CH12期权定价模型分析
可转债期权定价模型
可转债期权定价模型(二叉树模型)业务说明1、可转换公司债券定价的理论基础可转换公司债券可以近似的看作是普通债券与股票期权的组合体。
首先,可转换公司债券的持有者可以按照债券上约定的转股价格,在转股期间内行使转股权利,这实际相当于以转股价格为期权执行价格的美式买权,一旦市场价格高于期权执行价格,债券持有者就可以行使美式买权从而获利。
其次,由于发行人在可转换公司债券的赎回条款中规定如果股票价格连续若干个交易日高于某一赎回启动价格(该赎回启动价要高于转股价格),发行人有权按一定金额予以赎回。
所以,赎回条款相当于债券持有人在购买可转换公司债券时就无条件出售给发行人的一张美式买权。
当然,发行人期权存在的前提是债券持有人的期权还未执行,如果债券持有人实施转股,发行人的赎回权对该投资者也归于无效。
第三,还有可转换债券中的回售条款规定,如果股票价格连续若干个交易日收盘价低于某一回售启动价格(该回售启动价要低于转股价格),债券持有人有权按一定金额回售给发行人。
所以,回售条款相当于债券持有人同时拥有发行人出售的一张美式卖权。
综上所述,可转换公司债券相当于这样一种投资组合:投资者持有一张与可转债相同利率的普通债券,一张数量为转换比例、期权行使价为初始转股价格的美式买权,一张美式卖权,同时向发行人无条件出售了一张美式买权。
所以,可转换公司债券的价值可以用以下公式近似表示:可转换公司债券价值^纯粹债券价谶权价值2、二叉树法理论(Binomial Theroy)根据衍生证券定价的二叉树法理论(Binomial Theroy),我们把衍生证券的有效期分为很多很小的时间间隔△ t,假设在每一个时间段内股票价格从开始的S运动到两个新值S”和Sd中的一个。
一般情况下u>1, d<1,因此5到Su是价格“上升”运动,S到Sd是价格“下降”运动。
价格上升的概率假设是P,下降的概率则为1—P。
当时间为0时,股票价格为S;时间为△ t时,股票价格有两种可能:Su和Sd;时间为2A t时,股票价格有三种可能:Su2、Sud和Sd2,以此类推,图1给出了股票价格的完整树图。
期权的定价
期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
期权理论知识点总结
期权理论知识点总结一、期权的基本概念1. 期权的定义:期权是指买卖双方约定在未来某个时点以约定的价格买入或卖出一定数量的标的资产的权利。
2. 期权的分类:期权分为看涨期权和看跌期权。
看涨期权是指买方有权以约定的价格买入标的资产,看跌期权是指买方有权以约定的价格卖出标的资产。
3. 期权的价格:期权的价格主要有两个部分组成,一个是内在价值,一个是时间价值。
内在价值是指期权行权后的收益,时间价值是指期权还有多少时间可以创造价值。
二、期权定价模型1. 布莱克-斯科尔斯期权定价模型:布莱克-斯科尔斯期权定价模型是一个用来计算看涨期权和看跌期权价格的数学模型。
它的基本思想是采用动态复制的方法,利用无风险利率和标的资产的价格来进行价格的计算。
2. 布莱克-斯科尔斯模型的假设:布莱克-斯科尔斯模型的核心假设有两个,一个是市场是有效的,另一个是标的资产的价格服从对数正态分布。
3. 布莱克-斯科尔斯模型的局限性:布莱克-斯科尔斯模型的局限性在于它建立在一些严格的假设上,比如市场是有效的和标的资产的价格服从对数正态分布。
而实际市场中这些假设并不一定成立。
4. 国际期权定价模型:考虑到实际市场中的不确定性和波动性,一些学者提出了一些改进的期权定价模型,比如考虑了市场波动率的随机性等因素。
三、期权交易策略1. 买入看涨期权:买入看涨期权的策略是对标的资产价格上涨的预期。
如果标的资产价格上涨,买方可以通过行使看涨期权获利。
2. 买入看跌期权:买入看跌期权的策略是对标的资产价格下跌的预期。
如果标的资产价格下跌,买方可以通过行使看跌期权获利。
3. 卖出期权:卖出期权的策略是赚取权利金。
卖方认为标的资产价格不会发生重大波动,可以通过卖出期权获得权利金收益。
4. 期权组合策略:期权组合策略是指根据市场预期和风险偏好,组合不同类型的期权合约,以达到规避风险或获得收益的目的。
四、期权的风险管理1. 期权的波动率风险:期权的价格与标的资产价格波动率有密切关系,标的资产价格波动率增大,期权价格也会增大。
第五讲期权定价理论I二叉树模型
记每步时长为Δt,那么单步二叉树模型下的期权价格 为:
f=e-rΔt[pfu +(1-p)fd] 其中,p=(erΔt-d)/(u-d)。由此可以计算出期初和第一步
到期时各个节点的期权价值:
fu=e-rΔt[pfuu+(1-p)fud] fd=e-rΔt[pfud+(1-p)fdd]
f=e-rΔt[pfu+(1-p)fd] 把fu和fd代入f可得:
f=e-2rΔt[ p2 fuu+2p(1-p)fud+(1-p)2 fdd] 因此,期权的价格为期权预期收益以无风险利率进行
贴现的现值。 想象一下,三步二叉树模型下期权的定价问题。
16
(四)看跌期权的情形
例5:考虑如下图11.7两年期的欧式看跌股票期 权,执行价格为52元,股票的当期价格为50元, 假设时期分为两步,每步期长为1年,且每步 股票价格要么上涨20%,要么下跌20%,无风 险利率为5%。
23
(七)Δ
回忆:Δ是什么? Δ=(fu–fd)/(S0u-S0d) 什么意思? Δ为期权价格变化与标的股票价格的变化之比; Δ为我们针对每个期权空头而持有的股票数量,
目的是构建一个无风险资产组合。 Δ对冲(delta hedging)通常是指构建一个无风险
对冲。看涨期权的Δ为正,看跌期权的Δ为负。 计算图11.1和11.7中的Δ。
26
4. 期货期权的定价 在风险中性世界里,期货的价格增长率为0。假设期货
的为期F0,初因价此格,为F0,时间长度为Δt的期货的期望价格也 E(FT)=pF0u+(1-p)F0d=F0 p=(1-d)/(u-d) 例10:一个期货的当前价格为31,波动率为30%,无风
期权定价
第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。
1973年,美国芝加哥大学教授F. Black和M. Scholes 发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。
在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。
在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。
第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。
然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。
1979年,J. Cox、S. Ross和M. Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(the Binomial Model)”,是期权数值定价方法的一种。
二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。
同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。
1.1 二叉树模型概述二叉树(binomial tree)是指用来描述在期权存续期内股票价格变动的可能路径。
二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。
根据第一章我们学到的知识,不难得出:3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。
这些可以通过下图的二叉树来表示。
股票价格=12元期权价格=1元股票价格=10元期权价格=?股票价格=8元期权价格=0元图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入∆只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有∆只股票的多头头寸和一份看涨期权的空头头寸。
期权定价模型
二、期权价值评估的方法(一)期权估价原理1、复制原理基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。
基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额计算步骤(1)确定可能的到期日股票价格Su和Sd上行股价Su=股票现价S×上行乘数u下行股价Sd=股票现价S×下行乘数d(2)根据执行价格计算确定到期日期权价值Cu和Cd:股价上行时期权到期日价值Cu=上行股价-执行价格股价下行时期权到期日价值Cd=0(3)计算套期保值率:套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd)(4)计算投资组合的成本(期权价值)=购买股票支出-借款数额购买股票支出=套期保值率×股票现价=H×S0借款数额=价格下行时股票收入的现值=(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r)2、风险中性原理基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。
因此:期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比)=p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比计算步骤(1)确定可能的到期日股票价格Su和Sd(同复制原理)(2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理)(3)计算上行概率和下行概率期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比)(4)计算期权价值期权价值=(上行概率×Cu+下行概率×Cd)/(1+r)(二)二叉树期权定价模型1、单期二叉树定价模型基本原理风险中性原理的应用计算公式(1)教材公式期权价格=U=股价上行乘数=1+股价上升百分比d=股价下行乘数=1-股价下降百分比(2)理解公式:(与风险中性原理完全一样)2、两期二叉树模型基本原理把到期时间分成两期,由单期模型向两期模型的扩展,实际上就是单期模型的两次应用。
对期权定价模型的偏微分方程分析--Black-Scholes期权定价模型
对期权定价模型的偏微分方程分析--Black-Scholes期权定
价模型
