基本平面图形试题及答案

合集下载

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析1.在同一平面内,有两条直线都和一条直线平行,这两条直线()A.互相垂直B.互相平行C.相交,但不是互相垂直【答案】B【解析】根据平行线的定义,在同一平面内,不相交的两条直线叫做平行线,有两条直线都和一条直线平行,这两条直线互相平行,据此解答.解:由分析可知:在同一平面内,有两条直线都和一条直线平行,这两条直线互相平行;故选:B.点评:此题考查了垂直于平行的特征及性质,应注意基础知识的积累.2.下面的平面中,与直线a平行的是()A.AB.BC.C【答案】B【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;据此判断即可.解:由平行的含义可知:与直线a平行的是直线B;故选:B.点评:此题考查了平行的含义,应注意理解和应用.3.下列几种情况,两条线互相垂直的是()A.两条直线相交B.不平行的两条直线C.直角的两条边【答案】C【解析】根据垂直的含义:两条直线相交成直角时,这两条直线叫做互相垂直;据此依次分析即可得出结论.解:A、两条直线相交,不一定互相垂直,只有当相交成90度时,这两条直线才互相垂直;B、同一平面内不平行的两条直线,可能相交,但相交不一定成直角,所以说法错误;C、直角的两条边,互相垂直;故选:C.点评:此题考查了垂直和平行的特征,应明确垂直和平行的含义.4.两条直线相交,如果其中一个角是直角,那么其它三个角都是()A.钝角B.锐角C.直角【答案】C【解析】两条直线相交,有两种情况,垂直或不垂直,如果其中一个角是90°,那么其它各个角都是90°,这两条直线就相互垂直.解:由垂直的含义可知:两条直线相交组成的四个角中如果有一个角是直角,那么其它三个角也是直角;故选:C.点评:此题考查了垂直的含义,注意对一些基础概念和性质的理解.5.画一个上底2cm,下底4cm,高2cm的梯形.【答案】【解析】先画一条4厘米的线段AB,再过AB上一点E作AB的2厘米长的垂线段DE,再过D 作AB的2厘米的平行线段DC,连接AD、BC,则四边形ABCD就是所要求画的梯形.解:据分析画图如下:点评:此题主要考查梯形的基本画法,需要灵活掌握过直线上一点作已知直线的垂线和过直线外一点作已知直线的平行线的方法.6.按要求画一画.(1)画一个长是4厘米、宽是3厘米的长方形.(2)画一个底是5厘米、高是4厘米的平行四边形.【答案】(1)如图:(2)如图:【解析】(1)根据长方形的画法,画出一个长是4厘米、宽是3厘米的长方形即可;(2)根据平行四边形的画法,画出平行四边形的底是6厘米、高是4厘米,据此即可画图.解:(1)如图:(2)如图:点评:此题考查画指定底和高的平行四边形的方法及长方形的画法,应灵活掌握.7.过A点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:点评:本题考查了学生过直线外一点向已知直线作垂线的能力.8.过直线上一点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和已知点重合,过已知点沿直角边向已知直线画直线即可.解:作图如下:点评:本题考查了学生过直线上一点向已知直线作垂线的能力.9.用一张正方形纸折一折,使两条折痕相交成直角.【答案】【解析】根据垂直的含义:同一平面内,当两条直线相交成直角时,这两条直线就互相垂直;据此折叠解答即可.解:折叠方法有:.点评:解决本题的关键是明确垂直的概念,再折叠出符合题意的图形.10.如图,哪两条路是互相平行的,哪两条路是互相垂直的?【答案】体育场路和凤起路,凤起路和庆春路,新华路和建国北路,体育场路和健康路,西健康路和东健康路互相平行;体育场路、凤起路、庆春路分别和新华路、建国北路、西健康路、东健康路互相垂直【解析】根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.解:据分析可知:体育场路和凤起路,凤起路和庆春路,新华路和建国北路,体育场路和健康路,西健康路和东健康路互相平行;体育场路、凤起路、庆春路分别和新华路、建国北路、西健康路、东健康路互相垂直.点评:此题考查了平行和垂直的定义,注意基础知识的积累.11.先画一个梯形、一个平行四边形,再分别给它们的图形作一条高.【答案】【解析】根据平行四边形、梯形的特征:平行四边形的对边平行且相等,对角相等;只有一组对边平行的四边形,叫做梯形.再根据平行四边形、梯形高的意义解答即可.解:根据分析作图如下:点评:此题考查的目的是掌握梯形、平行四边形的特征,理解梯形、平行四边形高的意义,掌握高的画法.12.画出下面平行四边形和梯形底边上的高.【答案】【解析】经过平行四边形底上的一个顶点用三角板的直角边向另一底作垂线,顶点和垂足之间的线段就是平行四边形的一条高,平行四边形有无数条高,习惯上作平行四边形的高时,都从一个顶点出发向底作垂线;过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高,梯形有无数条高,习惯上从上底的一个顶点向下底用三角板的直角边画垂线.解:根据分析画高如下:点评:本题是考查作平行四边形的高、梯形的高.注意作高用虚线,标出垂足.13.画出过B点的直线L的平行线.2【答案】【解析】将三角板的一条直角边与已知直线重合,另一条直角边与直尺重合,然后沿直尺向B点平移,使三角板与已知直线重合的那条边经过点B,再过B点作直线即可.解:根据题干分析画图如下:点评:此题主要考查过直线外一点作直线的平行线.14.两条直线相交所成的四个角中,如果有一个角是90度,那么这两条直线一定互相垂直..【答案】正确【解析】由垂直的定义:如果两条直线相交所构成的四个角中有一个角是直角时,那么这两条直线互相垂直;据此判断.解:由分析可知:两条直线相交所成的四个角中,如果有一个角是90度,那么这两条直线一定互相垂直;故答案为:正确.点评:本题主要考查垂直的定义,熟练掌握定义是解题的关键.15.不相交的两条直线叫做平行线.也可以说这两条直线互相平行..【答案】错误【解析】在同一个平面内两条不相交的直线叫做平行线,也可以说这两条直线互相平行.据此解答.解:据以上分析知两条不相交的直线必须在同一个平面内才互相平行.故答案为:错误.点评:本题的关键是理解在同一个平面内不相交两条直线叫做平行线.16.如图中,直线a叫做直线b的,点O叫做.【答案】垂线,垂足【解析】根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可.解:如图中,直线a叫做直线b的垂线,点O叫做垂足;故答案为:垂线,垂足.点评:此题考查了垂直与垂线的定义.17.画一条直线的平行线,只能画1条..(判断对错)【答案】×【解析】根据平行公理:经过直线外一点有且只有一条直线与已知直线平行;因为直线外由无数点,所以有无数条直线与已知直线平行.解:由平行公理及推论:经过直线外一点有且只有一条直线与已知直线平行;且直线外有无数个点可作已知直线的平行线.故答案为:×.点评:本题主要考查了平行公理.18. a取正整数时,方程3x=a﹣7的解是负整数.【答案】a为4,1【解析】首先解关于x的方程3x=a﹣7,解得x=;根据题意可知x=<0,解不等式组求得解集即可得到a的正整数解.解:∵3x=a﹣7∴x=∵方程3x=a﹣7的解是负整数∴<0∴a﹣7是3的倍数且小于0,∵a是正整数∴a为4,1.点评:此题考查了方程与不等式的综合应用,解题的关键是注意题目的要求.19.同一平面内与一条直线相距3厘米的直线有无数条..【答案】错误【解析】根据在同一平面内与一条直线相距3厘米的直线只有上、下两条,据此作图即可得出结论.解:如图可知:同一平面内与一条直线相距3厘米的直线只有2条;故答案为:×.点评:此题考查了垂直和平行的特征,结合题意,作出图,是解答此题的关键.20.如图,a、b、c、d分别表示平行四边形的四条边,在这四条边中、互相平行.【答案】a和c、b和d.【解析】根据平行四边形的定义:两组对边分别平行的四边形叫平行四边形;即可解答.解:根据平行四边形的含义可知:a∥c,b∥d;故答案为:a和c、b和d.点评:此题考查了平行四边形的定义.21.画出平行四边形两条不同的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.解:作图如下:点评:本题主要是考查作平行四边形和梯形的高.若作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.22.画出下面图形的边a上的高.【答案】【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高,用三角板的直角可以画出三角形的高;在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高;梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线用三角板的直角可以画出梯形的一条高.解:作三角形、平行四边形、梯形的高如下:点评:本题是考查作三角形的高、平行四边形的高和梯形的高.注意作高用虚线,并标出垂足.23.过直线上或直线外一点画已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:作图如下:点评:本题考查了学生作垂线的能力.24.【答案】【解析】(1)根据图可知,要作三角形的高,可先找到三角形的底与底对应的顶点,然后再过顶点向对边作垂线即可得到答案,画法如下:使直角三角尺的一条直角边与三角形的底平行或重合,沿着底边左右移动直角三角尺使三角形的顶点与直角三角尺的另一条直角边重合,沿着这条直角边画线,这条过三角形的顶点和底边的线段就是三角形的高.(2)我们先作梯形的下底CB的延长线,再做AE垂直这条延长线即可.解:由分析画图如下:点评:解答此题的依据是过直线外一点作已知直线的垂线的方法.25.画一个上底为2厘米,高2厘米,下底4厘米的梯形.【答案】【解析】根据梯形的性质:上下底互相平行,先画一条4厘米的线段AB,经过线段AB的中点,在线段AB的上方画一条2厘米的垂直线段,经过这条垂直线段的另一个顶点,画一条与AB的线段平行的直线,然后在这条平行线上,任意截取一段等于2厘米的线段CD,再连接AD、BC,即可得出符合题意的梯形.解:根据分析作图如下:点评:此题主要考查梯形的性质以及画已知直线的平行线和垂线的方法的灵活应用.26.下图中哪两条线互相平行?哪两条线互相垂直?(各画出一组)【答案】【解析】根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.解;根据平行和垂直的特征得出:;红色的线段是互相平行的,绿色的是互相垂直的.点评:此题考查了平行和垂直的定义的灵活运用.27.如图直线a叫做直线b的;直线b叫做直线a的.【答案】平行线,平行线【解析】根据平行线的含义:在同一平面内,不相交的两条直线叫做平行线;据此解答即可.解:根据分析可知,直线a和直线b互相平行;所以直线a叫做直线b的平行线;直线b叫做直线a的平行线.故答案为:平行线,平行线.点评:此题考查了平行线的含义,应注意基础知识的积累.28.同一平面内的两条直线,要么相交,要么.【答案】平行【解析】根据同一平面内,两条直线的位置关系有两种:平行和相交;据此解答即可.解:根据同一平面内,两条直线的位置关系可知:同一平面内,两条直线要么相交,要么平行;故答案为:平行.点评:此题考查了同一平面内两条直线的位置关系.29.用5个边长为1厘米的正方形拼成下面的图形.周长较长的是()A.B.C.D.【答案】D【解析】根据图形的周长计算方法,分别计算出四个选项中图形的周长,即可选择.解:A、根据长方形的周长公式可得,这个图形的周长是:(5+1)×2=12;B、把图形右下方的小线段分别向右向下平移,则这个图形的周长就等于长3宽2的长方形的周长:(3+2)×2=10;C、把图形左下方和右下方的小线段分别平移,可得这个图形的周长等于边长是3的正方形的周长:3×4=12;D、把这个图形横着的小线段向上或向下平移,竖着的小线段向左或向右平移,则这个图形的周长等于边长是5的正方形的周长:5×4=20,所以周长最长的是D.故选:D.点评:此题主要考查不规则图形的周长的计算方法,利用平移把不规则图形的周长转化到规则图形中,利用周长公式计算即可解答.30.用同样长的小棒摆一个长方形,至少要用()根.A.4B.6C.10D.12【答案】B【解析】因长方形的长和宽不相等.用同样长的小棒4根可摆成正方形,所以要变成长方形,就要再增加2根小棒,据此解答.解:因长方形的长和宽不相等.用同样长的小棒4根可摆成正方形,所以要变成长方形,就要再增加2根小棒,既4+2=6(根).如下图:故选:B.点评:本题的重点是长方形的长和宽不相等,要使长大于宽,就加上两个小棒.31.长方形有条边,相等,有个角,都是角.【答案】四,对边,四、直【解析】根据长方形的特征:有4条边,4个角,对边相等,4个角都是直角;进行解答即可.解:由分析可知,长方形有四条边,对边相等,有四个角,都是直角.故答案为:四,对边,四、直.点评:此题考查了长方形的特征.32.一根铁丝可以围成一个边长3.14厘米的正方形,用它围一个圆,这个圆的半径是厘米.【答案】2【解析】根据题意,围成正方形的周长即是围成圆的周长,可根据圆的周长公式:C=2πr,进行计算即可得到围成圆的半径的长度.解:3.14×4÷3.14÷2=12.56÷3.14÷2,=4÷2,=2(厘米);答:这个圆的半径为2厘米.故答案为:2.点评:此题主要考查的是正方形和圆的周长公式的应用.33.如图,圆的周长是12.56厘米,长方形的周长是18厘米,长方形的长是厘米.【答案】7【解析】根据圆的周长是12.56厘米,可以求出这个圆的半径,即长方形的宽,再利用长方形的周长公式,把长方形的周长除以2,再减去宽,即可得出长方形的长.解:12.56÷3.14÷2=2(厘米),18÷2﹣2,=9﹣2,=7(厘米),答:长方形的长是7厘米.故答案为:7.点评:此题主要考查圆与长方形的周长公式的计算应用.34.(2012•安徽模拟)把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形.这个长方形的周长是16.56厘米,原来这个圆形纸片的面积是.(π取3.14)【答案】12.56平方厘米【解析】把一个圆形纸片剪开后,拼成一个宽等于半径,面积相等的近似长方形.这个近似长方形的周长就比圆的周长多了圆半径的2倍,可求出圆的半径,然后根据圆面积公式求出面积即可.解:圆的半径是:16.56÷(2+3.14×2),=16.56÷(2+6.28),=16.56÷8.28,=2(厘米);圆的面积是:3.14×22,=3.14×4,=12.56(平方厘米).答:原来这个圆形纸片的面积是12.56平方厘米.故答案是:12.56平方厘米.点评:本题考查了学生根据圆面积公式求圆面积以及把一个圆形剪开,拼成一个近似长方形.这个近似长方形的周长,就比圆的周长多了圆半径的2倍的知识.35.一个长80厘米,宽50厘米,把它剪成一个最大的正方形和一个长方形.正方形和新的长方形的周长分别是多少厘米?【答案】正方形的周长是200厘米,新长方形的周长是160厘米【解析】根据题意,剪成的最大的正方形的边长应该等于长方形的宽,新长方形的长是50厘米,宽是80﹣50=30厘米;由此列式解答.解:50×4=200(厘米);(50+30)×2=160(厘米);答:正方形的周长是200厘米,新长方形的周长是160厘米.点评:此题主要考查长方形、正方形的周长计算,直接利用公式解答即可.36.用一个长18厘米的铁丝做成一个长方形.现在规定做成的长方形的长和宽都是整厘米数.那么你做的长方形的长和宽各是多少呢?填在下表中.【答案】8、1;7、2;6、3;5、4【解析】根据题意知道长+宽=18÷2,再根据长方形的长和宽都是整厘米数,知道8+1+9,7+2=9,6+3=9,5+4=9,由此即可知道长和宽各是几.解:因为长+宽是:18÷2=9(厘米),所以8厘米+1厘米=9厘米,7厘米+2厘米=9厘米,6厘米+3厘米=9厘米,5厘米+4厘米=9厘米,所以长方形的长是8厘米、宽是1厘米;长是7厘米、宽是2厘米;长是6厘米、宽是3厘米;长是5厘米、宽是4厘米,故答案为:8、1;7、2;6、3;5、4.点评:本题主要是灵活利用长方形的周长公式求出长和宽的和,再根据长和宽的取值受限,即可得出长和宽的值.37.一个长方形的篮球场,长是100米,宽是60米.围着这个操场跑两圈,要跑多少米?【答案】640米【解析】先根据长方形的周长=(长+宽)×2,求出篮球场的周长,再乘2即可解答.解:(100+60)×2×2=160×2×2=640(米)答:要跑640米.点评:此题考查了长方形的周长公式的计算应用.38.计算阴影部分的周长.(单位:厘米)【答案】20厘米【解析】观察图得出此阴影部分的周长为边长是3厘米的正方形的周长加上4个2厘米的长度,据此解答.解:3×4+2×4=12+8=20(厘米);答:阴影部分的周长是20厘米.点评:关键是根据图得出阴影部分的周长为边长是3厘米的正方形的周长加上4个2厘米的长度,再根据正方形的周长公式S=4a解决问题.39.计算图形的周长.(1)长方形长20厘米8分米5厘米【解析】(1)根据长方形周长=(长+宽)×2计算即可;(2)根据正方形周长=边长×4计算即可.解:(1)(20+15)×2=70(厘米);(8+4)×2=24(分米);(5+3)×2=16(厘米);所以:10×4=40(米);8×4=32(厘米);所以:点评:此题主要考查正方形和长方形的周长计算公式的运用.40.量一量,算一算.【答案】【解析】(1)是长方形,计算周长需要测量出长和宽,再根据周长公式计算;(2)是正方形,需要测量边长,再根据周长公式计算.解:如图所示:经过测量,长方形的长是3厘米,宽是2厘米;正方形的边长是3厘米;.答:长方形的周长是10厘米,正方形的周长是12厘米.点评:解决本题的关键是测量出长方形的长和宽,正方形的边长,再计算各自的周长.41.把下表填完整.【答案】【解析】长方形的周长=(长+宽)×2,长方形的长=周长÷2﹣宽,长方形的宽=周长÷2﹣长;正方形的周长=边长×4,正方形的边长=周长÷4,据此代入数据即可解答.解:(1)(18+12)×2,=30×2,=60(厘米),80÷2﹣24,=40﹣24,=16(分米),94÷2﹣19,47﹣19,=28(厘米),填表如下:(2)15×4=60(厘米),76÷4=19(厘米),35×4=140(厘米),填表如下:点评:此题主要考查了长方形、正方形的周长公式的灵活应用.42.周长为8厘米的长方形,由3个一样的小正方形拼成,那么每个小正方形周长是多少?【答案】4【解析】由三个大小一样正方形拼成,应该是下图所示:由图可以看出长是宽的3倍,长方形的周长是8个小正方形的边长,由此求出小正方形的边长,进而求出每个小正方形的周长.解:大长方形的周长是8个小正方形的边长,所以小正方形的边长是:8÷8=1(厘米);小正方形的周长:1×4=4(厘米);答:每个小正方形周长是4厘米.点评:解决本题关键是找出大长方形的周长与小正方形的边长之间的关系,并由此求解.43.一卷安全隔离带长24.6米,现在要用这整卷带子围出一个长是宽的2倍的长方形来,这个长方形的长和宽各是多少米?【答案】这个长方形的长是8.2米,宽是4.1米【解析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的2倍,也就是长与宽的比是2:1,根据按比例分配的方法,即可求出长和宽.解:2+1=3(份),长:24.6÷2×=12.3×=8.2(米),宽:24.6÷2×=12.3×=4.1(米).答:这个长方形的长是8.2米,宽是4.1米.点评:此题主要考查长方形的周长计算,解答关键是根据按比例分配的方法求出长和宽.44.一个正方形草坪的边长是20米.小红沿着这个草坪的四周跑了两圈.她一共跑了多少米?(5米)【答案】160【解析】因为围草坪跑一圈的长度就是正方形的周长,根据:正方形的周长=边长×4,计算出一圈长度,再乘2即可.解:20×4×2=160(米).答:她一共跑了160米.点评:解决本题的关键是明确草坪一圈的长度等于正方形的周长.45.一个正方形相框,它的边长是20厘米,用一条90厘米的彩带能给相框镶一圈吗?【答案】用一条90厘米的彩带能给相框镶一圈【解析】先根据正方形的周长=边长×4计算得出正方形相框的周长,再与90厘米相比较即可解答.解:20×4=80(厘米),80厘米<90厘米,答:用一条90厘米的彩带能给相框镶一圈.点评:此题考查正方形周长公式的计算应用.46.画一个长5厘米,宽3厘米的长方形和一个周长12厘米的正方形.长方形的周长是厘米,正方形的边长是厘米.【答案】16、3.【解析】(1)长方形的长和宽已知,依据长方形的基本画法即可画出符合要求的长方形;(2)先依据正方形的周长公式求出正方形的边长,进而就可以画出符合要求的正方形.解:(1)长方形的长和宽分别为5厘米和3厘米,所以画图如下,长方形的周长=(5+3)×2=16(厘米);(2)因为正方形的周长为12厘米,则正方形的边长为12÷4=3厘米,所以画图如下:故答案为:16、3.点评:考查学生通过长方形公式的计算,算出长和宽,培养学生的作图能力.47.画一画.用不同的方法涂色表示这个图形的.【答案】【解析】分数的意义为:将单位“1”平均分成若干份,表示这样一份或几份的数为分数;本题中是把长方形看作单位“1”,平均分成四份,取其中的三份涂上颜色即可.解:把长方形看作单位“1”,平均分成四份,取其中的三份涂上颜色如下:点评:本题通过图形考查了学生对于分数意义的理解与应用.48.用两个同样大小的正方形拼成一个长方形,长方形的周长等于正方形周长的2倍.()【答案】错误【解析】用两个同样大小的正方形拼成一个长方形,拼成后长方形的长是原正方形边长的2倍,宽是原正方形的边长.据此解答.解:用两个同样大小的正方形拼成一个长方形,拼成后长方形的长是原正方形边长的2倍,宽是原正方形的边长.设原正方形的边长为a,长方形的周长是:(a+a+a)×2,=3a×2,=6a,原正方形周长的2倍是a×4×2=8a.所以拼成的长方形的周长不等于正方形周长的2倍.故答案为:错误.点评:本题的关键是求出拼成后长方形的周长,再同正方形周长的2倍进行比较.49.用两个长5厘米、宽3厘米的小长方形,拼成一个大长方形.算一算,下面哪种拼法的大长方形周长较大?【答案】图二的周长较大【解析】两个长5厘米、宽3厘米的长方形拼成一个大长方形,有2种情况:两个长方形的长对在一起或两个长方形的宽对在一起,由此分别求出周长,再比较即可.解:①两个长方形的长对在一起:新长方形的长是:3+3=6(厘米);宽是5厘米;周长是:(6+5)×2,=11×2,。

