正态总体的常用抽样分布

合集下载

正态总体下的抽样分布

 正态总体下的抽样分布

§1.2数理统计中常用的分布正态总体是最常见的总体, 本节介绍的几个抽样分布均对正态总体而言.1.标准正态分布2. 2分布3.t分布4.F分布o xϕ(x )定义:设X ~N (0,1),对任给的α, 0<α<1,称满足条件1、标准正态分布αϕαα==>⎰+∞dx x z X P z )(}{的点z α为标准正态分布的上α分位点.z αα例:求z0.05解:P{X≤z0.05}=1−P{X>z0.05}=1−0.05=0.95∵P{X≤1.64}=0.9495P{X≤1.65}=0.9505∴z0.05≈(1.64+1.65)/2=1.645公式: Φ(zα)=1−α常用数字575.296.1645.1005.0025.005.0===zzz定义:设X i ~N (0,1) (i =1,2,...,n ), 且它们相互独立,则称随机变量2、χ2分布221nii X χ==∑服从自由度为n 的χ2分布,记为χ2~χ2(n ).χ2分布最常用的是拟合优度检验.其中,在x > 0时收敛,称为Γ函数,具有性质1()tx te dtx +∞−−Γ=⎰(1)(),(1)1,(1/2)(1)!()x x x n n n N πΓ+=ΓΓ=Γ=Γ+=∈一般自由度为n 的χ2(n )的密度函数为12221,0()2()20,xnnn ex ng x x x −−⎧>⎪⎪=Γ⎨⎪⎪≤⎩χ2分布的密度函数图χ2~χ2(n)D Y =D෍i=1nX i 2=෍i=1n D(X i 2)=෍i=1n [E(X i 4)−(E(X i 2))2]=෍i=1n2=2n .χ2分布的基本性质(1)设Y 1~χ2 (m ), Y 2~χ2 (n ), 且Y 1 , Y 2 相互独立,则χ2 分布的可加性(2)若Y ~χ2 (n ), 则E (Y )=n ,D (Y )=2n.= 1;)(~221n m Y Y ++χY 1=෍i=1mX i 2,Y 2=෍i=m+1m+nX i 2,)(~2n m +χY 1+Y 2=෍i=1m+nX i2E Y =E෍i=1nX i 2=෍i=1nE(X i 2)=෍i=1n[D(X i )+(E(X i ))2]=෍i=1n1=n ,E(X i 4)=12πන−∞+∞x 4e −x 22dx =3故(3)设X 1,…, X n 相互独立,且都服从正态分布N (μ,σ2),则;)(~)(12122n X Y ni i χμσ∑=−=(4)若Y ~χ2 分布,则当n 充分大时,近似服从N (0,1).n n Y 2−应用中心极限定理oχ2α(n )xf (x )α设χ2~χ2(n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件αχχαχα==>⎰+∞dx x f n P n )(222)()}({的点χ2α(n )为χ2(n )分布的上α分位点.χ2分布的上α分位点当n 充分大时,22)12(1)(−+≈n z n ααχ例:设X ~N (μ,σ2), (X 1,X 2,...,X 16)是取自总体X 的样本,求概率:}2)(1612{216122σμσ≤−≤∑=i iX P 解:∵X 1,X 2,...,X 16相互独立且)1,0(~N X i σμ−)16(~)(21612χσμ∑=−∴i i X}2)(1612{216122σμσ≤−≤∑=i iX P }32)(8{1612≤−≤=∑=i i X P σμ}32)({}8)({16121612>−−≥−=∑∑==i i i i X P X P σμσμ≈0.95−0.01=0.94定义:设X ~N (0,1),Y ~χ2(n ),且X 与Y 相互独立,则称随机变量3、t 分布服从自由度为n 的t 分布,记为T ~t (n )./X T Y n=T 的密度函数为:22112()1,.2n n n t x x n n n x π+−+⎛⎫Γ ⎪⎛⎫⎝⎭=+−∞<<∞ ⎪⎛⎫⎝⎭Γ ⎪⎝⎭1908年英国统计学家W.S. Gosset (笔名Student )t分布的密度函数图T~t(n)t 分布的上α分位点设T ~t (n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件(){()}()t n P T t n f x dt ααα+∞>==⎰的点t α(n )为t 分布的上α分位点.f (x )xt α(n )αt *0f (x )1-αx-t *t 分布的双侧α分位点设T ~t (n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件*{||}1P T t α<=−的数t *为t 分布的双侧α分位点.α/2t 分布的密度函数f (x )是偶函数,故**()()P T t P T t ≤−=≥***(||)()P T t P t T t <=−<<*(),2P T t α≥=于是得即*()2P T t α>=**()()P T t P T t =<−≤−**(1())()P T t P T t =−≥−≥*12()1,P T t α=−≥=−= t α/2(n )t 分布的性质(1) 其密度函数f (x )是偶函数(3) f (x )的极限为N (0,1)的密度函数,即221lim ()()2x n f x x e φπ−→∞==(2)t 1−α(n )= −t α(n )当n >45时,t α(n )≈z α例:设X , Y 1,Y 2,Y 3,Y 4 相互独立,且X ~N (2,1),令Y i ~N (0, 4),i =1, 2, 3, 4 ,解:∵X -2~N (0, 1),~t (4),即Z 服从自由度为4 的t 分布.求Z 的分布.由t 分布的定义Y i /2~N (0, 1),i = 1, 2, 3, 4 . ,)2(4412∑=−=i iY X Z ∑=−=412)2(4i i Y X Z 4)2(2412∑=−=i i Y X例:设随机变量X 与Y 相互独立,X ~ N (0,16),Y ~ N (0,9) , X 1, X 2,…, X 9与Y 1, Y 2 ,…, Y 16分别是取自X 与Y 的简单随机样本,求统计量所服从的分布.