Black-Scholes(BS)期权定价模型是20世纪70年代由Fisher Black、Myron Scholes和Robert Merton独立发明和发展的。
BS模型将期权定价问题转化为偏微分方程问题,并提供了一种通过经济因素来解决期权定价的方法。
BS模型假设股票价格服从几何布朗运动,并使用随机微分方程来描述它们的漂移和随机波动性。
该模型还假定期权的价格服从Black-Scholes PDE:
$$\\frac{\\partial V}{\\partial
t}+\\frac{1}{2}\\sigma^2S^2\\frac{\\partial^2 V}{\\partial S^2}+rS\\frac{\\partial V}{\\partial S}-rV=0$$
其中,$V(S,t)$是期权价格,$S$是标的资产价格,
$\\sigma$是波动率,$r$是无风险利率,$t$是时间。
该方程可以被解释为投资组合在动态套利环境中的漂移和随机波动性,其中投资组合由一单股票和一个期权组成。
该方程的求解需要使用特殊函数,如Black-Scholes方程的解析解。
这个解析解有助于我们理解期权价格如何受到各种因素的影响,例如股票价格、波动率、时间和无风险利率。
总之,BS模型的偏微分方程分析提供了一种方法,使我们能够根据标的资产价格、波动率、时间和无风险利率来定价期权。
期权定价理论的发展和倒向随机微分方程
期权定价理论的发展和倒向随机微分方程期权定价理论的发展可以追溯到20世纪60年代,最初由美国经济学家布莱克(Fischer Black)和斯科尔斯(Myron Scholes)提出。
他们的贡献是建立了著名的布莱克-斯科尔斯期权定价模型,该模型基于假设市场具有完全竞争和无套利机会的特征,利用随机微分方程建立了股票价格与期权价格之间的动态关系。
该模型提供了解决欧式期权的解析解,为期权市场的发展和创新提供了坚实的理论基础。
在布莱克-斯科尔斯模型之后,学者们对期权定价理论进行了进一步研究和拓展。
其中一个重要的发展是考虑了市场存在风险溢价的情况。
美国经济学家罗伯特·曼舒尔斯坦(Robert Merton)提出了使用完美对冲策略来消除风险溢价的方法,该方法被称为风险中性评估。
风险中性评估假设投资者对风险是中性的,以中性的利率对期权进行定价。
这一方法在现实市场中的应用较广泛,它提供了一种在实际投资中可以套利无风险的策略。
另一个重要的发展是对期权定价模型的拓展和推广。
布莱克-斯科尔斯模型最初是针对欧式期权的,但随着市场的需要,学者们开始研究其他类型的期权。
比如,美国经济学家考克斯(John Cox)、罗斯(Stephen Ross)和鲁宾斯坦(Mark Rubinstein)发展了考克斯-罗斯模型,该模型可以解决美式期权的定价问题。
此外,还有学者研究了带有障碍和提前执行权的期权定价模型,为金融市场的创新提供了支持。
倒向随机微分方程的推导主要基于伊藤引理,该引理是随机微积分的基本定理之一、通过对股票价格进行动态建模,可以得到股票价格的演化方程,从而可以推导出期权价格的解析解。
在推导倒向随机微分方程时,需要考虑市场中的随机性和不确定性因素,如风险溢价和波动率等。
总结起来,期权定价理论的发展和倒向随机微分方程的应用为金融市场参与者提供了强大的工具和理论基础。
不断的研究和拓展使得期权定价模型逐渐趋于完善,并为期权交易和投资决策提供了更加准确和可靠的定价方法。
如何评估期权的价值
如何评估期权的价值期权是一种金融衍生品,它赋予购买者在未来某个特定时间内以特定价格购买或者卖出某一标的资产的权利,而并非义务。
在金融市场中,期权的价值评估对于投资者和交易者来说至关重要。
合理的期权定价模型可以帮助投资者做出明智的决策,并降低投资风险。
本文将详细介绍如何评估期权的价值。
一、期权定价模型期权的价值评估主要使用两种经典的定价模型:Black-Scholes模型和Binomial模型。
1. Black-Scholes模型Black-Scholes模型是最常用的期权定价模型之一,基于以下几个关键因素对期权进行定价:- 标的资产的价格(S):即期权对应的股票、商品或指数的当前价格;- 行权价格(K):即期权买卖方约定的交易价格;- 到期时间(T):即期权有效期限;- 无风险利率(r):市场上的无风险利率,使用国债利率或短期利率作为参考;- 标的资产的波动率(σ):标的资产价格的波动程度。
通过以上因素,Black-Scholes模型可以计算出一个期权理论价格,即市场上合理的期权价格。
2. Binomial模型Binomial模型是另一种常用的期权定价模型,它基于二叉树的计算方法。
该模型通过构建一个期权价格的二叉树,从期权到期时的所有可能价格路径中,使用回溯法计算出期权的价值。
二、评估期权的价值在实际应用中,我们可以使用以下几种方法来评估期权的价值:1. 市价法市价法是最常用的评估期权价值的方法,即根据市场上实际交易的期权价格来确定期权的价值。
这种方法可以反映市场对该期权的整体认知和供需状况,并具有一定的市场有效性。
2. 基于历史波动率的模型在Black-Scholes模型中,波动率是期权定价的一个重要参数。
我们可以根据过去的历史波动率来估计未来的波动率,然后将其代入到Black-Scholes模型中进行计算。
这种方法适用于市场波动率相对稳定的情况下。
3. 基于隐含波动率的模型隐含波动率是指使市场观察到的期权价格与Black-Scholes模型计算得出的价格相匹配的波动率。
资产定价中的期权定价模型
资产定价中的期权定价模型在金融市场中,期权是一种重要的金融衍生品。
期权的持有者在未来某一时间点上有权进行一定的交易,而其出售者则有相应的义务。
如何对期权进行定价,一直是金融学研究的重点之一。
期权定价模型可以帮助投资者合理地评估期权的价格,从而作出科学的投资决策。
在资产定价中,期权定价模型也起到了重要的作用。
期权定价模型主要有两种:Black-Scholes模型和Binomial模型。
Black-Scholes模型是最为著名的期权定价模型之一。
它是由费雪-布莱克和马顿·斯科尔斯在1973年提出的。
Black-Scholes模型假设以下四个条件:1. 证券市场是完全有效的,即不存在任何套利机会。
2. 股票价格的波动率是固定的,并且是已知的。
3. 股票市场的收益率符合对数正态分布。
4. 没有交易费用和税收。
基于以上条件,Black-Scholes模型可以通过求解偏微分方程来计算欧式看涨欧式看跌期权的理论价格。
该模型得出的期权价格,主要取决于以下几个因素:期权行权价格、期权到期时间、标的资产价格、无风险收益率和波动率。
其中,隐含波动率是一个重要的变量,它是指在当前市场条件下,使得理论价格等于市场价格的波动率。
Binomial模型又称二项式模型,是Cox、Ross和Rubinstein在1979年提出的。
Binomial模型基于离散时间、离散状态的假设,即时间轴和股价轴都是离散的。
该模型将给定时刻的资产价格看作是一个上涨或下跌的分支过程,从而形成一个二叉树结构。
通过在概率树上求解,可以计算出欧式期权、美式期权等的理论价格。
与Black-Scholes模型相比,Binomial模型更适用于处理近期股价波动较大的市场情况。
需要注意的是,Black-Scholes模型和Binomial模型都有其适用的范围。
在实际应用中,我们需根据特定的市场情况来选择相应的期权定价模型。
同时,期权定价模型也存在一定的局限性,如市场波动性的假设、隐含波动率的估计等问题。
期权定价原理
期权定价原理永安期货研究院周博2013年5月⏹期权定价模型的演化历程⏹期权定价模型及原理⏹影响期权定价的因素⏹期权风险参数及其应用期权定价模型的演化历程⏹B-S模型之前的期权定价理论⏹B-S模型期权定价理论⏹B-S模型之后的期权定价理论B-S模型之前的期权定价理论(一)Bachelier(1900)(二)Sprenkle(1964)(三)Boness(1964)(四)Samnelson(1965)B-S模型期权定价理论Black与Scholes(1973)提出,推导出了无红利支付股票的衍生证券所需满足的微分方程,并根据欧式期权所确定的边界条件,给出了股票欧式期权价值的解析表达式。
B-S模型之后的期权定价理论(一)连续股利支付的B-S定价模型(Merton(1973))(二)随机无风险利率的B-S定价模型(Merton(1976))(三)带跳的B-S定价模型(Cox和Ross(1975))(四)波动率修正的B-S定价模型(Black和Cox(1976))“波动率微笑”效应(五)CRR二项式定价模型(Cox,Ross和Rubinstein(1979))(六)美式期权定价模型研究(Barone-Adesi和Whaley(1987))期权定价模型及原理⏹B-S期权定价模型(欧式现货期权)⏹Black(76)期权定价模型(欧式期货期权)⏹二叉树期权定价模型(欧式、美式、现货、期货)B-S期权定价模型⏹假设:标的价格服从标的价格波动率和预期收益率为常数的几何布朗运动,即⏹原理:通过卖出一手看涨期权,买入份股票,构造了一份无风险投资组合由无套利原理可知,该组合的收益率和无风险资产的收益率相同,即⏹场景:印度国家证券交易所(NSE)采取Black-Sholes模型为S&P CNX Nifty指数期权提供参考价。
⏹优点:封闭解析解,计算速度快,精确。
⏹缺点:适用范围有限,不能计算美式期权。
Black(76)期权定价模型⏹介绍:由Fischer Black在1976年的《商品合约的定价》一文中首次详述。
期权定价理论
期权定价理论期权定价理论是衡量期权合约价格的数学模型。
它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。
这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。
期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。
该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。
布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。
布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。
通过调整组合中的权重,可以确定合理的期权价格。
这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。
除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。
这些模型在不同情况下,可以更准确地预测期权价格。