第五章 基本平面图形 5.1 线段、射线、直线 同步测试题及答案 鲁教版(五四学制)六年级下册

第五章 基本平面图形 5.1 线段、射线、直线 同步测试题及答案 鲁教版(五四学制)六年级下册

知能提升作业(一)(40分钟 60分)一、选择题(每小题4分,共12分)1.下列说法正确的是( )(A)延长线段AB (B)延长直线AB(C)延长射线OA (D)作直线AB=CD2.平面上三条直线两两相交,它们的交点个数是( )(A)1 (B)3 (C)1或3 (D)不能确定3.如图所示,图中的直线、射线、线段的条数分别为a,b,c,则a+b+c=( )(A)25 (B)28 (C)30 (D)36二、填空题(每小题4分,共12分)4.在直线、射线、线段中,没有端点的是 ,有且只有一个端点的是 ,有两个端点的是 .5.如图,OA,OB 是两条射线,C 为OA 上一点,D,E 是OB 上两点,则图中共有_________条线段,它们分别为__________________ .6.在同一平面上,1条直线把一个平面分成21122++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成23322++=7个部分,那么8条直线把一个平面最多分成_________个部分.三、解答题(共36分)7.(8分)如图所示,点D,E是线段AC上两点,(1)图中有几条线段,它们分别是哪几条?(2)有几条直线,分别是哪几条?有几条射线,分别是哪几条?8.(8分)如图所示,回答下列问题:(1)图中共有多少条射线?请表示出来.(2)图中共有多少条直线?请表示出来.(3)图中共有多少条线段?请表示出来.9.(10分)如图,已知数轴的原点为O,点A表示3,点B表示3-.2(1)数轴是什么图形?(2)数轴在原点O右边的部分(包括原点)是什么图形?怎样表示?(3)射线OB上的点表示什么数?端点表示什么数?(4)数轴上表示不小于3-,且不大于3的部分是什么图形?怎样表示?2【拓展延伸】10.(10分)通过阅读解答问题(阅读中的结论可以直接用).阅读:在直线上有n个不同的点,则此图中共有多少条线段?通过分析、画图尝试,得如下表格:问题:(1)某学校七年级共有8个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?(2)乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A,B两站之间需要安排多少种不同的车票?答案解析1.选A.直线、射线本身都是无限延伸的,不能延长,线段可以延长,故A对,B,C 错;直线不可以度量,故D错.2.选C.平面上三条直线两两相交,有两种位置关系,相交于一点或相交于三点.3.选B.图中的直线有4条;以D为端点的射线有6条,以A,B,C为端点的射线又各有4条,所以图中共有18条射线;图中线段有6条.故a+b+c=28.4.直线没有端点,射线只有一个端点,线段有两个端点.答案:直线射线线段5.图中的线段是线段OC、线段OA、线段CA、线段OD、线段OE、线段OB、线段DE、线段DB、线段EB,共9条.答案:9 线段OC、线段OA、线段CA、线段OD、线段OE、线段OB、线段DE、线段DB、线段EB++=37个部分.6.由题意知,8条直线把一个平面最多分成28822答案:377.根据线段、射线、直线的概念,通过观察图形可以得到以下结论:(1)图中共有8条线段,它们分别是线段AB、线段AD、线段AE、线段AC、线段DE、线段DC、线段EC和线段BC.(2)图中共有1条直线,是直线AB;图中共有6条射线,它们分别是射线BM、射线AB、射线BA、射线AG、射线BC和射线CH.8.(1)图中共有10条射线,它们分别是射线AF、射线AG、射线BF、射线CG、射线BM、射线BN、射线EM、射线EN、射线CM、射线CN.(2)图中共有1条直线,是直线MN(或BE或BC等)(3)图中共有6条线段,它们是线段AB、线段AE、线段AC、线段BE、线段BC、线段EC.9.(1)直线(2)射线,射线OA(3)非正数,端点O表示零(4)线段,线段BA10.(1)七年级有8个班,类似于一条直线上有8个点,每两班赛一场,类似于两点之间有一条线段.那么七年级的辩论赛进行的场次可借用线段条数的结论求得.即8812⨯-()=28(场). (2)当n=5时,共有线段条数为5512⨯-()=10, 即A,B 两站之间共有10条不同的线段,因为来往两站的车票面值相等,但起止点不同,所以A,B 两站之间需要安排10×2=20种不同的车票.。