解:)169,0(~921⨯+++N X X X )1,0(~)(431921N X X X +++⨯ 2162191YY XX Z ++++=从而16,,2,1,)1,0(~31=i N Y i )16(~3122161χ∑=⎪⎭⎫ ⎝⎛i i Y 2162221921Y Y Y X X X ++++++ ()16314311612921∑=⎪⎭⎫ ⎝⎛+++⨯=i i Y X X X )16(~tt分布用于在小样本(n<30)场合下的正态分布(大样本(n≥30)场合下可以用正态分布来近似),有时候在信息不足的情况下,只能用t分布,比如在总体方差不知的情况下,对总体均值的估计和检验通常要用t统计量.12222,()2(),0()()()220,0m n m m nm n x x m nm n n m x m n f x x +−−+⎧Γ⎪+>⎪=⎨ΓΓ⎪⎪≤⎩F 的密度函数为:所服从的分布为第一自由度为m ,第二自由度为n 的F 分布,记作F ~ F (m , n ).4、F 分布则称统计量F 分布多用于比例的估计和检验!nY mX F =定义:设随机变量X 与Y 独立,且X~χ2(m),Y~χ2(n),F 分布的密度函数图F~F(m,n)F 分布的上α分位点设F ~F (m ,n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件ααα==>⎰+∞dx x f n m F F P n m F ),()()},({的点F α(m ,n )为F 分布的上α分位点.0f (x )F α(m ,n )αxF 分布的性质(1) 若F ~F (m ,n ),则(2)()~,1F F n m ),(1),(1m n F n m F αα=−}),(11{1n m F F P α−≤=∵1−α=P {F ≥F 1−α(m ,n )}}),(11{11n m F F P α−>−=αα=>⇒−}),(11{1n m F F P ),(),(11m n F n m F αα=⇒−(3)若X ~ t (n ), 则X 2~ F (1, n );mX nY F=1例:设F ~ F (24, 15) ,求F 1,F 2,F 3,使其分别满足P (F >F 1 )= 0.025 , P (F <F 2 )= 0.025 , P (F >F 3 )= 0.95 .解:(1)由m =24,n =15,α= 0. 025 ,查P192 附表6(2)无法直接查表获得,但由F 分布性质知1/F ~F (15, 24),查附表6知(3) ∵F 3 =F 0. 95(24,15), 查附表6知:∴ F 2 = 1/2.44 = 0.41 ; 由性质(2)知,025.0)11()(22=>=<F F P F F P 1F 2=F 0.025(15,24)=2.44⇒P(F <1/2.44)=0.025F 0.05(15,24)=2.11,,)24,15(1)15,24(95.0195.0−=F F .474.011.213==∴F 知F 1= F 0.025 (24, 15)= 2.70 ;抽样分布定理1. 单个正态总体的抽样分布2. 两个正态总体的抽样分布定理:设X 1,X 2,...,X n 是来自正态总体N (μ,σ2)的样本,则1. 单个正态总体的抽样分布(1)),(~2n N X σμ)1,0(~N n X σμ−⇒(2)与S 2相互独立X (3))1(~)1(222−−n S n χσ(4))1(~−−n t n S X μ1σ2෍n(X i −μ)2~χ2(n)(5)(1)∑==ni i X n X 11)1,0(~N n X σμ−⇒为n 个相互独立的正态X ∴服从正态分布∑==ni i X E n X E 1)(1)(=μ∑==n i i X D n X D 12)(1)(n2σ=),(~2n N X σμ∴随机变量的线性组合(4)),1,0(~N n X σμ− 且它们相互独立由t 分布的定义,)1(~1)1(22−−−−n t n S n nX σσμ)1(~−−n t n S X μ即22)1(σS n −~χ2(n −1)例:设(X 1,X 2,…,Xn )是取自总体X 的样本, 是样本均值,如果总体X ~N (μ,4),则样本容量n 应取多大才能使X 95.0}1.0|{|≥≤−μX P 解:)1,0(~ N n X σμ− }21.02||{}1.0|{|n n X P X P ≤−=≤−∴μμ}05.02)(05.0{n X n n P ≤−≤−=μ)05.0()05.0(n n −Φ−Φ=1)05.0(2−Φ=n ≥0.95975.0)05.0(≥Φ⇒n 96.105.0≥⇒n ⇒n ≥1536.64⇒n ≥1537解:),1(~)1(222−−n S n χσ由),,(~2nN X σμ又()⎪⎭⎫⎝⎛+−+n n N X X n 211,0~σ)1,0(~11N n n X X n +−+σ故212(1)~(1)1(1)n X Xn n St n n n σσ+⎛⎫−−−⎪+−⎝⎭于是)1(~11−+−+n t n nS X X n 即例:总体X ~N (μ,σ2),(X 1,X 2,…,X n ,X n +1)为样本,,求X n+1−തX S n n+1的分布.S 2=1n −1෍i=1n(X i −തX)2തX=1n ෍i=1nX i定理:设总体X ~N (μ1,σ12),总体Y ~N (μ2,σ22).X 1,X 2,...,是总体X 的样本,Y 1,Y 2,...,是总体Y 的样本, 且这两个样本相互独立.则1n X 2n Y 2. 两个正态总体的抽样分布(1)),(~22212121n n N Y X σσμμ+−−(2))1,1(~2122222121−−n n F S S σσ)2(~11)()(212121−++−−−n n t n n S Y X ωμμ其中2)1()1(212222112−+−+−=n n Sn S n S ω称为混合样本方差.进一步,若σ12=σ22 =σ2,有(3)),(~221221n n N Y X σσμμ+−− )1,0(~11)()(2121N n n Y X +−−−∴σμμ2211)1(σSn −~χ2(n1−1),2222)1(σSn −~χ2(n2−1)且它们相互独立22222211)1()1(Sn Sn −+−∴~χ2(n1+n 2−2)由t 分布的定义,2)1()1(11)()(21222222112121−+−+−+−−−n n Sn Sn n n Y X σσσμμ22221121112)1()1()()(n n n n Sn S n Y X +−+−+−−−−μμ即~t (n 1+n 2−2)~t (n 1+n 2−2)小结1.理解总体、个体、样本和统计量的概念,掌握样本均值和样本方差的计算及基本性质2.掌握 2分布、t分布、F分布的定义,会查表计算3.理解正态总体的某些统计量的分布。