需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。
市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。
此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。
总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。
布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。
然而,需要注意实际市场中的差异和其他影响因素。
期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。
期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。
HullOFOD9eSolutionsCh12第九版期权、期货及其他衍生品课后答案
CHAPTER 12Trading Strategies Involving OptionsPractice QuestionsProblem 12.1.What is meant by a protective put? What position in call options is equivalent to a protective put?A protective put consists of a long position in a put option combined with a long position in the underlying shares. It is equivalent to a long position in a call option plus a certain amount of cash. This follows from put –call parity: 0rT p S c Ke D -+=++Problem 12.2.Explain two ways in which a bear spread can be created.A bear spread can be created using two call options with the same maturity and different strike prices. The investor shorts the call option with the lower strike price and buys the call option with the higher strike price. A bear spread can also be created using two put options with the same maturity and different strike prices. In this case, the investor shorts the put option with the lower strike price and buys the put option with the higher strike price.Problem 12.3.When is it appropriate for an investor to purchase a butterfly spread?A butterfly spread involves a position in options with three different strike prices (12K K ,, and 3K ). A butterfly spread should be purchased when the investor considers that the price of the underlying stock is likely to stay close to the central strike price, 2K .Problem 12.4.Call options on a stock are available with strike prices of $15,$17.5 , and $20 and expiration dates in three months. Their prices are $4, $2, and,$0.5 respectively. Explain how the options can be used to create a butterfly spread. Construct a table showing how profit varies with stock price for the butterfly spread.An investor can create a butterfly spread by buying call options with strike prices of $15 and $20 and selling two call options with strike prices of $1712. The initial investment is1122422$+-⨯=. The following table shows the variation of profit with the final stock price:Problem 12.5.What trading strategy creates a reverse calendar spread?A reverse calendar spread is created by buying a short-maturity option and selling a long-maturity option, both with the same strike price.Problem 12.6.What is the difference between a strangle and a straddle?Both a straddle and a strangle are created by combining a long position in a call with a long position in a put. In a straddle the two have the same strike price and expiration date. In a strangle they have different strike prices and the same expiration date.Problem 12.7.A call option with a strike price of $50 costs $2. A put option with a strike price of $45 costs $3. Explain how a strangle can be created from these two options. What is the pattern of profits from the strangle?A strangle is created by buying both options. The pattern of profits is as follows:Problem 12.8.Use put –call parity to relate the initial investment for a bull spread created using calls to the initial investment for a bull spread created using puts.A bull spread using calls provides a profit pattern with the same general shape as a bullspread using puts (see Figures 12.2 and 12.3 in the text). Define 1p and 1c as the prices of put and call with strike price 1K and 2p and 2c as the prices of a put and call with strike price 2K . From put-call parity111rT p S c K e -+=+222rT p S c K e -+=+Hence:121221()rT p p c c K K e --=---This shows that the initial investment when the spread is created from puts is less than the initial investment when it is created from calls by an amount 21()rT K K e --. In fact as mentioned in the text the initial investment when the bull spread is created from puts is negative, while the initial investment when it is created from calls is positive.The profit when calls are used to create the bull spread is higher than when puts are used by 21()(1)rT K K e ---. This reflects the fact that the call strategy involves an additional risk-freeinvestment of 21()rT K K e -- over the put strategy. This earns interest of2121()(1)()(1)rT rT rT K K e e K K e ----=--.Problem 12.9.Explain how an aggressive bear spread can be created using put options.An aggressive bull spread using call options is discussed in the text. Both of the options used