2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx

2020—2021年最新鲁教版五四制六年级数学下册《基本平面图形》单元测试题及答案.docx

鲁教版(五四制)六年级下册单元评价检测第五章(45分钟100分)一、选择题(每小题4分,共28分)1.下列说法:①射线AB与射线BA是同一条射线;②线段AB是直线AB的一部分;③延长线段AB到C,使AB=AC;④射线AB与射线BA的公共部分是线段AB.正确的个数是( )(A)1 (B)2 (C)3 (D)42.如图所示,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB=1∶2,则线段AC的长度为( )(A)2 cm (B)8 cm (C)6 cm (D)4 cm3.下列说法正确的是( )(A)角的两边可以度量(B)一条直线可看成一个平角(C)角是由一点引出的两条射线组成的图形(D)一条射线可看成一个周角4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为( )(A)95°(B)100°(C)110°(D)120°5.如图,已知C是线段AB的中点,D是BC的中点,E是AD的中点,F是AE的中点,那么线段AF是线段AC的( )(A)18(B)14(C)38(D)3166.如图,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( )(A)3对(B)4对(C)5对(D)7对7.已知∠α和∠β的和是平角,且∠α∶∠β=1∶8,则∠β的度数是( )(A)20°(B)40°(C)80°(D)160°二、填空题(每小题5分,共25分)8.30.12°=________°_______′_______″,100°12′36″=_______°.9.已知线段AB,延长线段AB到C,使BC=2AB,反向延长AB到D,使AD=AB,则AC=_______AB;DC=_______AC.10.如图,圆中两条半径把圆分成面积为4∶5的两个扇形,则两个扇形的圆心角的度数为_________.11.如图,点C是∠AOB的边OA上一点,D,E是OB上两点,则图中共有_________条线段,可用字母表示的射线有_________条,_________个小于平角的角.12.直线上有2 013个点,我们进行如下操作:在每相邻两点间插入1个点.经过3次这样的操作后,直线上共有_________个点.三、解答题(共47分)13.(11分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求BD的长.14.(11分)如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD.求∠BOE的度数.15.(12分)如图所示,回答下列问题.(1)2条直线相交有几个交点?(2)3条直线两两相交,最多有几个交点?(3)4条直线两两相交,最多有几个交点?(4)根据(1)(2)(3)总结:n(n为大于或等于2的正整数)条直线两两相交,最多有几个交点;(5)根据上述结论,求100条直线两两相交最多有几个交点.16.(13分)(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如果(1)中的∠AOB=α(OC在∠AOB外),其他条件不变,求∠MON的度数;(3)如果(1)中的∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结论中能得出什么结论?答案解析1.【解析】选B.射线的端点不同,射线就不同,所以射线AB与射线BA不是同一条射线,①错;②对;③错,因为无法使AB=AC;④对;所以选B.2.【解析】选B.因为AM=MB=12AB=6(cm),MC=6×13=2(cm),所以AC=AM+MC=6+2=8(cm),故选B.3.【解析】选C.角是由具有公共端点的两条射线组成的,可知C正确;射线不可以度量,故A错;角有顶点和两条边,故B,D错,因此选C.4.【解析】选C.因为∠BOC=90°-20°=70°,所以∠2=180°-∠BOC=180°-70°=110°.5.【解析】选C.根据题意可设CD=DB=x,则AC=CB=2DB=2x,AD=3x,AE=32x,AF=12AE=34x,所以3xAF34==AC2x8,故选C.6.【解析】选C.因为∠COB=∠DOE=90°,所以∠COE+∠COD=90°,∠COD+∠BOD=90°,所以∠COE=∠BOD;因为∠AOC=∠DOE,所以∠COE+∠COD=90°,∠AOE+∠COE=90°,所以∠AOE=∠COD;∠AOC=∠BOC.故选C.7.【解析】选D.可设∠α=x,∠β=8x,则x+8x=180°,x=20°,所以∠β=8x=160°,故选D.8.【解析】0.12°=0.12×60'=7.2',0.2'=0.2×60″=12″,所以30.12°=30°7'12″,36″=36×(160)'=0.6',12.6'=12.6×(160)°=0.21°,所以100°12'36″=100.21°.答案:30 7 12 100.219.【解析】如图所示,AC=3AB,DC=4AB,所以DC=43AC.答案:3 4310.【解析】两个扇形圆心角的度数分别为360°×49=160°和360°×59=200°.答案:160°,200°11.【解析】图中有线段OD,OE,OB,DE,DB,EB,OC,OA,CA,DC,EC,共11条,射线OA,CA,OB,DB,EB,共5条,小于平角的角有∠O,∠ODC,∠CDE,∠CED,∠CEB,∠ACE,∠ECD,∠DCO,∠ACD,∠OCE,共10个.答案:11 5 1012.【解析】2 013+2 012=4 025,4 025+4 024=8 049,8 049+8 048=16 097. 答案:16 09713.【解析】(1)因为C 是AB 的中点,所以AC=BC=12AB=9 cm.因为D 是AC 的中点,所以AD=DC=12AC=92cm.因为E 是BC 的中点,所以CE=BE=12BC=92cm.又因为DE=DC+CE,所以DE=92+92=9(cm). (2)由(1)知AD=DC=CE=BE,所以CE=13BD. 因为CE=5 cm,所以BD=15 cm.14.【解析】因为∠AOB=30°,∠BOC=40°,∠COD=26°,所以∠AOD=∠AOB+∠BOC+∠COD=30°+40°+26°=96°, 又因为OE 平分∠AOD,所以∠AOE=12∠AOD=12×96°=48°, 所以∠BOE=∠AOE-∠AOB=48°-30°=18°. 15.【解析】(1)由图可知,2条直线相交有1个交点. (2)3条直线两两相交,最多有2+1=3个交点. (3)4条直线两两相交,最多有3+2+1=6个交点. (4)依此类推,n 条直线两两相交最多有n-1+…+3+2+1=n(n 1)2-个交点. (5)根据上述结论,当n=100时, n(n 1)2-=100992⨯=4 950个交点.16.【解析】(1)因为ON 是∠BOC 的平分线, 所以∠CON=∠BON=12∠BOC=12×30°=15°. 因为OM 是∠AOC 的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+30°)=60°,所以∠MON=∠COM-∠CON=60°-15°=45°. (2)当∠AOB=α,其他条件不变时,由(1)得∠CON=15°.因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(α+30°)=12α+15°,所以∠MON=∠COM-∠CON=12α+15°-15°=12α.(3)当∠BOC=β,其他条件不变时,因为ON是∠BOC的平分线,所以∠CON=∠BON=1 2∠BOC=12β,因为OM是∠AOC的平分线,所以∠COM=∠AOM=12∠AOC=12(∠AOB+∠BOC)=12(90°+β)=45°+12β,所以∠MON=∠COM-∠CON=45°+12β-12β=45°.(4)∠MON的度数总等于∠AOB的一半,而与锐角∠BOC的度数没有关系.。

北师大版七年级上册数学《基本平面图》中第3~4节角和比较角的大小整理试题以及答案

北师大版七年级上册数学《基本平面图》中第3~4节角和比较角的大小整理试题以及答案

七年级上册《基本平面图形》中角以及角的比较测试试题一、选择题。

1、甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A、甲说3点时和3点30分B、乙说6点15分和6点45分C、丙说9时整和12时15分D、丁说3时整和9时整2、如图,四条表示方向的射线中,表示北偏东60°的是()A、B、C、D、3、以下给出的四个语句中,结论正确的有()①如果线段AB=BC,则B是线段AC的中点;②线段和射线都可看作直线上的一部分;③大于直角的角是钝角;④如图,∠ABD也可用∠B表示;A、1个B、2个C、3个D、4个4、用一副三角板不能做出下列哪个角?( )A、105°B、75°C、15°D、65°5、如图,下列表示角的方法,错误的是( )A、∠1与∠AOB表示同一个角;B、∠AOC也可用∠O来表示C、图中共有三个角:∠AOB、∠AOC、∠BOC;D、∠β表示的是∠BOC6、一个钝角与一个锐角的差是()A、锐角B、钝角C、直角D、不能确定7、下面表示∠ABC的图是()A、B、C、D、8、已知OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为()A、30°B、150°C、30°或150°D、以上都不对9、已知一条射线OA,若从点O再引两条射线OB和OC,使∠AOB=70°,∠BOC=30°,则∠AOC等于()A、40°B、100°C、40°或100°D、30°或120°10、如图,∠AOB=90°,以O为顶点的锐角共有()个A、6B、5C、4D、311、8点30分时,时钟的时针与分针所夹的锐角是()A、70°B、75°C、80°D、60°∠BOC,则∠BOC的度数是()12、如图,∠AOB为平角,且∠AOC=12A、100°B、135°C、120°D、60°13、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )A、35°B、70°C、110°D、145°14、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A、50°B、75°C、100°D、120°15、下列说法正确的是()A、两点之间,线段最短B、射线就是直线C、两条射线组成的图形叫做角D、小于平角的角可分为锐角和钝角两类16、有下列说法:①平角是一条直线;②射线是直线的一半;③射线AB与射线BA表示同一条射线;④用一个放大镜去看一个角,这个角的度数也被放大了;⑤两点之间线段最短;⑥120.5°=7250′.其中正确的有( )A、0个B、1个C、2个D、3个二、填空题。

2021-2022学年鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试题(含答案解析)

2021-2022学年鲁教版(五四制)六年级数学下册第五章基本平面图形专项测试试题(含答案解析)