《概率与数理统计》第06章 - 样本及抽样分布

《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布

正态总体的抽样分布

正态总体的抽样分布
∞ 3x2e− 2 dx =
2π −∞

3
x2 ∞−
x2
∫ xe 2 d (− ) = −
2π −∞
2
∫ 3

x2 −
xde 2
=−
2π −∞
3 2π
⎛ x2 −
⎜⎜ xe 2 ⎝
+∞
⎞ ⎟⎟ ⎠ −∞
∫ ∫ + 3
x2 ∞−
e 2 dx =
3
x2 ∞−
e 2 d(
x
)=
3
2π −∞
π −∞
2
f
(x)
χ
2 n
分布分位点
对于给定的 α∈(0,1), 称满足条件
{ } ∫ α P
χ
2 n
>
χ
2 n

)

=
f (x)dx =
χn2 (α )
的点 χn2(α)为 χn2分布的上(右)α分位点。
χn2 分布上α 分位点有表可查见附表4。
n = 10 α
χ•210(0.005)
例如 由P215查得
P
(
χ
由度为n的F分布,F ~ Fm,n 又称:df1 = m, df2 = n.
其密度函数为:
f (x)
=
⎛ ⎜ ⎜ ⎜ ⎜ ⎜⎜⎝
Γ
⎛ ⎜⎝
m
+ 2
Γ
⎛ ⎜ ⎝
m 2
⎞ ⎟ ⎠
Γ
0,
n⎞ ⎟⎠
⎛n⎞
⎛ ⎜⎝
m n
π
⎞2 ⎟ ⎠
x
π 2
−1
⎛⎜1
+