have relatively high strike prices. Similarly, an aggressive bear spread can be created using put options. Both of the options should be out of the money (that is, they should have relatively low strike prices). The spread then costs very little to set up because both of the puts are worth close to zero. In most circumstances the spread will provide zero payoff. However, there is a small chance that the stock price will fall fast so that on expiration both options will be in the money. The spread then provides a payoff equal to the difference between the two strike prices, 21K K -.Problem 12.10.Suppose that put options on a stock with strike prices $30 and $35 cost $4 and $7,respectively. How can the options be used to create (a) a bull spread and (b) a bear spread? Construct a table that shows the profit and payoff for both spreads.A bull spread is created by buying the $30 put and selling the $35 put. This strategy gives rise to an initial cash inflow of $3. The outcome is as follows:A bear spread is created by selling the $30 put and buying the $35 put. This strategy costs $3 initially. The outcome is as follows:Problem 12.11.Use put –call parity to show that the cost of a butterfly spread created from European puts is identical to the cost of a butterfly spread created from European calls.Define 1c , 2c , and 3c as the prices of calls with strike prices 1K , 2K and 3K . Define 1p , 2p and 3p as the prices of puts with strike prices 1K , 2K and 3K . With the usual notation 111rT c K e p S -+=+ 222rT c K e p S -+=+ 333rT c K e p S -+=+ Hence 1321321322(2)2rT c c c K K K e p p p -+-++-=+- Because 2132K K K K -=-, it follows that 13220K K K +-= and13213222c c c p p p +-=+-The cost of a butterfly spread created using European calls is therefore exactly the same as the cost of a butterfly spread created using European puts.Problem 12.12.A call with a strike price of $60 costs $6. A put with the same strike price and expiration date costs $4. Construct a table that shows the profit from a straddle. For what range of stock prices would the straddle lead to a loss?A straddle is created by buying both the call and the put. This strategy costs $10. The profit/loss is shown in the following table:This shows that the straddle will lead to a loss if the final stock price is between $50 and $70.Problem 12.13.Construct a table showing the payoff from a bull spread when puts with strike prices 1K and 2K with K 2>K 1 are used.The bull spread is created by buying a put with strike price 1K and selling a put with strike price 2K . The payoff is calculated as follows:Problem 12.14.An investor believes that there will be a big jump in a stock price, but is uncertain as to thedirection. Identify six different strategies the investor can follow and explain the differences among them.Possible strategies are:Strangle Straddle Strip StrapReverse calendar spread Reverse butterfly spreadThe strategies all provide positive profits when there are large stock price moves. A strangle is less expensive than a straddle, but requires a bigger move in the stock price in order to provide a positive profit. Strips and straps are more expensive than straddles but provide bigger profits in certain circumstances. A strip will provide a bigger profit when there is a large downward stock price move. A strap will provide a bigger profit when there is a large upward stock price move. In the case of strangles, straddles, strips and straps, the profitincreases as the size of the stock price movement increases. By contrast in a reverse calendar spread and a reverse butterfly spread there is a maximum potential profit regardless of the size of the stock price movement.Problem 12.15.How can a forward contract on a stock with a particular delivery price and delivery date be created from options?Suppose that the delivery price is K and the delivery date is T . The forward contract is created by buying a European call and selling a European put when both options have strike price K and exercise date T . This portfolio provides a payoff of T S K - under allcircumstances where T S is the stock price at time T . Suppose that 0F is the forward price. If 0K F =, the forward contract that is created has zero value. This shows that the price of a call equals the price of a put when the strike price is 0F .Problem 12.16.