六年级数学下册第五章基本平面图形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,点C 为线段AB 的中点,点D 在直线AB 上,并且满足2AD BD =,若6CD =cm ,则线段AB 的长为( )A .4cmB .36cmC .4cm 或36cmD .4cm 或2cm2、下列说法中正确的是( )A .两点之间所有的连线中,直线最短B .射线AB 和射线BA 是同一条射线C .一个角的余角一定比这个角大D .一个锐角的补角比这个角的余角大90°3、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )A .垂线段最短B .两点确定一条直线C .两点之间线段最短D .同角的补角相等4、在数轴上,点M 、N 分别表示数m ,n .则点M 、N 之间的距离为||m n -.已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d .且2||||2,||1()5a cbcd a a b -=-=-=≠,则线段BD 的长度为( )A .4.5B .1.5C .6.5或1.5D .4.5或1.5 5、芳芳放学从校门向东走400米,再往北走200米到家;丽丽出校门向东走200米到家,则丽丽家在芳芳家的()A.东南方向B.西南方向C.东北方向D.西北方向6、在9:30这一时刻,时钟上的时针和分针之间的夹角为()A.105︒B.100︒C.90︒D.85︒7、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.105°B.125°C.135°D.145°8、下列说法正确的是()A.锐角的补角不一定是钝角B.一个角的补角一定大于这个角C.直角和它的的补角相等D.锐角和钝角互补9、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是()A .过一点有无数条直线B .两点确定一条直线C .两点之间线段最短D .线段是直线的一部分10、如图,点O 在直线AB 上,OD 平分COB ∠,3AOE EOC ∠=∠,50EOD ∠=︒,则BOD ∠=( )A .10°B .20°C .30°D .40°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在灯塔O 处观测到轮船A 位于北偏西53°的方向,同时轮船B 在南偏东17°的方向,那么AOB ∠=______°.2、一个角为2440︒',则它的余角度数为 _____.3、当时钟指向下午2:40时,时针与分针的夹角是_________度.4、如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.5、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.三、解答题(5小题,每小题10分,共计50分)1、已知∠AOB ,射线OC 在∠AOB 的内部,射线OM 是∠AOC 靠近OA 的三等分线,射线ON 是∠BOC 靠近OB 的三等分线.(1)如图,若∠AOB =120°,OC 平分∠AOB ,①补全图形;②填空:∠MON 的度数为 .(2)探求∠MON 和∠AOB 的等量关系.2、已知:点O 是直线AB 上一点,过点O 分别画射线OC ,OE ,使得OC OE ⊥.(1)如图,OD 平分AOC ∠.若40BOC ∠=︒,求DOE ∠的度数.请补全下面的解题过程(括号中填写推理的依据).解:∵点O 是直线AB 上一点,∴180AOC BOC ∠+∠=︒.∵40BOC ∠=︒,∴140AOC ∠=︒.∵OD 平分AOC ∠.∴12COD AOC ∠=∠( ).∴COD ∠= °.∵OC OE ⊥,∴90COE ∠=︒( ).∵DOE ∠=∠ +∠ ,∴DOE ∠= °.(2)在平面内有一点D ,满足2AOC AOD ∠=∠.探究:当()0180BOC αα∠=︒<<︒时,是否存在α的值,使得COD BOE ∠=∠.若存在,请直接写出α的值;若不存在,请说明理由.3、如图(1),直线AB 、CD 相交于点O ,直角三角板EOF 边OF 落在射线OB 上,将三角板EOF 绕点O 逆时针旋转180°.(1)如图(2),设AOE n ∠=︒,当OF 平分BOD ∠时,求DOF ∠(用n 表示)(2)若40AOC ∠=︒,①如图(3),将三角板EOF 旋转,使OE 落在AOC ∠内部,试确定COE ∠与BOF ∠的数量关系,并说明理由.②若三角板EOF 从初始位置开始,每秒旋转5°,旋转时间为t ,当AOE ∠与DOF ∠互余时,求t 的值.4、已知100AOB ∠=︒,40COD ∠=︒,OE ,OF 分别平分AOD ∠,BOD ∠.(1)如图1,当OA ,OC 重合时,EOF ∠= 度;(2)若将COD ∠的从图1的位置绕点O 顺时针旋转,旋转角AOC α∠=,满足090α︒<<︒且40≠︒α. ①如图2,用等式表示BOF ∠与COE ∠之间的数量关系,并说明理由;②在COD ∠旋转过程中,请用等式表示∠BOE 与COF ∠之间的数量关系,并直接写出答案.5、如图,,OB OE 是AOC ∠内的两条射线,OD 平分AOB ∠,12BOE EOC ∠=∠,若55DOE ∠=︒,150AOC ∠=︒,求EOC ∠的度数.-参考答案-一、单选题1、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵2AD BD=,∴AB=BD,∵点C为线段AB的中点,∴BC=1122AB BD=,∵6CD=,∴162BD BD+=,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵2AD BD=,∴AD=23 AB,∵点C为线段AB的中点,∴AC=BC=12 AB,∵6CD=,∴23AB-12AB=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.2、D【解析】【分析】分别根据线段的性质、射线、余角、补角等定义一一判断即可.【详解】解:A.两点之间所有的连线中,线段最短,故此选项错误;B.射线AB和射线BA不是同一条射线,故此选项错误;C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;故选:D【点睛】本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.3、B【解析】【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线, 故选B .【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.4、C【解析】【分析】根据题意可知,A B 与C 的距离相等,分D 在A 的左侧和右侧两种情况讨论即可【详解】解:①如图,当D 在A 点的右侧时,2||||2,||1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-=, 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当D 在A 点的左侧时,2||||2,||1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-=, 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段BD 的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.5、B【解析】略6、A【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:9:30时针与分针相距3.5份,每份的度数是30°,在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°. 故选:A .【点睛】本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.7、B【解析】【分析】由题意知()90709015BAC ∠=︒-︒+︒+︒计算求解即可.【详解】解:由题意知()90709015125BAC ∠=︒-︒+︒+︒=︒故答案为:B .【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.8、C【解析】【分析】根据余角和补角的概念判断即可.【详解】解:A 、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;B 、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;C 、根据直角的补角是直角.所以本说法符合题意;D 、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意; 故选:C .【点睛】本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.9、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.10、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=14∠AOC=18024x︒-=902x︒-,∵∠EOD=50°,∴90502xx︒-+=︒,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.二、填空题1、144【解析】【分析】先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.【详解】解:如图,∵在灯塔O处观测到轮船A位于北偏西53°的方向,∴∠AOC =53°,∴∠AOD =90°-53°=37°,∵轮船B 在南偏东17°的方向,∴∠EOB =17°,∴∠AOB =37°+90°+17°=144°,故答案为:144.【点睛】此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.2、6520︒'【解析】【分析】根据余角的定义计算即可.【详解】解:90°-2440︒',=6520︒',故答案为:6520︒'.【点睛】本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.3、160【解析】【分析】如图,钟面被等分成12份,每一份对应的角为30,︒先求解,AOC ∠ 根据时针每分钟转0.5︒,再求解,BOC ∠ 从而可得答案.【详解】解:如图,时钟指向下午2:40时,钟面被等分成12份,每一份对应的角为30,︒∴ 305150,AOC时针每分钟转360=0.5,1260 30400.510,BOC 15010160,AOB故答案为:160【点睛】本题考查的是钟面角的计算,角的和差关系,掌握“钟面被等分成12份,每一份对应的角为30,︒时针每分钟转0.5︒”是解本题的关键.4、55【解析】【分析】根据余角的定义及等角的余角相等即可求解.【详解】解:∵∠1与∠2互余,∴∠1+∠2=90°,∵∠3与∠4互余,∴∠3+∠4=90°,又∠1=∠3,∴∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.5、 45° 127.5°【解析】【分析】根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.【详解】解:根据题意:钟面上4时30分,时针与分针的夹角是3030304560︒+⨯︒=︒ ; 15分钟后时针与分针的夹角是()53030150.515022.5127.5⨯︒-+⨯︒=︒-︒=︒ .故答案为:45°,127.5°【点睛】本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.三、解答题1、 (1)①见解析;②80︒ (2)23MON AOB ∠=∠,见解析 【解析】【分析】(1)①根据∠AOB =120°,OC 平分∠AOB ,先求出∠BOC =∠AOC =60︒, 在根据OM 是∠AOC 靠近OA 的三等分线,求出∠AOM =20︒,根据ON 是∠BOC 靠近OB 的三等分线,∠BON =20︒,然后在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON 即可;②根据∠AOM =20︒,∠BON =20︒,∠AOB =120°,可求∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°即可;(2)根据OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.可求∠AOM =13AOC ∠,∠BON=13BOC ∠,可得()MON AOB AOM BON ∠=∠-∠+∠ 23AOB =∠. (1)①∵∠AOB =120°,OC 平分∠AOB ,∴∠BOC =∠AOC =6201AOB ∠=︒, ∵OM 是∠AOC 靠近OA 的三等分线,∴∠AOM =11602033AOC ∠=⨯︒=︒, ∵ON 是∠BOC 靠近OB 的三等分线,∴∠BON =11602033BOC ∠=⨯︒=︒, 在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON , 补全图形;②∵∠AOM =20︒,∠BON =20︒,∠AOB =120°,∴∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°,∴∠MON 的度数是80°,故答案为:80°(2)∠MON =23∠AOB .∵OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.∴∠AOM =13AOC ∠,∠BON=13BOC ∠, ∴()MON AOB AOM BON ∠=∠-∠+∠ ,1()3AOB AOC BOC =∠-∠+∠, 13AOB AOB =∠-∠, 23AOB =∠. 【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.2、(1)角平分线的定义;70;垂直的定义;DOC ;EOC ;160;(2)存在,α的值为120°或144°或72︒【解析】【分析】(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;(2)分三种情况讨论:①点D ,C ,E 在AB 上方时,②当点D 在AB 的下方,C ,E 在AB 上方时,③如图,当D 在AB 上方,E ,C 在AB 下方时,用含有α的式子表示出COD ∠和∠BOE ,由COD BOE ∠=∠列式求解即可.【详解】解:(1)∵点O 是直线AB 上一点,∴180AOC BOC ∠+∠=︒.∵40BOC ∠=︒,∴140AOC ∠=︒.∵OD 平分AOC ∠. ∴12COD AOC ∠=∠( 角平分线的定义 ).∴COD ∠= 70 °.∵OC OE ⊥,∴90COE ∠=︒( 垂直的定义 ).∵DOE ∠=∠ DOC +∠ EOC ,∴DOE ∠= 160 °.故答案为:角平分线定义;70;垂直的定义;DOC ;EOC ;160;(2)存在,=120α︒ 或144°或72︒①点D ,C ,E 在AB 上方时,如图,∵BOC α∠=,90COE ∠=︒∴180,90AOC BOE αα∠=︒-∠=-︒∵2AOC AOD ∠=∠ ∴1(180)2COD AOD α∠=∠=︒-∵COD BOE ∠=∠ ∴1(180)902αα︒-=-︒∴120α=︒②当点D 在AB 的下方,C ,E 在AB 上方时,如图,∵,90BOC BOE αα∠=∠=-︒∴180180AOC BOC α∠=︒-∠=︒-∵2AOC AOD ∠=∠∴11(180)22AOD AOC α∠=∠=︒-∴1180(180)2COD AOC AOD αα∠=∠+∠=︒-+︒- ∵BOE COD ∠=∠∴1180(180)902ααα︒-+︒-=-︒ ∴144③如图,当D 在AB 上方,E ,C 在AB 下方时,同理可得:11118090,222AODAOC 390,270,2BOE COD COD BOE ∠=∠,327090,2解得:72.综上,α的值为120°或144°或72︒ 【点睛】本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键. 3、 (1)90DOF n ∠=︒-︒(2)①130COE BOF ∠+∠=︒,理由见解析;②4秒或22秒【解析】 【分析】(1)利用角的和差关系求解,BOF ∠ 再利用角平分线的含义求解DOF ∠即可;(2)①设∠=COE β,再利用角的和差关系依次求解40AOE β∠=︒-, 50AOF β∠=︒+,130BOF β∠=︒-, 从而可得答案;②由题意得:OE 与OA 重合是第18秒,OF 与OD 重合是第8秒,停止是36秒.再分三种情况讨论:如图,当08t <<时 905AOE t ∠=︒-,405DOF t ∠=︒-,如图,当818t <<时 905AOE t ∠=︒-,540DOF t ∠=-︒,如图,当1836t <<时,590AOE t ∠=-︒,540DOF t ∠=-︒,再利用互余列方程解方程即可.(1) 解:180,90,,AOB EOF AOE n∴ 18090BOF EOF AOE n ∠=︒-∠-∠=︒-︒∵OF 平分BOD ∠ ∴90DOF BOF n ∠=∠=︒-︒ (2)解:①设∠=COE β,则40AOE β∠=︒-, ∴()904050AOF ββ∠=︒-︒-=︒+∴()180********BOF AOF ββ∠=︒-∠=︒-︒+=︒-, ∴130COE BOF ∠+∠=︒②由题意得:OE 与OA 重合是第18秒,OF 与OD 重合是第8秒,停止是36秒. 如图,当08t <<时 905AOE t ∠=︒-,405DOF t ∠=︒-,则90540590t t -+-=, ∴4t =如图,当818t <<时 905AOE t ∠=︒-,540DOF t ∠=-︒,则90554090t t -+-=,方程无解,不成立如图,当1836t <<时,590AOE t ∠=-︒,540DOF t ∠=-︒,则59054090t t -+-=,∴22t =综上所述4t =秒或22秒 【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键. 4、 (1)50(2)①90COE BOF ∠∠+=︒;②40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒【解析】 【分析】(1)由题意得出40AOD COD ∠=∠=︒,140BOD AOB COD ∠=∠+∠=︒,由角平分线定义得出1202EOD AOD ∠=∠=︒,1702DOF BOD ∠=∠=︒,即可得出答案; (2)①由角平分线定义得出112022EOD AOE AOD α∠=∠=∠=︒+,117022BOF BOD α∠=∠=︒+,求出1202COE AOE AOC α∠=∠-∠=︒-,即可得出答案;②由①得1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+,当40AOC ∠<︒时,求出1302COF DOF COD α∠=∠-∠=︒+,11202BOE BOD EOD AOB COD EOD αα∠=∠-∠=∠+∠+-∠=︒+,即可得出答案;当4090AOC ︒<∠<︒时,求出11502COF DOF DOC α∠=∠+∠=︒-,11202BOE BOD DOE α∠=∠-∠=︒+,即可得出答案.(1)OA ,OC 重合,40AOD COD ∴∠=∠=︒,10040140BOD AOB COD ∠=∠+∠=︒+︒=︒,OE 平分AOD ∠,OF 平分BOD ∠,11402022EOD AOD ∴∠=∠=⨯︒=︒,111407022DOF BOD ∠=∠=⨯︒=︒, 702050EOF DOF EOD ∴∠=∠-∠=︒-︒=︒;(2)①90COE BOF ∠∠+=︒;理由如下:OE 平分AOD ∠,OF 平分BOD ∠,111(40)20222EOD AOE AOD αα∴∠=∠=∠=︒+=︒+,1111()(10040)702222BOF BOD AOB COD ααα∠=∠=∠+∠+=︒+︒+=︒+, 11202022COE AOE AOC ααα∴∠=∠-∠=︒+-=︒-,1170209022BOF COE αα∴∠+∠=︒++︒-=︒;②由①得:1202EOD AOE α∠=∠=︒+,1702DOF BOF α∠=∠=︒+, 当40AOC ∠<︒时,如图2所示:1170403022COF DOF COD αα∠=∠-∠=︒+-︒=︒+,1110040(20)12022BOE BOD EOD AOB COD EOD αααα∠=∠-∠=∠+∠+-∠=︒+︒+-︒+=︒+,111203015022BOE COF AOC ααα∴∠+∠-∠=︒++︒+-=︒,∴150COF BOE α∠∠=+︒+当4090AOC ︒<∠<︒时,如图3所示:11(360140)4015022COF DOF DOC αα∠=∠+∠=︒-︒-+︒=︒-, 11140(20)12022BOE BOD DOE ααα∠=∠-∠=︒+-︒+=︒+,11150(120)3022COF AOC BOE ααα∴∠+∠-∠=︒-+-︒+=︒;∴30COF BOE α∠=-∠-︒综上所述,40α<︒时,150COF BOE α∠∠=+︒+;4090α︒<<︒时,30COF BOE α∠=-∠-︒ 【点睛】本题考查了角的计算、角平分线定义等知识;弄清各个角之间的数量关系是解题的关键. 5、80° 【解析】 【分析】设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.【详解】解:设∠BOE=x°,则∠DOB=55°﹣x°,由∠BOE=1∠EOC可得∠EOC=2x°,2由OD平分∠AOB,得∠AOB=2∠DOB,故有2x+x+2(55﹣x)=150,解方程得x=40,故∠EOC=2x=80°.【点睛】本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.。

北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

 北师大版七年级 数学上第4章基本平面图形 -- 线段计算题(含答案)