m n

正态总体的常用抽样分布

正态总体的常用抽样分布

特点
卡方分布在正态分布两侧有更多的面 积,即其尾部比正态分布更重。随着 自由度n的增加,卡方分布趋近于正 态分布。
04
抽样分布的应用
参数估计
1 2
参数估计
通过抽样分布,我们可以估计总体参数,如均值 和方差。常用的估计方法有矩估计和最大似然估 计。
置信区间
基于抽样分布,我们可以构建总体参数的置信区 间,从而对总体参数进行区间估计。
03
样本方差的数学期望等于总体方差,其方差随 着样本量的增加而减小。
样本偏度与峰度
样本偏度是总体偏度的无偏估计,用于衡量数据的对称性。 样本峰度是总体峰度的无偏估计,用于衡量数据分布的尖锐程度。 在正态分布中,偏度和峰度均为0,但在非正态分布中,偏度和峰度可能不为0。
03
其他常用抽样分布
t分布
中心极限定理
中心极限定理的基本思想
中心极限定理表明,无论总体分布是什么类型,只要样本量足够大,从该总体中随机抽取的样本均值将趋近于正 态分布。这意味着我们可以利用正态分布的性质来分析和推断样本均值。
中心极限定理的应用
中心极限定理在统计学中具有广泛的应用价值。例如,在制定置信区间、假设检验和回归分析等统计方法时,都 需要利用中心极限定理来处理样本数据和推断总体参数。因此,正确理解和应用中心极限定理对于统计推断的准 确性和可靠性至关重要。
THANKS
样本量大小的影响
样本量大小
样本量的大小对抽样分布的形状和稳 定性有显著影响。随着样本量增加, 抽样分布的形状逐渐接近正态分布, 且分布的离散程度逐渐减小。
样本量与精度
样本量越大,估计的精度越高,即估 计的参数值越接近真实值。因此,在 制定抽样计划时,应充分考虑样本量 的大小,以确保估计的精度满足要求。

正态总体下的四大分布

正态总体下的四大分布

《概率论与数理统计》第六章样本及抽样分布(2)正态总体下的四大分布:正态分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数).1,0(~/N nx udefσμ-例:设总体ξ~212(1,2),,,n N ξξξ 且是取自ξ的样本,则(D )A)1(0,1)2N ξ-B)1(0,1)4N ξ-C)()1(0,1)2N ξ-D)(0,1)N ξt 分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~/--n t ns x tdefμ其中t(n-1)表示自由度为n-1的t 分布。

分布2χ设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~)1(222--n S n wdefχσ其中)1(2-n χ表示自由度为n-1的2χ分布例:已知F 0.1(7,20)=2.04,则F 0.9(20,7)=_______0.4902_____.例.对于给定的正数α,10<<α,设αu ,)(2n αχ,)(n t α,),(21n n F α分别是)1,0(N ,)(2n χ,)(n t ,),(21n n F 分布的下α分位数,则下面结论中不正确...的是(B )(A)αα--=1u u (B))()(221n n ααχχ-=-(C))()(1n t n t αα--=(D)),(1),(12211n n F αα=-2、设X 、Y 相互独立,且都服从标准正态分布,则Z =2Y X 服从______t(1)_____分布(同时要写出分布的参数).3.设ξ和η相互独立且都服从N(0,4),而41,ξξ 和41,ηη 分别是来自总体ξ和η的样本,则统计量242141......ηηξξ++++=U 服从的分布为)4(t 。

第3节 正态总体下的抽样分布定理

第3节 正态总体下的抽样分布定理

(4) X和S2相互独立.
数理统计
n取不同值时 (n 1)S 2 的分布
2
数理统计
n取不同值时样本均值 X 的分布
数理统计
推论 设X1,X2,…,Xn是取自正态总体 N (, 2 )
的样本, 则有
X和S2 分别为样本均值和样本方差,
X ~ t(n 1)
Sn
X ~ N (0,1), / n

(1)
由定理2,
X
~
N (1
,
2 1
n1
),
Y
~
N (2
,
2 2
n2
),
且 X 与Y 相互独立,由正态分布的可加性,可得
X
Y
~
N (1
2
,
2 1
n1
2 2
)
.
n2
标准化,即得
U ( X Y ) (1 2 ) ~ N (0,1) .
2 1
2 2
n1 n2
10
数理统计
(2) 由定理2,
(n1
数理统计
第三节 正态总体下的抽样 分布定理
数理统计
定理1 设总体 X 的均值和方差均存在,EX ,
DX 2 ,对样本 ( X1, X2 ,, Xn ) 及其样本均值 X 和样本
方差 S2 ,
有 E(X) ,
2
D( X )

E(S2) 2
.
n
证 X1, X 2 ,, X n 相互独立,且与总体 X 同分布,故有
8
定理3
设两个正态总体 X
~
N
(
1
,
2 1
)
,Y
~

正态总体的常用抽样分布

正态总体的常用抽样分布

么么么么方面
• Sds绝对是假的
返回 上页 下页 结束
(4) 当
未知时,
其中
8
返回 上页 下页 结束
例1 设总体 X的一个样本. 统计量
为来自总体
试确定C, 使CY 服从 分布, 并指出其自由度.
解 因为
从而有


自由度为2.
9
返回 上页 下页 结束
例2 设

分别为来自
正态总体

的样本, 且X和Y
则有
2
返回 上页 下页 结束
定理1 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
ห้องสมุดไป่ตู้
(1) 与 相互独立;
(2)
(3)
推论 设
为来自总体
的样本, 是样本均值. 则有
3
返回 上页 下页 结束
定理2 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
证明 由定理1和推论, 有
且两者相互独立. 由t分布定义可知
相互独立. 试判断以下统计量服从什么分布:
(1)
(2) 解 (1) 因为
10
返回 上页 下页 结束
由 分布的可加性可知