“A box spread comprises four options. Two can be combined to create a long forwardposition an d two can be combined to create a short forward position.” Explain this statement.A box spread is a bull spread created using calls and a bear spread created using puts. With the notation in the text it consists of a) a long call with strike 1K , b) a short call with strike 2K , c) a long put with strike 2K , and d) a short put with strike 1K . a) and d) give a long forward contract with delivery price 1K ; b) and c) give a short forward contract with delivery price 2K . The two forward contracts taken together give the payoff of 21K K -.Problem 12.17.What is the result if the strike price of the put is higher than the strike price of the call in astrangle?The result is shown in Figure S12.1. The profit pattern from a long position in a call and a putwhen the put has a higher strike price than a call is much the same as when the call has a higher strike price than the put. Both the initial investment and the final payoff are muchhigher in the first caseFigure S12.1:Profit Pattern in Problem 12.17Problem 12.18.A foreign currency is currently worth $0.64. A one-year butterfly spread is set up using European call options with strike prices of $0.60, $0.65, and $0.70. The risk-free interest rates in the United States and the foreign country are 5% and 4% respectively, and the volatility of the exchange rate is 15%. Use the DerivaGem software to calculate the cost of setting up the butterfly spread position. Show that the cost is the same if European put options are used instead of European call options.To use DerivaGem select the first worksheet and choose Currency as the Underlying Type. Select Black--Scholes European as the Option Type. Input exchange rate as 0.64, volatility as 15%, risk-free rate as 5%, foreign risk-free interest rate as 4%, time to exercise as 1 year, and exercise price as 0.60. Select the button corresponding to call. Do not select the implied volatility button. Hit the Enter key and click on calculate. DerivaGem will show the price of the option as 0.0618. Change the exercise price to 0.65, hit Enter, and click on calculate again. DerivaGem will show the value of the option as 0.0352. Change the exercise price to 0.70, hit Enter, and click on calculate. DerivaGem will show the value of the option as 0.0181.Now select the button corresponding to put and repeat the procedure. DerivaGem shows the values of puts with strike prices 0.60, 0.65, and 0.70 to be 0.0176, 0.0386, and 0.0690, respectively.The cost of setting up the butterfly spread when calls are used is therefore.+.-⨯.=.006180018120035200095The cost of setting up the butterfly spread when puts are used is.+.-⨯.=.001760069020038600094Allowing for rounding errors these two are the same.Problem 12.19.An index provides a dividend yield of 1% and has a volatility of 20%. The risk-free interest rate is 4%. How long does a principal-protected note, created as in Example 12.1, have to last for it to be profitable to the bank? Use DerivaGem.Assume that the investment in the index is initially $100. (This is a scaling factor that makes no difference to the result.) DerivaGem can be used to value an option on the index with the index level equal to 100, the volatility equal to 20%, the risk-free rate equal to 4%, the dividend yield equal to 1%, and the exercise price equal to 100. For different times to maturity, T, we value a call option (using Black-Scholes European) and the amount available to buy the call option, which is 100-100e-0.04×T. Results are as follows:This table shows that the answer is between 10 and 11 years. Continuing the calculations we find that if the life of the principal-protected note is 10.35 year or more, it is profitable for the bank. (Excel’s Solver can be used in conjunction with the DerivaGem functions to facilitate calculations.)Further QuestionsProblem 12.20.A trader creates a bear spread by selling a six-month put option with a $25 strike pricefor $2.15 and buying a six-month put option with a $29 strike price for $4.75. What isthe initial investment? What is the total payoff when the stock price in six months is (a) $23, (b) $28, and (c) $33.The initial investment is $2.60. (a) $4, (b) $1, and (c) 0.Problem 12.21.A trader sells a strangle by selling a call option with a strike price of $50 for $3 andselling a put option with a strike price of $40 for $4. For what range of prices of the underlying asset does the trader make a profit?The trader makes a profit if the total payoff is less than $7. This happens when the price of the asset is between $33 and $57.Problem 12.22.Three put options on a stock have the same expiration date and strike prices of $55, $60, and $65. The market prices are $3, $5, and $8, respectively. Explain how a butterfly spread can be created. Construct a table showing the profit