B. 4π C. 5π
D.6π
3. 在平行四边形ABCD 中,+ AB AC CD +等于uu u r uuu r uu u r
A. AC uuu r
B. BD uu u r
C. DB uu u r
D. AD uuu r
4. 已知向量 ,4,3a b a b ==、
r r r r , a r 与b r
的夹角等于60︒,则( +2(-)a b a b ⋅)r r r r 等于 A. - 4 B. 4
C. - 2
D. 2
5. 已知函数1cos +37y x π⎛⎫= ⎪⎝⎭的图象为C ,为了得到函数1cos -37y x π⎛⎫
= ⎪⎝⎭
的图象只需把C 上所有
的点
A. 向右平行移动7
π
个单位长度 B. 向左平行移动7
π
个单位长度
C. 向右平行移动
27
π
个单位长度 D. 向左平行移动
27
π
个单位长度 6. 已知一个算法,其流程图如右图所示,则输出结果是 A. 7 B. 9 C. 11 D. 13 7. 过点P (-1,3),且平行于直线24+10x y -=的直线方程为 A. 2+-50x y = B. 2+10x y -= C. -2+70x y = D. -250x y -= 8. 一个长、宽分别为3和1的长方形内接于圆(如下图), 质地均匀的粒子落入图中(不计边界),则落在长方形内的概率等于 A. 3
π B.
3
π
C.
34π
D. π
9. 计算:sin 225︒的值为
A.
22 B. 22-
C. 32
-
D. 12
-
10. 在△ABC 中,A B C ∠∠∠、、所对的边长分别是357、、,则cos C ∠的值为
A.
1530
B. 1530
-
C.
521
42
D.
935
70
11.甲、乙等5名同学按任意次序排成一排,甲站中间且乙不站两边的概率是
A. 120
B. 110
C.25
D.
45
12.已知直线的点斜式方程是12y x +=-,那么此直线的斜率为
A.
1
4
B.
13
C.12
D. 1
13. 函数()23x f x x =-的零点所在的区间是
A. ()0,1
B. (-1,0)
C. (1,2)
D. (-2,-1)
正视图
侧视图
俯视图
(第8题)
x =1 x=x+2
x
? 是
否
结束
输出x 开始 (第6题)
INPUT x
IF x <1 THEN 1y x =- ELSE
PRINT 1y x =- PRINT y END
14. 已知实数x 、y 满足0,0,33,x y x y ≥⎧⎪
≥⎨⎪+≥⎩
则z x y =+的最小值等于
A. 0
B. 1
C. 2
D. 3
15. 函数()13f x x x =+⋅-的定义域是
A. [1,)-+∞
B.(,1]-∞-
C. [3,)+∞
D. [1,3]-
16. 已知等比数列{}n a 中,1416,2,a a =-=则前4项的和4S 等于 A. 20 B. -20 C. 10 D. -10 17. 当输入的x 值为3时,右边的程序运行的结果等于
A. -3
B. 3
C. -2
D. 2
18. 过点M(2,-2)以及圆2250x y x +-=与圆222x y +=交点的圆的方程是 A. 22151
042
x y x +-
-=
B. 2
2
151
042x y x +-+=
C. 2
2
151
042
x y x ++-=
D. 22151
042
x y x ++
+= 第二部分非选择题(共46分)
二、 填空题:本大题共4个小题,每小题4分,共16分。
请把答案写在答题卡相应的位置上。
19. 某单位有甲、乙、丙三个部门,分别有职员27人、63人和81人,现按分层抽样的方法从
各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,则该单位共抽取__________人。
20. 甲、乙两位射击选手射击10次所得成绩,经计算得各自成绩的标准差分别为
1.29s =乙甲和s =1.92,则_________成绩稳定。
21. 若函数()3(21)f x m x =-是幂函数,则m =_________。
22. 关于x 的二次函数()21()214
f x mx m x m =+++的图像与x 没有公共点,则m 的取值范围是
__________(用区间表示)。
三、 解答题:本大题共4小题,23、24各7分,25、26各8分,共30分。
解答应写出文字说
明、证明过程或演算过程。
23. (本小题满分7分,其中第(1)问4分,第(2)问3分) 已知函数231
(sin cos ).22
y x x =
--
(1)求它的最小正周期和最大值;
(2)求它的递增区间。
24. (本小题满分7分,其中第(1)问4分,第(2)问3分) 如图,在正方体ABCD 1111A B C D -中,E 、F 分别为1AD 、1CD 中点。
(1)求证:EF//平面ABCD ;
(2)求两异面直线BD 与1CD 所成角的大小。
25. (本小题满分8分,其中第(1)问4分,第(2)问4分) 一个圆柱形容器的底部直径是6cm,高是10cm,现以每秒2/cm s 的速度向容器内注入某
种溶液。
(1)求容器内溶液的高度x 关于注入溶液的时间 t s 的函数关系; (2)求此函数的定义域和值域。
A B C
D A 1 D 1
C 1
B 1 E
F
26. (本小题满分8分,其中第(1)问2分,第(2)问3分,第(3)问3分) 已知数列{}n a 中,()12122
,1,3433
n n n a a a a a n --===-≥。
(1)求3a 的值; (2)证明:数列
{}()12n n a a n --≥是等比数列;
(3)求数列{}n a 的通项公式。