(2) 由题设条件和正态分布的性质可得
从而有
11
返回 上页 下页 结束
由正态分布的性质可得 即 从而有 又因为
12
返回 上页 下页 结束
并且U和V相互独立, 由F 分布的定义可得
化简可得结论成立.
4
返回 上页 下页 结束
二. 两个正态总体的样本均值差和样本方差比的分布
定理3 设

概率论问答题

概率论问答题

C E(X ) .
7、 常用分布的期望、方差是什么?答:① (0 1) 分布: E(X ) p, D(X ) p(1 p). ② 二 项 分 布 X ~ b(n, p) : E(X ) np, D(X ) np(1 p). ③ 泊 松 分 布 X ~ () :
E(X ) , D(X ) .
2) .
其分布函数为 F (x)

x
dt , ( x ) .特别,当 0, 1 时,称 X 服从标准正态
分布,即 X ~ N(0, 1) . 6. 数学期望有哪些性质?答: (以下设所遇到的随机变量的数学期望存在) .① 设 C 是常数, 则有 E (C ) C .②
X ~ t (n 1) . S n
2
__
13. 分布、 t 分布、 F 分布及正态分布之间有哪些常见的关系?答:① 正态分布与 分布:设随机变
2
量 X1 , X2 ,
, Xn 独立且同服从正态分布 N(0, 1) ,则 X i 2 ~ 2 (n) .② 正态分布, 2 分布与以下重要性质(设所遇到的随机变量其方差存在).① 设 C 是常数,则 有 D(C ) 0 . ② 设 X 是 随 机 变 量 , C 是 常 数 , 则 有 D(CX ) C D(X ) .③ 设 X , Y 是 两 个 随 机 变 量 , 则 有
2
D(X Y ) D(X ) D(Y ) 2E {[ X E(X )][Y E(Y )]} . 特别,若 X ,Y 相互独立,则有 D(X Y ) D(X ) D(Y ) .
k 1 k
设随机变量 X 只可能取 0 与 1 两个值,它 设 X 表示 n 重伯努利试验中事件

4.3抽样分布

4.3抽样分布

(3) X与S2相互独立
(4) X ~ t(n 1)
Sn
已知, 2未知
(5) n ( Xi )2 ~ 2 (n)
i1
已知
LOGO
例1 设总体X 服从正态分布N (12, 2 ), 抽取容量为
25的样本,求样本均值X大于12.5的概率.如果(1)已
知 12;(2)未知,但已知样本方差S2 3.6.
n1 n2


F(n1,
n

2


.
LOGO
4.3.2 正态总体的抽样分布
由于要求具体抽样分布是困难的,有时甚至是不可 能的。正态总体的抽样分布有详尽的研究,本节主要 学习正态总体的抽样分布。
掌握正态分布、 2分布、t分布、F分布的一些结论
对于正态总体抽样分布的学习非常有用. 主要学习单个正态总体的抽样分布以及多个正态总
i1
于是P
10
i1
Xi 2
4
P
1 0.52
10 i1
Xi2
16
查表求02.10(10) 16.由此可得
P
10 i1
Xi
2
4
0.10.
(2) 由题设及定理4.3.2, 9S 2
0.52
10
P i1
(Xi
X )2
1
2.85
P
0.52
10 i1
查表得02.25(9) 11.4,由此可求得
n
n
该定理的证明由正态分布的性质3.1.10可得。
注意:当样本来自非正态总体时,若总体均值为,方差 为 样 本量2(充有分限大且时不,X为近零似)服,从由N中(心, 极)2.限定理可以证明当

正态总体的抽样分布

正态总体的抽样分布
的一个简单随机样本,请证明以下结论
⑴ nX 2 2 n 1;


D
D
X2
X2

2 n2
;
S2
2 n2
2. n 1
双正态总体的抽样分布
设 X1, X 2 ,
, Xn
是取自总体
X ~N
1
,ห้องสมุดไป่ตู้
2 1
的一个简单随机样本, Y1,Y2 , ,Ym 是取自总体
P
X 40 5/ n

n 5


2
n 5

1,

n 5


0.975

n 5
u0.975
1.96
n 96.04.
所以, 取 n 97.
例2 设 X1, X 2 , , X n 是取自总体 X ~ N 0,1
X
=
1 n
n i 1
Xi
~
N


,
2
n


n X ~ N 0,1

证明(2)
由于 Xi ~ N , 2 ,
即:Xi ~ N 0,1

根据卡方分布的定义,可得
n
i1
Xi
2
=
1
2
n
Xi
i 1
2
⑴抽取容量为36的样本, 求 P 38 X 43 ;
⑵问样本容量 n 多大时, 才能使 P X 40 1 0.95 ?
解⑴ 由抽样分布及 n 36 可知
X