from the strategy. For what range of stock prices would the butterfly spread lead to a loss?A butterfly spread is created by buying the $55 put, buying the $65 put and selling two of the+-⨯=initially. The following table shows the profit/loss $60 puts. This costs 38251$from the strategy.The butterfly spread leads to a loss when the final stock price is greater than $64 or less than $56.Problem 12.23.A diagonal spread is created by buying a call with strike price 2K and exercise date 2T and selling a call with strike price 1K and exercise date 121()T T T >. Draw a diagram showing the profit at time T 1 when (a) 21K K > and (b) 21K K <.There are two alternative profit patterns for part (a). These are shown in Figures S12.2 and S12.3. In Figure S12.2 the long maturity (high strike price) option is worth more than the short maturity (low strike price) option. In Figure S12.3 the reverse is true. There is no ambiguity about the profit pattern for part (b). This is shown in Figure S12.4.K 1K 2ProfitS TFigure S12.2: Investo r’s Profit/Loss in Problem 12.23a when long maturity call is worthmore than short maturity callProfitS TK1K2Figure S12.3Investo r’s Profit/Loss in Problem 12.23b when short maturity call is worthmore than long maturity callProfitS TK2K1Figure S12.4Investo r’s Profit/Loss in Problem 12.23bProblem 12.24.Draw a diagram showing the variation of an investor’s profit and loss with the terminal stock price for a portfolio consisting ofa.One share and a short position in one call optionb.Two shares and a short position in one call optionc.One share and a short position in two call optionsd.One share and a short position in four call optionsIn each case, assume that the call option has an exercise price equal to the current stock price.The variation of an investor’s profit/loss with the termina l stock price for each of the four strategies is shown in Figure S12.5. In each case the dotted line shows the profits from thecomponents of the investor’s position and the solid line shows the total net profit.Figure S12.5 Answer to Problem 12.24Problem 12.25.Suppose that the price of a non-dividend-paying stock is $32, its volatility is 30%, and the risk-free rate for all maturities is 5% per annum. Use DerivaGem to calculate the cost of setting up the following positions. In each case provide a table showing the relationship between profit and final stock price. Ignore the impact of discounting.a. A bull spread using European call options with strike prices of $25 and $30 and amaturity of six months.b. A bear spread using European put options with strike prices of $25 and $30 and amaturity of six monthsc. A butterfly spread using European call options with strike prices of $25, $30, and$35 and a maturity of one year.d. A butterfly spread using European put options with strike prices of $25, $30, and$35 and a maturity of one year.e. A straddle using options with a strike price of $30 and a six-month maturity.f. A strangle using options with strike prices of $25 and $35 and a six-monthmaturity.In each case provide a table showing the relationship between profit and final stock price. Ignore the impact of discounting.(a)A call option with a strike price of 25 costs 7.90 and a call option with a strike price.-.=.. The of 30 costs 4.18. The cost of the bull spread is therefore 790418372profits ignoring the impact of discounting are(b) A put option with a strike price of 25 costs 0.28 and a put option with a strike price of 30.-.=.. The profits ignoring costs 1.44. The cost of the bear spread is therefore 144028116the impact of discounting are(c) Call options with maturities of one year and strike prices of 25, 30, and 35 cost 8.92, 5.60, and 3.28, respectively. The cost of the butterfly spread is therefore8923282560100.+.-⨯.=.. The profits ignoring the impact of discounting are(d) Put options with maturities of one year and strike prices of 25, 30, and 35 cost 0.70, 2.14,.+.-⨯.=..4.57, respectively. The cost of the butterfly spread is therefore 0704572214099 Allowing for rounding errors, this is the same as in (c). The profits are the same as in (c). (e) A call option with a strike price of 30 costs 4.18. A put option with a strike price of 30.+.=.. The profits ignoring the costs 1.44. The cost of the straddle is therefore 418144562impact of discounting are(f) A six-month call option with a strike price of 35 costs 1.85. A six-month put option with a.+.