北师大版七年级数学上第4章基本平面图形 -- 线段计算题(含答案)AB=6C AB D AC BD1. 已知:线段厘米,点是的中点,点在的中点,求线段的长.AB=6AB C BC=2AB D AC2. 如图,已知线段,延长线段到,使,点是的中点.求:AC(1)的长;BD(2)的长.B C AD2:3:4M AD CD=8MC3. 如图、两点把线段分成三部分,是的中点,,求的长.C ABD BC AD=7BD=5CD4. 已知:为线段的中点,在线段上,且,,求:线段的长度.AB=20cm C AB D AC E BC DE 5. 如图,,是上任意一点,是的中点,是的中点,求线段的长.AC=6cm BC=15cm M AC CB N6. 如图,线段,线段,点是的中点,在上取一点,使得CN:NB=1:2MN,求的长.7. 如图,,两点把线段分成三部分,其比为,是的中点,B C MN MB:BC:CN =2:3:4P MN ,求的长.PC =2cm MN8. 已知,如图,点在线段上,且,,点、分别是、的中C AB AC =6cm BC =14cm M N AC BC 点.(1)求线段的长度;MN(2)在(1)中,如果,,其它条件不变,你能猜测出的长度吗?AC =acm BC =bcm MN 请说出你发现的结论,并说明理由.9. 已知、两点在数轴上表示的数为和,、均为数轴上的点,且. A B a b M N OA <OB (1)若、的位置如图所示,试化简:.A B |a|−|b|+|a +b|+|a−b|(2)如图,若,,求图中以、、、、这个点为端点的所|a|+|b|=8.9MN =3A N O M B 5有线段长度的和;(3)如图,为中点,为中点,且,,若点为数轴上一点,M AB N OA MN =2AB−15a =−3P 且,试求点所对应的数为多少?PA =23ABP10. 阅读材料:我们知道:点、在数轴上分别表示有理数、,、两点之间的距A B a b A B 离表示为,在数轴上、两点之间的距离.所以式子的几何意义是AB A B AB =|a−b||x−3|数轴上表示有理数的点与表示有理数的点之间的距离.3x 根据上述材料,解答下列问题:(1)若,则________;|x−3|=|x +1|x =(2)式子的最小值为________;|x−3|+|x +1|(3)若,求的值.|x−3|+|x +1|=7x11. 如图,是定长线段上一点,、两点分别从、出发以、的速度沿P AB C D P B 1cm/s 2cm/s 直线向左运动(在线段上,在线段上)AB C AP D BP (1)若、运动到任一时刻时,总有,请说明点在线段上的位置:C D PD =2AC P AB(2)在(1)的条件下,是直线上一点,且,求的值.Q AB AQ−BQ =PQ PQAB(3)在(1)的条件下,若、运动秒后,恰好有,此时点停止运动,点C D 5CD =12ABC D 继续运动(点在线段上),、分别是、的中点,下列结论:①的值D PB M N CD PD PM−PN 不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求MNAB 值.12. 如图,、是线段上两点,已知,、分别为、的中点,C D AB AC:CD:DB =1:2:3M N AC DB且,求线段的长.AB =18cm MN13. (应用题)如图所示,,,是一条公路上的三个村庄,,间路程为,A B C A B 100km ,间路程为,现在,之间建一个车站,设,之间的路程为. A C 40km A B P P C xkm (1)用含的代数式表示车站到三个村庄的路程之和;x(2)若路程之和为,则车站应设在何处?102km(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?最小值是多少?14. 已知线段,,线段在直线上运动(在左侧,在左侧). AB =12CD =6CD AB A B C D (1)、分别是线段、的中点,若,求;M N AC BD BC =4MN(2)当运动到点与点重合时,是线段延长线上一点,下列两个结论:①CD D B P AB 是定值;②是定值,请作出正确的选择,并求出其定值.PA +PB PCPA−PBPC15. 如图甲,点是线段上一点,、两点分别从、同时出发,以、的O AB C D O B 2cm/s 4cm/s 速度在直线上运动,点在线段之间,点在线段之间.AB C OA D OB(1)设、两点同时沿直线向左运动秒时,,求的值;C D AB t AC:OD =1:2OAOB(2)在(1)的条件下,若、运动秒后都停止运动,此时恰有,求C D 52OD−AC =12BD的长;CD (3)在(2)的条件下,将线段在线段上左右滑动如图乙(点在之间,点在CD AB C OA D 之间),若、分别为、的中点,试说明线段的长度总不发生变化.OB M N AC BD MN16. 线段,点是线段中点,点是线段上一点,且,是线段AB =12cm O AB C AB AC =12BCP 的中点.AC(1)求线段的长.(如图所示)OP(2)若将题目中:点是线段上一点,改为点是直线上一点,线段还可以是C AB C AB OP 多长?(画出示意图)17. 已知:如图,是定长线段上一定点,、两点分别从、出发以、1M AB C D M B 1cm/s 的速度沿直线向左运动,运动方向如箭头所示(在线段上,在线段上)3cm/s BA C AM D BM(1)若,当点、运动了,求的值.AB =10cm C D 2s AC +MD(2)若点、运动时,总有,直接填空:________.C D MD =3AC AM =AB(3)在(2)的条件下,是直线上一点,且,求的值.N AB AN−BN =MN MNAB参考答案与试题解析北师大版七上线段计算题一、 解答题 (本题共计 17 小题 ,每题 10 分 ,共计170分 ) 1.【答案】解:∵ 厘米,是的中点,AB =6C AB ∴ 厘米,AC =3∵ 点在的中点,D AC ∴ 厘米,DC =1.5∴ 厘米.BD =BC +CD =4.52.【答案】、.1833.【答案】解:设,,,AB =2x BC =3x CD =4x ∴ ,,AD =9x MD =92x则,,CD =4x =8x =2.MC =MD−CD =92x−4x =12x =12×2=14.【答案】解:∵ ,AD =7BD =5∴ AB =AD +BD =12∵ 是的中点C AB ∴AC =12AB =6∴ .CD =AD−AC =7−6=15.【答案】.10cm6.【答案】解:∵ 是的中点,M AC ∴,MC =AM =12AC =12×6=3cm又∵ CN:NB =1:2∴,CN =13BC =13×15=5cm∴ .MN =MC +NC =3cm +5cm =8cm 7.【答案】.MN =36cm 8.【答案】解:(1)∵ ,,AC =6cm BC =14cm 点、分别是、的中点,M N AC BC ∴ ,,MC =3cm NC =7cm ∴ ;MN =MC +NC =10cm(2).理由是:MN =12(a +b)cm∵ ,,AC =acm BC =bcm 点、分别是、的中点,M N AC BC ∴ ,,MC =12acmNC =12bcm ∴ .MN =MC +NC =12(a +b)cm9.【答案】所有线段长度的和为41.6(3)∵ a =−3∴ OA =3∵ 为的中点,为的中点M AB N OA ∴ ,AM =12ABAN =12OA∴ MN =AM−AN =12AB−12OA =12AB−32又MN =2AB−15∴2AB−15=12AB−32解得:AB =9∴PA =23AB =6若点在点的左边时,点在原点的左边(图略)P A P OP =9故点所对应的数为P −9若点在点的右边时,点在原点的右边(图略)P A P OP =3故点所对应的数为P 3答:所对应的数为或.P −9310.【答案】,,或.14x =92x =−5211.【答案】解:(1)根据、的运动速度知:C D BD =2PC ∵ ,PD =2AC ∴ ,即,BD +PD =2(PC +AC)PB =2AP ∴ 点在线段上的处;P AB 13(2)如图:∵ ,AQ−BQ =PQ ∴ ;AQ =PQ +BQ 又,AQ =AP +PQ ∴ ,AP =BQ ∴ ,PQ =13AB∴ .PQAB =13当点在的延长线上时Q ′AB AQ ′−AP =PQ′所以AQ ′−B Q ′=PQ =AB所以;PQAB=1(3)②.MNAB 的值不变理由:当时,点停止运动,此时,CD =12ABC CP =5AB =30①如图,当,在点的同侧时M N PMN =PN−PM =12PD−(PD−MD)=MD−12PD =12CD−12PD =12(CD−PD)=12CP =52②如图,当,在点的异侧时M N PMN =PM +PN =MD−PD +12PD =MD−12PD =12CD−12PD =12(CD−PD)=12CP =52∴ MNAB=5230=112当点停止运动,点继续运动时,的值不变,所以,.C D MN MNAB =11212.【答案】的长为.MN 12cm13.【答案】解:(1)路程之和为;PA +PC +PB =40+x +100−(40+x)+x =(100+x)km (2),,车站在两侧处;100+x =102x =2C 2km (3)当时,,车站建在处路程和最小,路程和为.x =0x +100=100C 100km 14.【答案】解:(1)如图,∵ 、分别为线段、的中点,1M N AC BD ∴,AM =12AC =12(AB +BC)=8,DN =12BD =12(CD +BC)=5∴ ;MN =AD−AM−DN =9如图,∵ 、分别为线段、的中点,2M N AC BD ∴,AM =12AC =12(AB−BC)=4,DN =12BD =12(CD−BC)=1∴ ;MN =AD−AM−DN =12+6−4−4−1=9(2)①正确.证明:.PA +PBPC=2∵,PA +PBPC=(PC +AC)+(PC−CB)PC=2PC PC=2∴ ①是定值.PA +PBPC215.【答案】解:(1)设,则,AC =x OD =2x 又∵ ,OC =2t DB =4t ∴ ,,OA =x +2t OB =2x +4t∴ ;OA OB =12(2)设,,又,,由,得AC =x OD =2x OC =52×2=5(cm)BD =52×4=10(cm)OD−AC =12BD ,,2x−x =12×10x =5,OD =2x =2×5=10(cm);CD =OD +OC =10+5=15(cm)(3)在(2)中有,,,,AC =5(cm)BD =10(cm)CD =15AB =AC +BD +CD =30(cm)设,,AM =CM =x BN =DN =y ∵ ,,2x +15+2y =30x +y =7.5∴ .MN =CM +CD +DN =x +15+y =22.516.【答案】解:(1)OP =AO−AP =12AB−AP=12AB−12AC =12AB−12×13AB.=13AB =4(2)如下图所示:此时,.OP =AO +AP =12AB +AP =12AB +12AC =12AB +12AB =AB =1217.【答案】解:(1)当点、运动了时,,C D 2s CM =2cm BD =6cm∵ ,,AB =10cm CM =2cm BD =6cm∴ AC +MD =AB−CM−BD =10−2−6=2cm(2)14(3)当点在线段上时,如图N AB∵ ,又∵ AN−BN =MN AN−AM =MN ∴ ,∴ ,即.BN =AM =14AB MN =12AB MN AB =12当点在线段的延长线上时,如图N AB∵ ,又∵ AN−BN =MN AN−BN =AB ∴ ,即.综上所述MN =AB MN AB =1MN AB =12或1。

七年级数学《基本平面图形》单元测试题(含答案)

七年级数学《基本平面图形》单元测试题(含答案)

第五章《基本平面图形》单元测试题(后附答案)班级:_________ 姓名:___________题号一二171819202122附加总分分数一、选择题1.如图1,l是一条笔直的公路,在公路的两侧各有一个村庄A,B,两个村庄准备集资修建一个公交车站,经过协商,要求车站到两个村庄的路程和最短,小聪帮助设计了公交车站修建点M,则小聪设计的理由是()A.两点确定一条直线B.两点确定一条线段C.经过三点也可以确定一条直线D.两点之间线段最短图1 图22.下列表示方法正确的是()3.在下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的图形是( )4.下图所示的图形中,其中两条线能相交的是( )5.下列图形中,是正六边形的是( )OBABOOABDCOCAACBEABDC1111AA BDC····BA BDC···CA BDC··DA BDC··A BC D6.已知线段AB=5cm ,在直线AB 上画线段AC=3cm ,则线段BC 的长为( ) A .8cm B .2 cm C . 2 cm 或8 cm D .不能确定7.已知点M 是∠AOB 内一点,作射线OM ,则下列不能说明OM 是∠AOB 的平分线的是( ) A.∠AOM=∠BOM B.∠AOB=2∠AOM C.∠BOM =21∠AOB D.∠AOM+∠BOM=∠AOB 8. 如图,圆的四条半径分别是OA ,OB ,OC ,OD ,其中点O ,A ,B 在同一条直线上,∠AOD =90°,∠AOC =3∠BOC ,那么圆被四条半径分成的四个扇形的面积的比是( )A. 1∶2∶2∶3B. 3∶2∶2∶3C. 4∶2∶2∶3D. 1∶2∶2∶1 9.现在的时间是9点30分,时钟面上的时针与分针的夹角是( ) A.100° B.105° C.110° D.120°10. 如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD ,若A ,D 两点表示的数的分别为﹣5和6,点E 为BD 的中点,那么点E 表示的整数是( ) A.﹣1 B.0 C.1 D.2二、填空题11.把一根木条固定在墙上,至少要钉2颗钉子,这是根据 . 12.点O 是线段AB 的中点,OA=2cm,则AB=_______cm .13如图4所示,把一块三角尺的直角顶点放在一条直线l 上,若∠1=20º,则∠2的度数为 .图414.如图5,点A ,O ,B 在一条直线上,且∠BOC =130°,OD 平分∠AOC ,则图中∠BOD= 度.15.从六边形的一个顶点出发可以引出 条对角线,可将六边形分为 个三角形,六边形共有_____条对角线.16.我市某校某班有5名代课老师,过新年时,若每两人都互相握一次手,则共需要握 次手.三、解答题17. (每小题4分,共8分)计算:(1)将24.29°化为度、分、秒; (2)将36°40′30″化为度.18. (8分)如图6,把一个圆分成三个扇形,求出这三个扇形的圆心角度数.图619. (8分) 如图9,已知线段AB,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=AB;延长线段BA到D,使AD=AC.(2)若AB=2cm,则AC=cm,BD=cm,CD=cm.图920. (8分) .如右图,∠BAD=90°,射线AC平分∠BAE.(1)当∠CAD=40°时,∠BAC=_______°.(2)当∠DAE=46°时,求∠CAD的度数.理由如下:由∠BAD=90°与∠DAE=46°,可得∠BAE =______________=_______°.由射线AC平分∠BAE,可得∠CAE =∠BAC =______________= _______°.所以∠CAD =_____________=_______°.21. (9分) 如图11,点P 是线段AB 上的一点,点M ,N 分别是线段AP ,PB 的中点. (1)如图①,若点P 是线段AB 的中点,且MP =4cm ,求线段AB 的长; (2)如图②,若点P 是线段AB 上的任一点,且AB =12cm ,求线段MN 的长.① ② 图1122. (11分)如图,已知数轴上点A 表示的数为8,B 是数轴上的一点,AB=12,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 (用含t 的代数式表示);(2)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.附加题1.(6分) 如图1,在锐角∠AOB 内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…照此规律,画10条不同射线,可得 个锐角.图12. (14分) 小知识:如图,我们称两臂长度相等(即CB CA =)的圆规为等臂圆规. 当等臂圆规的两脚摆放在一条直线上时,若张角︒=∠x ACB ,则底角︒-=∠=∠)290(xCBA CAB .请运用上述知识解决问题:如图,n 个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:112160AC A ∠=︒,22380A C A ∠=︒, 33440A C A ∠=︒,44520A C A ∠=︒,…(1)①由题意可得∠A 1A 2C 1= º;②若2A M 平分321A A C ∠,则22C MA ∠= º; (2)n n n C A A 1+∠= º(用含n 的代数式表示,n ≥1);(3)当3≥n 时,设11n n n A A C --∠的度数为a ,11n n n A A C +-∠的平分线N A n 与n n A C 构成的角的度数为β,那么α与β之间的等量关系是 ,请说明理由. (提示:可以借助下面的局部示意图)参考答案一、1.C2.D3.A4.C5.B6.C 提示:如图1所示,当点C 在线段AB 上时,BC=AB -AC=5-3=2(cm );如图2所示,当点C 在线段AB 外时,BC=AB+AC=5+3=8(cm ).图1 图2 7.D8.B 提示:9点30分时,时针与分针的夹角是3×30°+12×30°=105°. 9. A 10. D二、11. 两点确定一条直线 121. 4 13. 70° 14. 3 4 915. 155° 提示:∠BOD=∠BOC+∠COD=∠BOC+12∠AOC=∠BOC+12(180°-∠BOC )=130°+12(180°-130°)=155°.16. 10三、17. 解:(1) 24.29°=24°+0.29⨯60′=24°+17.4′= 24°+17′+0.4⨯60″=24°+17′+24″= 24°17′24″(2) 36°40′30″=36°+40′+30″=36°+40′+601⨯30′=36°+40.5′=36°+601⨯40.5°=36°+0.675°=36.675°. 18.解:因为一个周角为360°,所以分成三个扇形的圆心角分别是:360°×25%=90°,360°×30%=108°,360°×45%=162°. 19.(1)如图4所示:图4 (2)4 6 8 20.(1)50 (2)理由如下:由∠BAD=90°与 ∠DAE=46°,可得∠BAE =_90°+46°(或∠BAD+∠DAE )=136°. 由射线AC 平分∠BAE ,可得 ∠CAE =∠BAC =136°÷2(或∠BAE ÷2)=68°. 所以 ∠CAD =90°-68°(∠BAD -∠CAE )= 22 °.21.解:(1)因为M 是线段AP 的中点,MP=4 cm ,所以AP=2MP=2×4=8(cm ).ACB CAB又因为点P 是线段AB 的中点,所以AB=2AP=2×8=16(cm ). (2)因为点M 是线段AP 的中点,点N 是线段PB 的中点,所以MP=AP ,PN=PB. 所以MN=MP+PN=AP+PB=(AP+PB )=AB.因为AB =12 cm ,所以MN=6 cm. 22. (1)﹣4 8﹣6t(2)①如图1,点P 在AB 中间,因为AM=PM ,BN=PN ,所以MN=AB=6;图1②如图2,点P 在B 点左侧,PM=PA=(PB+AB ),PN=PB ,所以MN=PM ﹣PN=PA ﹣PB=AB=6. 综上所述,MN 在点P 运动过程中长度无变化.图2 1. 662. 解:(1)①10 ②35 (2)(90-1802n ) (3)α-β=45° 理由:不妨设∠C n -1=k.根据题意可知2n kC ∠=.由小知识可知11n n n A A C --∠=902kα=︒-.所以11n n n A A C +-∠=180α︒-=902k︒+.由小知识可知1n n n A A C +∠= 904k︒-.因为 N A n 平分11n n n A A C +-∠,所以 1∠=1211n n n A A C +-∠=454k ︒+.因为1n n n A A C +∠=1n n C A N ∠+∠,所以 904k ︒-=454kβ︒++.所以 902k︒-=45β︒+.所以α=45β︒+. 所以45αβ-=︒.212121212121。