16几个常用的抽样分布与抽样分布定理

16几个常用的抽样分布与抽样分布定理
0
(s
0),
(s 1)
s (s) ,(12)
3
3.性质:
1)期望与方差
提示: 2
X
2 1
X
2 n
若 2 ~ 2(n),则 E( 2)= n,D( 2)=2n
证明: 因为Xi~N(0, 1)
所以
E
(
X
2 i
)
D( Xi
) [E( Xi
)]2
1 0 1
D(
X
2 i
)
E
(
X
4 i
)
[
2 1
/
2 2
~
F (n1
1, n2
1)
29
定理2结论(3)
假定
2 1
2 2
2,
就有
t T ( X Y ) (1 2 ) ~ S 1 n1 1 n2
(n1 n2 2)
其中
S2
(n11)S12 (n2 1)S22 n1 n 2 2

( X Y ) (1 2 )
13
T 的概率密度为
(s) xs1e x d x (s 0),
0
f (t)
( n 1) 2
(1
t2
)
n1
2,
(12)
t
n ( n) n
2
14
2.基本性质:
(1) f ( t ) 关于 t = 0(纵轴)对称。
(2) f ( t ) 的极限为 N(0, 1) 的密度函数,即
lim f (t) (t)
标准化
定理1:设总体 X ~ N ( , 2 ) ,X1, X2,…, Xn 是
来自总体 X 的样本,

第三章 正态分布与抽样分布

第三章  正态分布与抽样分布

图3-5 正态分布的概率
关于正态分布,有几个概率应记住: 关于正态分布,有几个概率应记住: 一般正态分布: 一般正态分布:
P(µ-1.96σ≤x<µ+1.96σ)=0.95 1.96σ≤x<µ+1.96σ)= )=0.95 P(µ-2.58σ≤x<µ+2.58σ)=0.99 2.58σ≤x<µ+2.58σ)= )=0.99 P(µ-σ≤x<µ+σ)=0.6826 σ≤x<µ+σ)= )=0.6826 P(µ-2σ≤x<µ+2σ)=0.9545 2σ≤x<µ+2σ)= )=0.9545 P(µ-3σ≤x<µ+3σ)=0.9973 3σ≤x<µ+3σ)= )=0.9973
对于大样本资料,常将样本标准差S 对于大样本资料,常将样本标准差S 与样本均数配合使用,记为 X ± S ,用 与样本均数配合使用, 以说明所考察性状或指标的优良性与稳 定性。对于小样本资料, 定性。对于小样本资料,常将样本标准 误 SX 与样本均数 X 配合使用,记 配合使用, 为 X ± S ,用以表示所考察性状或指 标的优良性与抽样误差的大小。 标的优良性与抽样误差的大小。
学上已证明 总体的两个参数与x总体的两 总体的两个参数与x 个参数有如下关系: 个参数有如下关系:
µx = µ
σx =
σ
n
表 X 的抽样分布形式与原总体X分布形式的关系 的抽样分布形式与原总体X
2.2 均数标准误
均数标准误 σx = 的大小反映样本均数 X n 抽样误差的大小 标准误大, 的大小。 的抽样误差的大小。标准误大,说明各样本均 间差异程度大;反之,亦然。 数 X 间差异程度大;反之,亦然。 在实际工作中,总体标准差σ往往是未知的, 在实际工作中,总体标准差σ往往是未知的, σx 此时,可用样本标准差S 因而无法求得 。此时,可用样本标准差S估 S 于是, 计σ 。于是,以 估计 n 。记σx 为 n, S SX 称作样本标准误或均数标准误。 称作样本标准误或均数标准误。 是均数抽样 SX 误差的估计值。 误差的估计值。