=.. The strike price of 25 costs 0.28. The cost of the strangle is therefore 185028213profits ignoring the impact of discounting areProblem 12.26.What trading position is created from a long strangle and a short straddle when both have the same time to maturity? Assume that the strike price in the straddle is halfway between the two strike prices of the strangle.A butterfly spread (together with a cash position) is created.Problem 12.27. (Excel file)Describe the trading position created in which a call option is bought with strike price K1 and a put option is sold with strike price K2 when both have the same time to maturity andK2 > K1. What does the position become when K1 = K2?The position is as shown in the diagram below (for K1 = 25 and K2 = 35). It is known as a range forward and is discussed further in Chapter 17. When K1 =K2, the position becomes aregular long forward.Figure S12.6:Trading position in Problem 12.27Problem 12.28.A bank decides to create a five-year principal-protected note on a non-dividend-paying stock by offering investors a zero-coupon bond plus a bull spread created from calls. The risk-free rate is 4% and the stock price volatility is 25%. The low strike price option in the bull spread is at the money. What is the maximum ratio of the higher strike price to the lower strike price in the bull spread? Use DerivaGem.Assume that the amount invested is 100. (This is a scaling factor.) The amount available tocreate the option is 100-100e-0.04×5=18.127. The cost of the at-the money option can be calculated from DerivaGem by setting the stock price equal to 100, the volatility equal to 25%, the risk-free interest rate equal to 4%, the time to exercise equal to 5 and the exercise price equal to 100. It is 30.313. We therefore require the option given up by the investor to be worth at least 30.313−18.127 = 12.186. Results obtained are as follows:Continuing in this way we find that the strike must be set below 163.1. The ratio of the high strike to the low strike must therefore be less than 1.631 for the bank to make a profit. (Excel’s Solver can b e used in conjunction with the DerivaGem functions to facilitate calculations.)。
期权定价模型
期权定价模型期权定价模型是金融学中一种重要的定价工具,用于估计期权的合理价值。
期权是金融衍生品的一种,它为买方提供了在未来某个时间以特定价格购买或出售标的资产的权利,而无需承担义务。
期权定价模型的主要目的是通过考虑不同的因素,如标的资产价格、行权价格、到期时间、无风险利率、波动率等,来计算期权的合理价格。
传统上,期权定价模型主要分为两类:基于风险中性定价(Risk-neutral pricing)的模型和基于实物资产价格和风险度量的模型。
其中,最著名的模型包括布莱克-斯科尔斯(Black-Scholes)期权定价模型和它的变体。
布莱克-斯科尔斯期权定价模型是由费希尔·布莱克、默顿·米勒和罗伯特·斯科尔斯于20世纪70年代提出的。
该模型基于以下几个假设:1)市场是完全的,不存在交易费用和税收;2)资产的价格满足几何布朗运动;3)没有风险套利机会;4)无风险利率和波动率是已知且恒定的。
根据布莱克-斯科尔斯模型,期权的定价公式如下:C = S(t)e^(-qt)N(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - S(t)e^(-qt)N(-d1)其中,C表示买方购买的看涨期权的价格,P表示买方购买的看跌期权的价格,S(t)为资产在当前时间的价格,X为行权价格,r为无风险利率,t为到期时间,q为股息率,N(d1)和N(d2)为标准正态分布的累积分布函数,d1和d2的计算公式如下:d1 = (ln(S(t)/X) + (r - q + σ^2/2)t) / (σsqrt(t))d2 = d1 - σsqrt(t)其中,σ为资产的波动率。
布莱克-斯科尔斯模型的优点是计算简单,结果直观易懂。
然而,该模型的假设有时不符合实际情况,特别是在市场不完全时。
因此,研究人员开发了各种变体模型,以修正或扩展布莱克-斯科尔斯模型的假设。
此外,还有其他的期权定价模型,如二叉树模型、蒙特卡洛模拟、期权隐含波动率等。
布莱克斯克尔斯期权定价模型
布莱克斯克尔斯期权定价模型汇报人:日期:目录CATALOGUE•引言•布莱克斯克尔斯模型原理•模型应用•模型优势与局限•布莱克斯克尔斯模型与其他模型的比较•未来展望与研究方向01 CATALOGUE引言1背景介绍23布莱克斯克尔斯模型起源于1973年,由费雪·布莱克斯克尔斯(Fischer Black)和迈伦·斯科尔斯(Myron Scholes)提出。
当时,该模型是为了解决金融衍生品,特别是期权定价的问题而建立的。
金融衍生品是一种金融合约,其价值取决于其他金融资产或指标。
模型发展历程布莱克斯克尔斯模型的发展得益于许多重要的突破,其中包括无套利原则:模型利用无套利原则,这意味着在市场上不能通过买卖资产来赚取无风险利润。
欧式期权定价:该模型适用于欧式期权,即只能在到期日行使的期权。
随机过程:模型运用随机过程来描述股票价格的变化。
模型应用领域布莱克斯克尔斯模型被广泛应用于金融衍生品市场,包括期权:该模型用于定价欧式和美式期权。
互换:该模型用于定价利率互换和其他类型的互换合约。
其他衍生品:该模型还可用于定价其他金融衍生品,如期货、认股权证等。
02CATALOGUE布莱克斯克尔斯模型原理基础概念布莱克斯克尔斯模型是一种用于定价欧式期权的数学模型,该模型基于随机过程,并使用偏微分方程来描述。
在该模型中,期权价格被表示为时间t和股票价格S的函数,用C(t,S)表示。
股票价格服从几何布朗运动,即dS = μSdt + σSdwt,其中μ是股票的预期收益率,σ是股票的波动率,wt是威纳过程。
布莱克斯克尔斯模型的期权定价公式为:C(t, S) = SN(d1) - Ke^(-r)(T-t)N(d2),其中N是正态分布函数,d1和d2是由模型参数确定的公式。
d2 = d1 - σ√(T - t)K 是期权的执行价格,r 是无风险利率,T 是到期时间,t 是当前时间,σ是股票的波动率。
d1 = (ln(S/K) + (r + 0.5σ^2)(T - t)) / (σ√(T - t))期权定价公式参数确定方法参数σ(波动率)通常由历史数据估计得出,也可以使用市场波动率作为其近似值。
期权定价的二叉树模型学习笔记(II)
期权定价的二叉树模型学习笔记(II)编者按:二叉树模型的第二部分学习笔记中涉及到欧式看涨看跌期权的定价公式和所谓的平价公式,从形式上来看,该公式还不算特别复杂的.由于欧式期权是在到期日时实施期权,因此它相比美式期权(在到期日之前皆可实施)来说还是较为简单的.关于欧式看涨和看跌期权的平价公式,其刻画了两个期权之间的等量关系,往后所要学习到的美式期权则没有类似的平价公式.因此可以说,平价公式是欧式期权所独有的,这也是欧式期权相比美式期权多的一个差异点.笔记后半部分涉及到的鞍和鞍测度等概念,严格来说其实涉及到测度论的知识,因此首先需要了解的是测度的基本概念.引进鞍的一大目的是为了阐述这样一个核心结论:在二叉树模型下,市场的无套利性质与鞍测度之间具有等价性(if and noly if).尽管我们假设市场是无套利的(动态的无套利),然而要想从数学这个视角精细地刻画这点就不得不寻找等价条件.毫无疑问的是,资产定价基本定理为我们揭示了鞍测度与市场无套利之间的微妙联系.二叉树模型的期权价计算Denote .,We consider possible values of option at :.Question:If are given, how can we determineIn particular,Answer:We can determine by us-ing backward induction in the one period and two-state model.Notice that.Meanwhile, we can calculateThen we want to find二叉树模型欧式期权定价公式Define a risk-neural measure :Then,we will getSo that for any ,When ,=0.