(七年级)初一基本平面图形专项练习试题_附答案_北师大,人教版等通用版本

(七年级)初一基本平面图形专项练习试题_附答案_北师大,人教版等通用版本

初一基本平面图形一、单选题1.如图,在直角坐标系xOy 中,点P 的坐标为(4,3),PQ ⊥x 轴于Q ,M ,N 分别为OQ ,OP 上的动点,则QN +MN 的最小值为( )A .7225B .245C .125D .9625 2.已知,点C 在直线 AB 上, AC =a , BC =b ,且 a ≠b ,点 M 是线段 AB 的中点,则线段 MC 的长为( )A .2a b +B .2a b -C .2a b +或2a b -D .+2a b 或||2a b - 3.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD=BM ,则AB=3BD ;②若AC=BD ,则AM=BN ;③AC-BD=2(MC-DN );④2MN=AB-CD .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④ 4.把 8.32°用度、分、秒表示正确的是( )A .8°3′2″B .8°30′20″C .8°18′12″D .8°19′12″ 5.经过平面上的四个点,可以画出来的直线条数为( )A .1B .4C .6D .前三项都有可能6.如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点11M N ,;第二次操作:分别取线段1AM 和1AN 的中点22,M N ;第三次操作:分别取线段2AM 和2AN 的中点33,M N ;……连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010M N M N M N +++=L ( )A .910202-B .910202+C .1010202-D .1010202+ 7.已知线段AC 和BC 在同一直线上,AC =8cm ,BC =3cm ,则线段AC 的中点和BC 中点之间的距离是( )A .5.5cmB .2.5cmC .4cmD .5.5cm 或2.5cm8.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A .∠BCD 和∠ACFB .∠ACD 和∠ACFC .∠ACB 和∠DCBD .∠BCF 和∠ACF9.如图,在公路 MN 两侧分别有 A 1, A 2......A 7,七个工厂,各工厂与公路 MN(图中粗线)之间有小公路连接.现在需要在公路 MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( ).①车站的位置设在 C 点好于 B 点;②车站的位置设在 B 点与 C 点之问公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③ 10.如图,某公司有三个住宅区,A ,B ,C 各区分别住有职工10人,15人,45人,且这三个区在一条大道上(A ,B ,C 三点共线),已知AB =150m ,BC =90m .为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .点A ,B 之间D .点C 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个B.45个C.50个D.55个二、填空题12.已知点A,B,C都在直线l上,点P是线段AC的中点.设AB a=,PB b,则线段BC的长为________(用含a,b的代数式表示)13.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,则AC=_____.14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B 之间的距离记作|AB|,定义:|AB|=|a﹣b|.①线段AB的长|AB|=3;②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;④在③的条件下,|PN|﹣|PM|的值不变.以上①②③④结论中正确的是_______(填上所有正确结论的序号)15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF分别平分∠BOC、∠COD,则∠EOF的度数是_____.16.把一根绳子对折成一条线段AB,在线段AB取一点P,使AP=13PB,从P处把绳子剪断,若剪断后的三段..绳子中最长的一段为30cm,则绳子的原长为______cm.17.钟表4点30分时,时针与分针所成的角的度数是___________ 。