抽样分布

抽样分布
1
Fn (x)
0
x1
x
2
x
3
x
4
x
5
x
6
图 6.6 经验分布函数
该次抽样中事件{X x} 发生的频率(见
(6-19)式),它完全由样本决定,而样本 是随机的,所以,Fn (x)是随机变量. Fn (x) 的 这种双重性恰好反映了抽样前后不同的统 计观点,请注意领会. 进一步地,根据分布 函数的定义 F(x) P{X x},F(x)是事件{X x}发 生的概率,又nFn (x) 恰是在n次“试验”(抽样) 中事件 {X x} 发生的次数,这样,还有以 下结论:
2
均值与样本方差,S w 是‘合样本’ (X1, X 2, , X ,n1Y1,Y2 ,,Yn2 )
的标准差,定义为
Sw
(n1
1)S12
(n2
1)
S
2 2
n1 n2 2
. (6-28)
生 活 中 的 辛 苦阻挠 不了我 对生活 的热爱 。20.11.1720.11.17Tuesday, November 17, 2020 人 生 得 意 须 尽欢, 莫使金 樽空对 月。01:47:1501:47:1501:4711/17/2020 1:47:15 AM 做 一 枚 螺 丝 钉,那 里需要 那里上 。20.11.1701:47:1501:47Nov-2017-Nov-20 日 复 一 日 的 努力只 为成就 美好的 明天。 01:47:1501:47:1501:47Tuesday, November 17, 2020 安 全 放 在 第 一位, 防微杜 渐。20.11.1720.11.1701:47:1501:47:15November 17, 2020 加 强 自 身 建 设,增 强个人 的休养 。2020年 11月 17日上 午1时47分 20.11.1720.11.17 精 益 求 精 , 追求卓 越,因 为相信 而伟大 。2020年 11月 17日星 期二上 午1时47分 15秒 01:47:1520.11.17 让 自 己 更 加 强大, 更加专 业,这 才能让 自己更 好。2020年 11月 上午 1时47分 20.11.1701:47November 17, 2020 这 些 年 的 努 力就为 了得到 相应的 回报。 2020年 11月17日 星期 二1时47分 15秒 01:47:1517 November 2020 科 学 , 你 是 国力的 灵魂; 同时又 是社会 发展的 标志。 上午1时 47分15秒 上午 1时47分 01:47:1520.11.17 每 天 都 是 美 好的一 天,新 的一天 开启。 20.11.1720.11.1701:4701:47:1501:47:15Nov-20 相 信 命 运 , 让自己 成长, 慢慢的 长大。 2020年 11月17日 星期 二1时47分 15秒 Tuesday, November 17, 2020 爱 情 , 亲 情 ,友情 ,让人 无法割 舍。20.11.172020年 11月 17日 星 期二 1时47分 15秒 20.11.17

第42讲 单个正态总体的抽样分布

第42讲  单个正态总体的抽样分布
第42讲 单个正态总体的抽样分布
定理一:设总体X ~ N (, 2 ), X1, X 2 ,, X n是样本,
2 2 1 1 ( Xi X ) . 样本均值X X i , 样本方差S n i1 n 1 i1 2 则(1) X ~ N (, ); n n
n
2 i 1
n
n
X 2 X X i nX
i 1 2 i i 1
n
i 1
2 i
2
n
2

X
i 1 n i 1
n
2 i
2 XnX nX
2
2
X nX
2 i
8
2 1 E ( S ) E[ (Xi X ) ] n 1 i 1 n 2 2 1 ( X i nX )] E[ n 1 i 1 2 2 2 1 [ E ( X i ) nE ( X )] n 1 i 1 2 2 2 2 1 [( ) n( )] n 1 i1 n 2 n n
2

i
2 2
~
(n 1)
2
2 ( X X ) i i 1 n
(2)
n i 1
( X )
i1
n

)
2
2
~ ( n)
2
2

2

(n 1) S 2
2
X 1 X ,, X n X 有一个约束条件
(X
i
2
Xi i 1
X 1 , , X n 是取自总体 X 的样本,
X , S 为样本均值和样本方差. (1) 求 E ( S );

2.5 正态总体的抽样分布

2.5 正态总体的抽样分布

Yi ai j , i 1, 2, , n,
j 1
故Y1,Y2,...,Yn仍为正态随机变量,且
E (Yi ) aij E ( Z j ) 0.
j 1
n

0, i j , cov( Z i , Z j ) ij 1, i j ,
n n
i 1, 2, , n,
53.852 50.852 (1.7143) (1.1429) 6.3/ 6 6.3/ 6 0.8239
定理2 设 X ~ N ( , 2 ), X 1 , X 2 , , X n 为X的样本,则
2
证明
Yi N (0,1),

i 1, 2, , n. 1 Z j nZ , n
n i 1
Y1 a1 j Z j
j 1 j 1 n
n
n
2 T T T T T 2 Y Y Y ( AZ ) ( AZ ) Z ( A A ) Z Z Z Z i i, i 1

2 例6 设总体 X ~ N ( , ),从总体中抽取样本 X 1 , X 2 , , X n , X n 1 , 记 n 2 1 n 1 2 X n X i , Sn Xi X , n i 1 n 1 i 1 证明统计量


n X n 1 X n t (n 1). n 1 Sn

X 1 , X 2 , , X n为X的样本, 定理4 设总体 X ~ N ( , 2 ) , 样本均值和样本方差分别为 X 和 S 2 ,则随机变量 X t n ~ t ( n 1). S X N 0,1, 证明 根据定理1,可得 u / n

2020考研数学(一)大纲:概率论与数理统计

2020考研数学(一)大纲:概率论与数理统计

2020考研数学(一)大纲:概率论与数理统计2015考研数学(一)大纲:概率论与数理统计2015考研数学一:概率论与数理统计大纲与2014年对比无变化。

一、随机事件和概率考试内容:随机事件与样本空间、事件的关系与运算、完备事件组、概率的概念、概率的基本性质、古典型概率、几何型概率、条件概率、概率的基本公式、事件的独立性、独立重复试验考试要求。