折现价二叉树模型的平价公式Denote Then the European call option valuation formula isEspecially,when ,,For the binomial tree method,the call-put parity(in discrete form) becomes鞅(Martingale)的概念the bet at game,the next bet.If under the condition that complete information of all previous game are available,the expectation of equals the previous stake i.e.then we say the gamble is fair.In Mathematics, is called -algebra in stochastic theory.Definition1(Martingale):The best sequence that satisfies conditionas a discrete random process,is called a Martingale.Remark:Martingle is often used to refer to a fair gamble.Then,we give mathematical definition of Martingale.Definition1'(Martingale ):A sequence is a Martingale with respect to sequence if for all :••鞅测度Under the risk-neutral measure ,the discount prices of an underlying asset ,as a discrete random process,satisfy the equation:Remark:Hence the discount price sequence of an underlying asset is a martingale.Definition2(Martingale measure):The risk-neutral measure is called the martingale measure.概率测度等价定义Definition3(Equivvalent measure):Probability measure and Probability measure are said to be equivalent if and only if for any probability event (set) there isi.e. the Probability measure and have the same null set.The European option valuation formula under the sense of equivalent Martingale measure ,can be written asEspecially,鞅测度和无套利等价性;用倒向归纳法证明期权不等式Theorem1(The fundamental theorem of asset pricing):If an underlying asset price moves as a binomial tree, there exists an equivalent Martingale measure if and only if the market is arbitrage-free.Dividend-Paying(股息支付):An underlying asset pays dividends in t-wo ways:•Pay dividends discretely at certain times in a year;•Pay dividends continuously at a certain rate.We only consider the continuous model. For studying the continuous Model, there are two reasons.Meanwhile,we meet the example:A company needs to buy Euro at time to pay a German company. To avoid any loss if Euro goes up, the company buys a call option of Euro with Expiration date at rate .How much premium should the company pay?[上文链接]: 期权定价的二叉树模型学习笔记(I)预知后事如何,请听下回分解......。
期权定价模型介绍
C uuM AX[0,u2SK]
Cu
C
C duM A X [0 ,udSK ]
Cd
C ddM A X[0,d2SK ]
图19.4 期权收益的二叉树图
假设有一个投资组合包含了 份股票和价值为B的无风险债券,那
么在期末,这个组合的价值会变成(r为无风险利率),
S B
uSrB
以概率q
dSrB 以概率1-q
以此类推
u 2S
uS
S
udS
dS
d 2S
图19.3 资产价格的二叉树图
下面来分析一下以上述资产为标的物的期权的二叉树情况。
在0时刻,期权价格为C;时间为 t 时,期权价格有两种可
能:Cu和Cd ;时间为 2 t 时,期权价格有三种可能
Cuu,Cdu和Cdd。以此类推,图19.4中给出了期权价格的完整树 图。在时刻 i t ,期权价格有i+1种可能:
Black-Scholes期权定价模型的一个重要假设是资产价格遵循对 数正态分布,即 F(S,t)ln S(t)。将该式与(19.9)式同时代入 (19.10)式,有
d lS n (t) ( 1 2 2 )d td(tB )
从而有 Rt lnS((St( t)1))Zt
其中 122,R t 为资产在t期的收益率,Zt B(t)B(t1)i~idN(0,1)
二叉树期权定价模型
衍生证券的有效期可分为n段时间间隔t,假设在每一个时间段 内资产价格从开始的S运动到两个新值uS和dS中的一个。其中 u>1,d<1,设价格上升的概率是p,下降的概率则为1-p。在0时
刻,股票价格为S;时间为 t 时,股票价格有两种可能:uS和 dS;时间为 2 t 时,股票价格有三种可能:u2S,udS和d2S ,
关于期权定价模型
关于期权定价模型霍红一、 引言期权(option )是一种选择权,期权交易实质上是一种权利的买卖。
期权的买方在向卖方支付一定数额的货币后,即拥有在一定的时间内以一定价格向对方购买或出售一定数量的某种商品或有价证券的权利,而不负必须买进或卖出的义务。
按期权所包含的选择权的不同,期权可分为看涨期权和看跌期权;按期权合约对执行时间的限制,期权可分为欧式期权和美式期权。
期权的交易由来已久,但金融期权到20世纪70年代才创立,并在80年代得到广泛应用。
1973年4月26日美国率先成立了芝加哥期权交易所,使期权合约在交割数额,交割月份以及交易程序等方面实现了标准化。
在标准化的期权合约中,只有期权的价格是唯一的变量,是交易双方在交易所内用公开竞价方式决定出来的。
而其余项目都是事先规定的。
因此,我们的问题就是如何确定期权的合理价格。
目前两个经典的期权定价模型是Black-Scholes 期权定价模型和Cox-Ross-Rubinstein 二项式期权定价公式。
尽管它们是针对不同状态而言的,但二者在本质上是完全一致的。
在讨论期权定价模型之前,我们先对金融价格行为进行分析。
二、 金融价格行为资产价格的随机行为是金融经济学领域中的一个重要内容。
价格波动的合理解释在决定资产本身的均衡价格及衍生定价中起着重要的作用。
资产价格波动的经典假设,也是被广泛应用的一个假设是资产价格遵循一扩散过程,称其为几何布朗运动,即)()()()(t dB t S dt t S t dS σα+= (1)其中,S(t)为t 时刻的资产价格,μ为飘移率,σ为资产价格的波动率,B(t)遵循一标准的维纳过程。
为说明问题的方便,下面我们引入Itô引理:设F(S,t)是关于S 两次连续可微,关于t 一次可微的函数,S(t)是满足随机微分方程(1)的扩散过程,则有以下随机变量函数的Itô微分公式 dt F dS F dt F t S dF SS S t 221),(σ++= (2)Black-Scholes 期权定价模型的一个重要假设是资产价格遵循对数正态分布,即)(ln ),(t S t S F =。
《2024年期权定价方法综述》范文
《期权定价方法综述》篇一一、引言期权定价是金融领域中一个重要的研究课题,它涉及到金融工程、投资策略和风险管理等多个方面。
随着金融市场的不断发展和复杂化,期权定价方法也在不断地演进和改进。
本文将对现有的期权定价方法进行综述,分析各种方法的优缺点及适用范围。
二、经典期权定价模型1. 黑-舒尔斯(Black-Scholes)模型黑-舒尔斯模型是最为广泛应用的期权定价模型之一。
该模型基于无套利原则,假设标的资产价格服从几何布朗运动,并考虑了标的资产价格、执行价格、无风险利率、到期时间以及波动率等因素。
黑-舒尔斯模型为欧式期权提供了明确的定价公式,但在实际运用中仍需根据具体情况对模型参数进行校准和调整。
优点:模型简单明了,为期权定价提供了明确的公式;考虑了多种影响期权价格的因素。
缺点:假设条件较为严格,如标的资产价格服从几何布朗运动等;对模型参数的校准和调整较为复杂。
2. 二叉树模型二叉树模型是一种离散时间的期权定价方法。
该方法通过构建一个二叉树状的价格路径图来模拟标的资产价格的可能变化,并根据这些路径计算期权的预期收益。
优点:模型较为灵活,可以灵活地调整参数以适应不同的市场环境;容易理解和实现。
缺点:对于复杂的期权和长期期权,二叉树模型的计算量较大;对短期期权的定价可能不够准确。
三、现代期权定价方法1. 局部波动率模型局部波动率模型考虑了标的资产的局部波动性,即在不同时间点上标的资产价格的波动率可能不同。
该模型通过引入局部波动率参数来描述这种波动性的变化。
优点:能够更好地反映标的资产的波动性变化;对隐含波动率的估计更为准确。
缺点:模型参数的估计较为复杂;对于非标准期权的定价仍需进一步研究。
2. 随机森林等机器学习方法在期权定价中的应用随着机器学习技术的发展,随机森林等算法也被应用于期权定价领域。
这些方法通过训练大量的历史数据来预测未来标的资产价格的变化,从而为期权定价提供依据。
优点:能够充分利用历史数据提供的信息;对非线性关系的描述更为准确。