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析1.过一点可以画出()条直线与已知直线垂直.A.一条B.两条C.三条D.无数条【答案】A【解析】过直线外一点有并且只有一条直线与已知直线垂直.据此解答.解:过直线外一点只有一条直线与已知直线垂直.故选:A.点评:本题考查了学生过直线外一点有并且只有一条直线与已知直线垂直的知识.2.在同一个平面内,一条直线用a 表示,另一条直线用b 表示.如果直线a 和直线b是不相交的,那么下面说法正确的是()A.a 是平行线B.a和b互相平行C.b是平行线D.a和b互相垂直【答案】B【解析】因为在同一个平面内,两条直线只有两种位置关系,相交和平行,据此判断即可.解:因为在同一个平面内,两条直线只有两种位置关系,相交和平行,如果直线a 和直线b是不相交的,那么这两条直线一定平行.所以a和b互相平行.故选:B.点评:解决本题的关键是明确:在同一个平面内,两条直线只有两种位置关系,相交和平行.3.画一条线段,把这个梯形分成一个三角形和一个平行四边形.【答案】【解析】利用过直线外一点作已知直线的平行线的方法,过梯形的上底的一个端点A,作腰CD的平行线AE即可.解:如图所示,AE即为所要求作的线段:.点评:此题主要考查过直线外一点作已知直线的平行线的方法.4.判断:读数时,只要从高位起,依次读出每级的数字就行.10cm的直线比8cm的射线长2cm.三位数乘两位数,积可能是五位数,也可能是两位数.两条直线同时垂直于第三条直线,那么这两条直线互相平行..【答案】错误;错误;错误;正确【解析】(1)根据整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续几个0都只读一个零.即读多位数时,应先读亿级,再读万级,最后读个级,万级和亿级的数要按照个级的数的读法来读,再在后面加读“万或亿”字.(2)直线没有端点,它向两方无限延伸,无法量得其长度;射线只有一个端点,它向一方无限延伸,也无法量得其长度;据此解答即可.(3)根据题意,可以假设这个两位数和三位数都是最小的数,然后再进行判断即可;(4)由垂直和平行的特征和性质可知:平面内,垂直于同一条直线的两条直线互相平行;据此判断即可.解:(1)解:读多位数时,应先读亿级,再读万级,最后读个级,万级和亿级的数要按照个级的数的读法来读,再在后面加读“万或亿”字.所以读数时,只要从高位起,依次读出每级的数字就行.是错误的;(2)因为直线没有端点,它向两方无限延伸,无法量得其长度;射线只有一个端点,它向一方无限延伸,也无法量得其长度;所以10cm的直线比8cm的射线长2cm,是错误的;(3)根据题意,假设这个两位数和三位数都是最小的数,即分别是10、100,那么,10×100=1000,因为1000是四位数,与题意不符,所以,三位数乘两位数,积可能是五位数,也可能是两位数,是错误的;(4)由垂直和平行的特征和性质可知:平面内,垂直于同一条直线的两条直线互相平行;所以两条直线同时垂直于第三条直线,那么这两条直线互相平行.是正确的.故答案为:错误;错误;错误;正确.点评:本题主要考查整数的读法,注意读亿级和万级数时要按照个级数的读法去读,区别是最后再加读“万或亿”字.此题主要考查直线和射线的含义,应注意基础知识的灵活运用.三位数乘两位数,积是几位数取决于两个因数的大小.三位数乘两位数的积最少是四位数,最多是五位数.此题考查了垂直和平行的特征和性质,应注意理解和灵活运用.5.在如图的平行线中画一个最大的正方形.【答案】【解析】先在两条平行线中画出一条垂线段,量出长度,然后以这条垂线段的两个端点为正方形的两个顶点,在两条平行线上分别截取和垂线段相等的两条线段,连接截取的另两个端点即可得出平行线里最大的正方形.解:由分析作图如下:点评:解答此题应明确:所作出的正方形的边长等于这两条平行线之间的垂线段的长度.6.和如图的直线相距1cm的平行线你能画几条?试着画一画吧.【答案】【解析】与已知直线相距1厘米的点能找出2个,在直线的两侧各一个,因为过直线外一点画已知直线答平行线只能画一条,所以经过这两个点可以画出两条平行线,据此回答即可.解:如图,距离已知直线的距离为1厘米的点能找出两个,所以能画出两条平行线,如下图:点评:此题主要考查点到直线的距离以及平行线的画法.7.画出图形指定底的高.【答案】【解析】根据梯形的高的意义,梯形的上下底之间的距离叫做梯形的高.由此解答.解:作梯形上下底的垂线段即可.如下图:点评:此题的解答主要明确梯形的高的意义,根据作垂线的方法解决问题.8.画出两个图形的一条高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线;同样在梯形中,从一底的任一点作另一底的垂线,这点与垂足间的距离叫做梯形的高.习惯上作梯形的高时都从上底(较短的底)一个顶点出发作下底的垂线.解:如图所示:.点评:本题主要是考查作平行四边形和梯形的高.很多同学作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.9.想一想,选一选.A.互相平行 B.互相垂直 C.都有可能(1)在同一平面内两条直线都平行于一条直线,这两条直线的位置关系是.(2)在同一平面内两条直线都垂直于一条直线,这两条直线的位置关系是.【答案】A,A【解析】(1)根据平行线的定义,在同一平面内,不相交的两条直线叫做平行线,有两条直线都和一条直线平行,这两条直线互相平行,据此解答.(2)根据垂直定义得出∠CMB=∠ENB=90°,根据平行线的判定求出即可.解:(1)由分析可知:在同一平面内,有两条直线都和一条直线平行,这两条直线互相平行;(2)因为CD⊥AB,EF⊥AB,所以∠CMB=∠ENB=90°,所以CD∥EF.所以在同一平面内两条直线都垂直于一条直线,这两条直线的位置关系是平行;故答案为:A,A.点评:此题考查了垂直于平行的特征及性质,应注意基础知识的积累.10.两条笔直的铁轨互相.【答案】平行【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;据此判断即可.解:根据平行的含义可知:两条笔直的铁轨互相平行;故答案为:平行.点评:此题考查了平行的含义,应注意理解和应用.11. x的3倍与4的差是非负数,列不等式是.【答案】3x﹣4≥0【解析】关键描述语是:差是非负数.最后算的差应大于或等于0.解:根据题意,得3x﹣4≥0.点评:读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.12.已知不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,则代数式4a﹣的值为.【答案】代入代数式4a﹣=4×﹣=14﹣4=10【解析】先求得不等式3(x﹣2)+5<4(x﹣1)+6的解集,可求得x的最小整数解是﹣2,也就是方程2x﹣ax=3的解是x=﹣2,把x=﹣2代入2x﹣ax=3,求出a=,代入代数式4a﹣即可求解.解:因为3(x﹣2)+5<4(x﹣1)+6,去括号得3x﹣6+5<4x﹣4+6移项得3x﹣4x<﹣4+6+6﹣5合并同类项得﹣x<3系数化为1得x>﹣3,所以x的最小整数解是﹣2,也就是方程2x﹣ax=3的解是x=﹣2,把x=﹣2代入2x﹣ax=3,得到a=,代入代数式4a﹣=4×﹣=14﹣4=10.点评:注意理解最小整数既可以是正整数,0,也可以是负整数.解题关键是先求出不等式的解,再代入方程求出a的值,最后把a的值代入代数式求值.13.在同一平面内的两条直线不平行就一定垂直..【答案】错误【解析】因为在同一平面内的两条直线不平行就相交,垂直只是相交情况中的一种,据此判断即可.解:由分析可知:在同一平面内,不平行的两条直线一定垂直.…,说法错误;故答案为:×.点评:此题主要考查在同一平面内的两条直线的位置关系,明确垂直只是相交的一种特殊情况.14.过P点画出AB的平行线,画出BC的垂线.【答案】【解析】(1)把三角板的一条直角边与已知直线AB重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和AB重合的直角边和P点重合,过P点沿三角板的直角边画直线即可.(2)把三角板的一条直角边与已知直线BC重合,沿直线移动三角板,使三角板的另一条直角边和P点重合,过P点沿三角板的直角边向已知直线画直线即可.解:据分析作图如下:点评:本题考查了学生作平行线和垂线的方法,培养学生的作图能力.15.过B点画出角两边的平行线.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和B点重合,过B点沿三角板的直角边画直线即可.解:由分析画图如下:点评:本题考查了学生画平行线的能力.16.过点A分别画直线的平行线.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用直尺和三角板作平行线的能力.17.要划船从A点到河的对岸,把最短的线路画出来,然后过B点画出与河流平行的直线.【答案】【解析】(1)把河的对岸看做一条直线,依据垂线段最短,作出A点到直线的垂线段即可解答.(2)将河岸的一条边当作已知直线,B点是已知直线外一点,根据过直线外一点画已知直线的平行线的方法画出过B点与河流平行的直线即可.解:如图所示:,红色垂线段即为所求最短路线;过B点的直线即为所求与河流平行的直线.点评:本题考查了学生对点到直线距离知识的掌握和画垂线段、平行线的能力.18.过顶点C作AB的平行线,再过B点作AC的垂线.【答案】【解析】(1)把三角板的一条直角边与AB重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和AB重合的直角边和C点重合,过C点沿三角板的直角边画直线即可.(2)用三角板的一条直角边的AC重合,沿AC平移三角板,使三角板的另一条直角边和B点重合,过B沿直角边向AC画直线即可.解:根据分析:(1)过C点画AB的平行线,(2)过B点画AC的垂线.画图如下:点评:本题考查了学生画垂线和平行线的作图能力.19.你能在下面的平行线里画一个最大的正方形吗?【答案】【解析】先在两条平行线中画出一条垂线段,量出长度,然后以这条垂线段的两个端点为正方形的两个顶点,在两条平行线上分别截取和垂线段相等的两条线段,连接截取的另两个端点即可得出平行线里最大的正方形.解:由分析作图如下:点评:解答此题应明确:所作出的正方形的边长等于这两条平行线之间的垂线段的长度.20.请你用画平行线的方法,把图形画成一个长方形.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和顶点重合,过顶点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用平行线作长方形的能力.21.画出下面图形指定底的高.【答案】【解析】在图形中标上字母,如下图,从A点做AE⊥BC,交BC于E,则AE即为所求.解:从A点做AE⊥BC,交BC于E,则AE即为所求.点评:此题考查了学生作图能力,考查了画出图形指定底的高.22.作一个长3厘米、宽2厘米的长方形.【答案】【解析】已知长方体的长为3厘米,宽2厘米,据已知条件用直尺及三角尺作图即可.解:点评:作正方形及长方形要用到直尺及三角尺.23.(2013•华亭县模拟)过已知直线外的一点A(1)作直线的平行线(2)作直线的垂线.【答案】【解析】(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.(2)把三角板的一条直角边与已知直L重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:画图如下:点评:本题考查了学生过直线外一点作已知直线的平行线和垂线的画图能力.24.下列各组直线,组互相平行,组互相垂直.【答案】②,③【解析】根据平行线和垂线的定义:在同一平面内不相交的两条直线叫做平行线;当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.解:下列各组直线,②组互相平行,③组互相垂直;故答案为:②,③.点评:此题考查了平行和垂直的定义.25.小明绕水池边走一圈,走了多少米?【答案】小明绕水池边走一圈,走了210米【解析】依据平面图形的周长的意义,将组成这个图形的所有线段加在一起即可得解.解:60+30+15+60+30+15=(60+30+15)×2=105×2=210(米);答:小明绕水池边走一圈,走了210米.点评:解答此题的主要依据是:平面图形的周长的意义.26.平行四边形的高有()条.A.1B.2C.8D.无数条【答案】D【解析】根据平行四边形高的含义:平行四边形的高是指对边之间的距离,那么,两组对边之间都可以画无数条垂直线段,所以,有无数条高,即可选择.解:由分析可知,平行四边形有无数条高,故选:D.点评:此题考查了平行四边形高的含义.27.用两个边长为3厘米的正方形拼成一个长方形,这个长方形的周长是()A.24厘米B.18厘米C.12厘米【答案】B【解析】用2个边长3厘米的小正方形拼成一个长方形,方法只有一种,拼成后的长方形的长是(3×2)厘米,宽是3厘米,然后根据长方形的周长公式求出它的周长.据此解答.解:拼成后长方形的长是:3×2=6(厘米),拼成后长方形的宽是3厘米,拼成后长方形的周长是:(6+3)×2,=9×2,=18(厘米),答:它的周长是18厘米.故答案选:B.点评:本题的关键是求出拼成后长方形的长和宽,再根据长方形的周长公式进行计算.28.一个长方形的周长是24厘米,如把它平均分成两个正方形,每个正方形的周长是12cm..【答案】错误【解析】如图所示,先依据长方形的周长公式求出其长和宽的和,由题意可知,长方形的长应等于其宽的2倍,从而依据正方形的周长公式即可求解.解:设长方形的宽为a,则其长为2a,a+2a=24÷2,3a=12,a=4,4×4=16(厘米);答:每个正方形的周长是16厘米.故答案为:错误.点评:此题主要考查长方形和正方形的周长的计算方法的灵活应用.29.(2012•通川区模拟)长方形、正方形和梯形都是特殊的平行四边形..【答案】错误【解析】根据平行四边形的特征:两组对边平行且相等;则得出:长方形、正方形是特殊的平行四边形,而梯形是只有一组对边平行的四边形,另一组对边不平行;进行解答即可.解:长方形、正方形是特殊的平行四边形,而梯形是只有一组对边平行的四边形,另一组对边不平行;故答案为:错误.点评:此题考查了平行四边形的特征和性质,应注意基础知识的积累.30.如图,用2条线段可以把一个边长为10厘米的正方形分割成面积相等的4部分,这两条分割线的长度总和是20厘米(如图),现在请你用不超过4条的线段将一个边长为10厘米的正方形分割成面积相等的5部分,要求找出3种不同的分割方法,其分割线的长度总和必须小于40厘米,在图中画分割线并在每个图下面的横线上写上分割线的长度总和.【答案】【解析】首先一个一个边长10厘米的正方形面积为100平方厘米,分成相等的五份,每份面积应为20平方厘米;第一种方法:把它分为一个长为10厘米,宽为2厘米的长方形和四个长为5厘米,宽为4厘米的长方形;第二种方法:把它分为一个长为10厘米,宽为2厘米的长方形和四个底边为5厘米,高为8厘米直角三角形;第三种方法:把它分成中间一个正方形和四个角上四个直角三角形,如下图所示.解:根据分析画图如下:点评:本题先把每一个正方形的两条对边都5等分是解答的关键确定分割线长度总和最短是难点.31.一块长方形布料长5米,宽比长短2米,这块布料的周长是多少米?【答案】这块布料的周长是16米【解析】首先求出它的宽,再根据长方形的周长公式:c=(a+b)×2,把数据代入公式解答即可.解:(5+5﹣2)×2,=8×2,=16(米);答:这块布料的周长是16米.点评:此题主要考查长方形的公式的灵活运用.32.农业科技小组有块劳动基地(如图),他们要在四周扎上围栏,他们需要扎多长的围栏?【答案】他们需要扎104米长的围栏【解析】由题意得出:四周扎上围栏的长度等于正方形的周长,根据正方形周长=边长×4即可解答.解:26×4=104(米),答:他们需要扎104米长的围栏.点评:此题主要考查正方形周长的计算.33.如图是中心小学操场示意图.小刚绕操场周边跑一圈,跑多少米?【答案】90.84米【解析】由题意得操场一周是由长方形和圆周组成的,圆的直径为30﹣24=6米,半径为6÷2=3米,长方形的长是24米,宽为18﹣3×2=12米,根据圆的周长=πd,长方形周长=长×2+宽×2,把圆周的长和长方形四条边相加即可求出操场的长度.解:圆的半径为:(30﹣24)÷2=3(米),所以操场的周长为:(18﹣2×3)×2+24×2+3.14×(30﹣24),=24+48+18.84,=90.84(米).答:跑90.84米.点评:解决本题的关键是分析得出整个操场的组成部分.34.下面的图形有周长吗?如果有请用彩笔描出来.【答案】【解析】封闭图形一周的长度,叫做这个图形的周长,只有封闭的平面图形才有周长,据此判断出哪些图形有周长,再用彩笔沿图形的一周描出图形的周长即可.解:围成一个图形的所有边长的总和叫做这个图形的周长,由此可知,从左数1、2、3、4、6、8、9有周长,用彩笔描出如下:点评:此题考查了周长的定义,要注意掌握判断什么图形有周长的方法.35.一块正方形菜地边长为40米,把它的边长缩小为原来的一千分之一,缩小后的图形周长是多少?【答案】0.16米【解析】根据比例尺,先求出缩小后的边长,再利用正方形的周长公式计算即可.解:40×=0.04(米),0.04×4=0.16(米),答:缩小后的图形的周长是0.16米.点评:此题主要考查正方形的周长以及利用比例尺的计算应用.36.一个正方形果园,边长是340米,如果要用篱笆把果园的四周围起来,求篱笆的长是多少米?【答案】1360米【解析】此题要求四周篱笆的长度,就是求这个边长为340米的正方形果园的周长,根据正方形的周长公式即可列式求篱笆长.解:340×4=1360(米).答:篱笆的长是1360米.点评:本题考查了正方形的周长=边长×4的应用,是基础题型.37.周长是80厘米的长方形,它的长是28厘米,宽是多少厘米?【答案】12【解析】因为长方形周长=(长+宽)×2,所以周长除以2就是一条长和宽的长度之和,再减去长就是宽的长度.解:80÷2﹣28,=40﹣28,=12(厘米).答:宽是12厘米.点评:此题主要考查长方形周长公式的灵活运用.38.先测量,再算出他们的周长.【答案】长方形的周长是8.8厘米,平行四边形的周长是7.4厘米【解析】首先测量出长方形的长和宽,平行四边形的底和它的邻边的长度,根据长方形(平行四边形)的周长公式:c=(a+b)×2,把数据代入公式解答.解:(2.4+2)×2,=4.4×2,=8.8(厘米);(2.1+1.6)×2,=3.7×2,=7.4(厘米);答:长方形的周长是8.8厘米,平行四边形的周长是7.4厘米.点评:此题考查的目的在掌握长度测量方法以及长方形、平行四边形的周长的计算方法.39.用两个长8厘米、宽4厘米的长方形,分别拼成一个长方形和一个正方形.(1)计算这个长方形的周长.(2)计算这个正方形的周长.【答案】拼成后长方形的周长是36厘米,拼成后正方形的周长是32厘米【解析】用两个长8厘米,宽4厘米的长方形,拼成一个大长方形这个大长方形的长是(8+8)厘米,宽是2厘米,拼成正方形的边长是(4+4)厘米,然后根据它们的周长公式进行计算.据此解答.解:拼成长方形的周长是:(8+8+2)×2,=18×2,=36(厘米).拼成后正方形的周长是:(4+4)×4,=8×4,=32(厘米).答:拼成后长方形的周长是36厘米,拼成后正方形的周长是32厘米.点评:本题的关键是先求出拼成后图形的边长,再根据它们的周长公式进行计算.40.已知一个长方形的周长和圆的周长相等,长方形的长是10厘米,宽比长少43%,则圆的面积是多少?【答案】圆的面积是78.5平方厘米【解析】根据“宽比长少43%”,知道宽是长的(1﹣43%),由此先求出长方形的宽,再根据长方形的周长公式,C=(a+b)×2,求出长方形的周长,即圆的周长;再由圆的周长公式的变形,求出圆的半径,最后根据圆的面积公式,S=πr2,求出面积即可.解:长方形的宽:10×(1﹣43%)=5.7(厘米),圆的周长:(10+5.7)×2,=15.7×2,=31.4(厘米),圆的半径:31.4÷3.14÷2=5(厘米),面积是:3.14×5×5,=15.7×5,=78.5(平方厘米),答:圆的面积是78.5平方厘米.点评:解答此题的关键是,根据要求问题,一步一步的确定要求的量,分别根据相应的公式和公式的变形,列式解决问题.41.有两个同样的长方形,长是8分米,宽是4分米.如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米?【答案】这个长方形的周长是40分米;这个正方形的周长是32分米【解析】(1)要拼成一个长方形,必须两个同样的长方形的宽重合在一起,如下图,再根据长方形的周长公式C=(a+b)×2,即可求出拼成的长方形的周长;(2)要拼成一个正方形,必须两个同样的长方形的长重合在一起,如下图,再根据正方形的周长公式C=4a,即可求出拼成的正方形的周长.解:(1)拼成的长方形的长是:8+8=16(分米),拼成的长方形的周长:(16+4)×2,=20×2,=40(分米);(2)拼成的正方形的边长是8分米,拼成的正方形的周长是:8×4=32(分米);答:这个长方形的周长是40分米;这个正方形的周长是32分米.点评:关键是知道如何将两个同样的长方形拼成一个长方形或正方形,再根据相应的公式解决问题.42.足球场是一个长方形,长100米,宽75米,小明沿着足球场跑了2圈,跑了多少米?【答案】700【解析】根据长方形的周长公式C=(a+b)×2,先求出小明沿着足球场跑了1圈的米数,再乘2即可求出小明沿着足球场跑了2圈的米数.解:(100+75)×2×2,=175×2×2,=175×4,=700(米);答:小明沿着足球场跑了2圈,跑了700米.点评:此题主要考查了长方形的周长公式C=(a+b)×2的实际应用.43.下面都是由边长1厘米的正方形组成的图形,数一数这些图形的周长是多少?(1)厘米;(2)厘米;(3)厘米.【答案】14、12、10【解析】数清楚每个图形的周长由多少个小正方形的边长组成,问题即可得解.解:(1)1×14=14(厘米);(2)1×12=12(厘米);(3)1×10=10(厘米);答:三个图形的周长分别是14厘米、12厘米和10厘米.故答案为:14、12、10.点评:解答此题的关键是:数清楚每个图形的周长由多少个小正方形的边长组成.。

(完整版)基本平面图形试题及答案

(完整版)基本平面图形试题及答案

第四章简单平面图形单元测试题(总分100分,时间90分钟)一、选择题(每小题3分,共39分)1、如图1,以O为端点的射线有()条.A、3B、4C、5D、62、下列各直线的表示法中,正确的是().A、直线AB、直线ABC、直线abD、直线Ab3、一个钝角与一个锐角的差是().A、锐角B、钝角C、直角D、不能确定4、下列说法正确的是().A、角的边越长,角越大B、在∠ABC一边的延长线上取一点DC、∠B=∠ABC+∠DBCD、以上都不对5、下列说法中正确的是().A、角是由两条射线组成的图形B、一条射线就是一个周角C、两条直线相交,只有一个交点D、如果线段AB=BC,那么B叫做线段AB的中点6、同一平面内互不重合的三条直线的交点的个数是().A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个7、下列说法中,正确的有().①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.A、1个B、2个C、3个D、4个8、钟表上12时15分钟时,时针与分针的夹角为().A、90°B、82.5°C、67.5°D、60°9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是().A、AB=8cm,BC=19cm,AC=27cmB、AB=10cm,BC=9cm,AC=18cmC、AB=11cm,BC=21cm,AC=10cmD、AB=30cm,BC=12cm,AC=18cm10、已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为().A、30°B、150°C、30°或150°D、以上都不对11、下图中表示∠ABC的图是().A 、B 、C 、D 、12、如图2,从A到B最短的路线是().A、A-G-E-BB、A-C-E-BC、A-D-G-E-BD、A-F-E-B13、∠1和∠2为锐角,则∠1+∠2满足().A、0°<∠1+∠2<90°B、0°<∠1+∠2<180°C、∠1+∠2<90°D、90°<∠1+∠2<180°二、填空题(每空3分,满分30分)14、如图3,点A、B、C、D在直线l上.(1)AC= ﹣CD;AB+ +CD=AD;(2)共有条线段,共有条射线,以点C为端点的射线是.15、用三种方法表示图4的角:.图(7)A EDFGC图2图1图3图416、将一张正方形的纸片,按图5所示对折两次,相邻两条折痕(虚线)间的夹角为 度.17、如图6,OB ,OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON=α,∠BOC=β,则表示∠AOD 的代数式是∠AOD= .18、如图7,∠AOD=∠AOC+ =∠DOB+ .三、解答题(共5小题,满分31分)19、如图8,M 是线段AC 的中点,N 是线段BC 的中点.(6分)(1)如果AC=8cm ,BC=6cm ,求MN 的长.(2)如果AM=5cm ,CN=2cm ,求线段AB 的长.20、如图9,已知∠AOB 内有一点P ,过点P 画MN ∥OB 交OA 于C,过点P 画PD ⊥OA,垂足为D,并量出点P 到OA 距离。