1、了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。

3、理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

二、随机变量及其分布考试内容:随机变量、随机变量分布函数的概念及其性质、离散型随机变量的概率分布、连续型随机变量的概率密度、常见随机变量的分布、随机变量函数的分布考试要求。

1、理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布、及其应用。

3、了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。

5、会求随机变量函数的分布。

三、多维随机变量及其分布考试内容:多维随机变量及其分布、二维离散型随机变量的概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度、边缘概率密度和条件密度、随机变量的独立性和不相关性、常用二维随机变量的分布、两个及两个以上随机变量简单函数的分布考试要求。

1、理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。

正态样本统计量的抽样分布概述

正态样本统计量的抽样分布概述

1
2
20
Xi
i1
X
2
35.2
P
1
2
20
Xi
i1
X
2
7.4
P
1
2
20
X
i1
i
X
2
35.2
查表
0.99 0.01 0.98
(P.386)
(2) 20 Xi 2 ~ 2 (20)
i1

P 0.37
2
1 20
20
Xi
i1
2
1.76
2
P 7.4
20
i1
Xi
2
35.2
(1)

P 0.37
2
1 20
20 i1
Xi
X
2
1.76
2
(2)

P 0.37
2
1 20
20 i1
Xi
2
1.76
2
解 (1)
(n
1)S 2
2
~
2(n
1)

19S 2
2
1
2
20 i 1
Xi X
2 ~ 2 (19)

P
0.37
2
1 20
20
Xi
i1
X
2
1.76
2
P 7.4

F0.95 (5, 4) ?
事实上,
F1
(n,
m)
F
1 (m,
n)

F0.95 (5,4)
1 F0.05 (4,5)
1 5.19

概率论 第十八讲 正态总体常用的统计量

概率论 第十八讲 正态总体常用的统计量

1
3
Yi
~
N (0,1)
16 i1
1 3
Yi
,i 1,2,,16
2
~
2 (16)
从而 X1 X 2 X 9
Y12 Y22 Y126
3
1
4
X
1
X2
X9
~
t(16)
16
i 1
1 3
Yi
2
16
例5 设 (X1, X2, , Xn )是来自N ( , 2 )的 简单随机样本, X 是样本均值,
第十八讲 正态总体常用的统计量
教学目的:
介绍正态总体的6个常用统计量; 讲解参数估计的基本思想: 讲解参数估计的矩估计法。
教学内容:
第五章,§ 5.4; 第六章,§ 6.1-1。
抽样分布的某些结论
(Ⅰ) 一个正态总体
设总体 X ~ N( , 2 ),样本为(
),
X ~ N(, 2)
n
X
~
N (0,1)
n

70 72
0.2
1
n 0.9
10
得n
0.2
0.2 n 1.29
n
即 n 41.6025 所以取 n 42
例2 从正态总体 X ~ N(, 2 ) 中,抽取了
n = 20的样本 ( X1, X2, , X20 )
(1)
求P 0.37
2
1 20
20 i1
Xi
X
2
1.76
ˆ
2 矩
1 n
n i1
X
2 i
X
2
例3 设总体 X ~ E(), X1, X2,…, Xn为总体的 样本, 求 的矩法估计量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回 上页 下页 结束
并且U和V相互独立, 由F 分布的定义可得
返回 上页 下页 结束
解 因为
从而有


自由度为2.
返回 上页 下页 结束
例2 设

分别为来自
正态总体

的样本, 且X和Y
相互独立. 试判断以下统计量服从什么分布:
(1)
(2) 解 (1) 因为
返回 上页 下页 结束
由 分布的可加性可知

(2) 由题设条件和正态分布的性质可得
从而有
返回 上页 下页 结束
由正态分布的性质可得 即 从而有 又因为

的样本, 且这两
个样本相互独立. 设
分别是两个样本的均值,
分别是两个样本的方差, 则有:
返回 上页 下页 结束
(1)
(2)
特别地, 当
时,
(3) 当
已知时,
返回 上页 下页 结束
(4) 当
未知时,
其中
返回 上页 下页 结束
例1 设总体 X的一个样本. 统计量
为来自总体
试确定C, 使CY 服从 分布, 并指出其自由度.
一. 单个正态总体的样本均值和样本方差的分布
设总体X(不管是什么分布,只要均值和方差
存在)的均值为 方差为
是来自
总体X的样本, 与 分别是样本均值和样本方差.
则有
返回 上页 下页 结束

定理1 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
(1) 与 相互独立;
(2)
(3)
推论 设
为来自总体
的样本, 是样本均值. 则有
返回 上页 下页 结束
定理2 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
证明 由定理1和推论, 有
且两者相互独立. 由t分布定义可知 化简可得结论成立.
返回 上页 下页 结束
二. 两个正态总体的样本均值差和样本方差比的分布
定理3 设

分别为来自
正态总体
相关文档
最新文档