2022-2023学年七年级上学期数学:基本平面图形(附答案解析)

2022-2023学年七年级上学期数学:基本平面图形(附答案解析)

2022-2023学年七年级上学期数学:基本平面图形
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是()
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°2.如图,AC>BD,比较线段AB与线段CD的大小()
A.AB=CD B.AB>CD C.AB<CD D.无法比较
3.如图,点B在点A的()方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°4.只借助一副三角尺拼摆,不能画出下列哪个度数的角()
A.15°B.65°C.75°D.135°
5.下列四个说法:①一个有理数不是整数就是分数;②绝对值等于本身的数只有0;③如果AB=BC,则点B是线段AC的中点;④一个角的两边越长,角度越大.其中不正确的是()
A.②④B.①②③C.②③④D.①②③④
二.填空题(共5小题)
6.如图,点B在线段AC上,BC =AB,点D是线段AC的中点,已知线段AC=14,则BD =.
7.如图,射线OA所表示的方向是.
第1页(共15页)。

北师大版七年级上册数学《基本平面图形》各个章节整理试题以及答案

北师大版七年级上册数学《基本平面图形》各个章节整理试题以及答案

七年级上册《基本平面图形》中直线、射线、线段和比较线段的长短测试试题一、选择题。

1、已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A、11cmB、5cmC、11cm或5cmD、8cm或11cm2、在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有().A、①②B、①③C、②④D、③④3、如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于().A、3cmB、6cmC、11cmD、14cm4、手电筒射出去的光线,给我们的形象是( )A、直线B、射线C、线段D、折线5、下列各直线的表示法中,正确的是( )A、直线AB、直线ABC、直线abD、直线Ab6、如图,A、B在直线l上,下列说法错误的是()A、线段AB和线段BA同一条线段B、直线AB和直线BA同一条直线C、射线AB和射线BA同一条射线D、图中以点A为端点的射线有两条。

AB,AC=CB,AB=2AC,AC+CB=AB,能说明C 7、如果点C在线段AB上,则下列各式中:AC=12是线段AB中点的有( )A、1个B、2个C、3个D、4个8、如图,AB=CD,则AC与BD的大小关系是( )A、AC>BDB、AC<BDC、AC=BDD、不能确定9、如果线段AB=5cm,线段BC=4cm,那么A、C两点之间的距离是()A、9cmB、1cmC、1cm或9cmD、以上答案都不对10、同一平面内互不重合的三条直线的公共点的个数是( )A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0个,1个,2个或3个D、可能是1个可3个11、下列说法中,正确的有()A、过两点有且只有一条直线B、连接两点的线段叫做两点的距离C、两点之间,直线最短D、AB=BC,则点B是AC的中点12、如图,CB=4cm,DB=7cm,D为AC的中点,则AB的长为( )A、7cmB、8cmC、9cmD、10cm13、下列说法正确的有( )①连接两点之间的线段叫两点间的距离;②木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;③若AB=2CB,则点C是AB的中点;④直线AB的长为2cm.A、0个B、1个C、2个D、3个14、如图,以O为端点的射线有()条。

2022年鲁教版(五四)六年级数学下册第五章基本平面图形专项练习试题(含详解)

2022年鲁教版(五四)六年级数学下册第五章基本平面图形专项练习试题(含详解)

六年级数学下册第五章基本平面图形专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=12CD,③AB=CD,④BC﹣AD=AB.其中正确的是()A.①②③B.①②④C.①③④D.②③④2、如图,射线OA所表示的方向是()A.西偏南30°B.西偏南60°C.南偏西30°D.南偏西60°3、如图,∠AOB,以OA为边作∠AOC,使∠BOC=12∠AOB,则下列结论成立的是()A .AOC BOC ∠=∠B .AOC AOB ∠<∠ C .AOC BOC ∠=∠或2AOC BOC ∠=∠D .AOC BOC ∠=∠或3AOC BOC ∠=∠4、①直线AB 和直线BA 是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )A .②③④B .①②④C .③④D .①5、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( )A .96°B .108°C .120°D .144°6、平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( )A .点C 在线段AB 的延长线上B .点C 在线段AB 上 C .点C 在直线AB 外D .不能确定7、如图,已知线段n 与挡板另一侧的四条线段a ,b ,c ,d 中的一条在同一条直线上,请借助直尺判断该线段是( )A.a B.b C.c D.d8、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.两点之间,直线最短D.线段比直线短9、下列各角中,为锐角的是()A.12平角B.15周角C.32直角D.12周角10、下列说法正确的是()A.正数与负数互为相反数B.如果x2=y2,那么x=yC.过两点有且只有一条直线D.射线比直线小一半第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个角比它的补角的3倍多40°,则这个角的度数为______.2、若一个角的补角是其余角的3倍,则这个角的度数为___.3、已知点C是线段AB的三等分点,点D是线段AC的中点.若线段2AD=,则AB=______.4、某人下午6点多钟外出购物,表上时针和分针的夹角恰好是110°,将近7点钟回到家,此时,表上时针和分针的夹角又恰好是110°,则此人外出购物所用时间是______分钟.5、把一个直径是10厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成的图形的周长比原来圆的周长增加_______厘米.三、解答题(5小题,每小题10分,共计50分)1、如图,已知平面内有四个点A,B,C,D.根据下列语句按要求画图.(1)连接AB;作直线AD.(2)作射线BC与直线AD交于点F.观察图形发现,线段AF+BF>AB,得出这个结论的依据是:.2、已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.3、(1)如图l,点D是线段AC的中点,且AB=23BC,BC=6,求线段BD的长;(2)如图2,已知OB平分∠AOD,∠BOC=23∠AOC,若∠AOD=100°,求∠BOC的度数.4、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.(1)燕山前进二小在燕山前进中学的方向,距离大约是 m.(2)燕化附中在燕山向阳小学的方向.(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.5、已知O是直线MN上一点,∠MOA=40°,∠AOB=90°,∠COD与∠AOB都在直线MN的上方,且射线OC在射线OD的左侧.(1)如图1,射线OC在∠AOB的内部,如果∠COD=90°,那么图中与∠AOC相等的角是,其依据是:.(2)如图2,用直尺和圆规作∠AOB的平分线OP,如果∠COD=60°,且OC平分∠AOP,那么∠DON =°;(保留作图痕迹,不要求写出作法和结论)(3)如果∠COD=60°,设∠AOC=m°(0<m<80,且m≠30),用含m的式子表示∠BOD的度数.(直接写出结论)-参考答案-一、单选题1、B【解析】【分析】先根据题意,画出图形,设AB a ,则3,4BC a AC a == ,根据点D 是线段AC 的中点,可得122AD CD AC a === ,从而得到BD a = ,BD =12CD ,AB =12CD ,BC AD a -= ,即可求解. 【详解】解:根据题意,画出图形,如图所示:设AB a ,则3,4BC a AC a == ,∵点D 是线段AC 的中点, ∴122AD CD AC a === , ∴BD AD AB a =-= ,∴AB =BD ,即点B 是线段AD 的中点,故①正确;∴BD =12CD ,故②正确;∴AB =12CD ,故③错误;∴32BC AD a a a -=-= ,∴BC ﹣AD =AB ,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.2、D【解析】【详解】︒-︒=︒,解:903060根据方位角的概念,射线OA表示的方向是南偏西60度.故选:D.【点睛】本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.3、D【解析】【分析】分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.【详解】解:当OC在∠AOB内部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=∠BOC;当OC在∠AOB外部时,∵∠BOC=12∠AOB,即∠AOB=2∠BOC,∴∠AOC=3∠BOC;综上,∠AOC=∠BOC或∠AOC=3∠BOC;故选:D.【点睛】本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.4、B【解析】【分析】根据直线的表示方法,平角,补角,线段的性质逐个判断即可.【详解】①直线AB和直线BA是同一条直线,正确②平角等于180°,正确③一个角是70°39',它的补角应为:1807039'10921'︒-︒=︒,所以错误④两点之间线段最短,正确故选B【点睛】本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.5、B【解析】【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值.【详解】解:设BON x ∠=,∵2MON BON ∠=∠,∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=.∵72AON BON ∠-∠=︒,∴72AON x ∠=︒+,∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠, ∴()137222x x =︒+,解得18x =︒. 72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B .【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.6、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.7、B【解析】【分析】利用直尺画出遮挡的部分即可得出结论.解:利用直尺画出图形如下:可以看出线段b与n在一条直线上.故选:B.【点睛】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.8、B【解析】【分析】由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.【详解】解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是两点之间,线段最短.故选:B【点睛】本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.9、B【分析】求出各个选项的角的度数,再判断即可.【详解】解:A. 12平角=90°,不符合题意; B. 15周角=72°,符合题意; C. 32直角=135°,不符合题意; D. 12周角=180°,不符合题意;故选:B .【点睛】本题考查了角的度量,解题关键是明确周角、平角、直角的度数.10、C【解析】【分析】A 中互为相反数的两个数为一正一负;B 中两个数的平方相等,这两个数可以相等也可以互为相反数;C 中过两点有且只有一条直线;D 中射线与直线无法比较长度.【详解】解:A 中正数负数分别为12-,,()1210+-=-≠,错误,不符合要求; B 中22x y =,可得x y =或x y =-,错误,不符合要求;C 中过两点有且只有一条直线 ,正确,符合要求;D 中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;故选C .【点睛】本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.二、填空题1、145︒##145度【解析】【分析】设这个角的补角的度数为x ,则这个角的度数为180x ︒- ,根据“一个角比它的补角的3倍多40°,”列出方程,即可求解.【详解】解:设这个角的补角的度数为x ,则这个角的度数为180x ︒- ,根据题意得:180340x x ︒--=︒ ,解得:35x =︒ ,∴这个角的度数为180145x ︒-=︒.故答案为:145︒【点睛】本题主要考查了补角的性质,一元一次方程的应用,利用方程思想解答是解题的关键.2、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.3、12或6##6或12【解析】【分析】根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.【详解】解:如图,∵点C是线段AB上的三等分点,∴AB=3AC,∵D是线段AC的中点,∴AC=2AD=4,∴AB=3×4=12;如图,∵D是线段AC的中点,∴AC=2AD=4,∵点C是线段AB上的三等分点,AC=2,AB=3BC,∴BC=12∴AB=3AC=6,则AB的长为12或6.故答案为:12或6.【点睛】本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.4、40【解析】【分析】解设共用了x分,列方程6x-0.5x=110+110,求解即可.【详解】解:分针速度:6度/分,时针速度是:0.5度/分,设共用了x分,6x-0.5x=110+110,解得x=40,答:共外出40分钟,故答案为:40.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.5、10【解析】【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米.故答案为:10.【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.三、解答题1、 (1)见解析;(2)见解析,两点之间线段最短【解析】【分析】(1)根据线段、直线的定义即可画出图形;(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.(1)如图所示,线段AB与直线AD即为所求;(2)如上图所示,射线BC 即为所求,根据两点之间线段最短得AF +BF >AB ,故答案为:两点之间线段最短.【点睛】本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.2、 (1)见解析(2)3或1【解析】【分析】先根据射线的定义,画出射线AP ,然后分两种情况:当点C 位于点B 右侧时,当点C 位于点B 左侧时,即可求解;(2)根据M ,N 分别为AB ,BC 的中点,可得2,1BM BN == ,即可求解.(1)解:根据题意画出图形,当点C 位于点B 右侧时,如下图:射线AP 、线段AB 、线段BC 即为所求;当点C 位于点B 左侧时,如下图:(2)解: ∵M ,N 分别为AB ,BC 的中点, ∴11,22BM AB BN BC == , ∵a =4,b =2,∴2,1BM BN == ,当点C 位于点B 右侧时,MN =BM +BN =3;当点C 位于点B 左侧时,MN =BM -BN =1;综上所述,线段MN 的长为3或1.【点睛】本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.3、(1)BD =1;(2)∠COB =20°【解析】【分析】(1)根据AB=23BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=23∠AOC,求解即可.【详解】解:(1)∵AB=23BC,BC=6,∴AB=23×6=4,∴AC=AB+BC=10,∵点D是线段AC的中点,∴AD=12AC=5,∴BD=AD-AB=5-4=1;(2)∵OB平分∠AOD,∠AOD=100°,∴∠AOB=12∠AOD=50°,∵∠BOC+∠AOC=∠AOB,∠BOC=23∠AOC,∴23∠AOC+∠AOC=50°,∴∠AOC=30°,∴∠BOC=23∠AOC=20°.【点睛】本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.4、 (1)正西,100(2)南偏东77°(3)见解析【解析】【分析】(1)根据图中位置解决问题即可.(2)根据图中位置解决问题即可.(3)根据题意画出路线即可.(1)燕山前进二小在燕山前进中学的正西方向,距离大约是100m.故答案为:正西,100.(2)燕化附中在燕山向阳小学的南偏东77︒方向故答案为:南偏东77︒.(3)小辰行走的路线如图:【点睛】本题考查作图-应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.5、 (1)BOD ∠,等角的余角相等(2)图见解析,57.5︒(3)70m ︒-︒或30m ︒-︒【解析】【分析】(1)根据等角的余角相等解决问题即可.(2)根据DON BON DOB ∠=∠+∠,求出BON ∠,DOB ∠即可.(3)分两种情形:当030m <<时,根据BOD AOM AOB AOC COD ∠=∠+∠-∠-∠求解,如图32-中,当3080m <<时,根据BOD AOC COD AOB ∠=∠+∠-∠,求解即可.(1)解:如图1中,90AOB COD ∠=∠=︒,90AOC COB COB BOD ∴∠+∠=∠+∠=︒,AOC BOD ∴∠=∠(等角的余角相等),故答案为:等角的余角相等.(2)解:如图2中,如图,射线OP 即为所求.40AOM ∠=︒,90AOB ∠=︒,180409050NOB ∴∠=︒-︒-︒=︒, OP 平分AOB ∠,190452AOP ∴∠=⨯︒=︒, OC 平分AOP ∠,122.52AOC AOP ∴∠=∠=︒, 9022.5607.5BOD ∴∠=︒-︒-︒=︒,57.5DON BON DOB ∴∠=∠+∠=︒.(3)解:如图31-中,当030m <<时,40906070BOD AOM AOB AOC COD m m ∠=∠+∠-∠-∠=︒+︒-︒-︒=︒-︒.如图32-中,当3080m <<时,609030BOD AOC COD AOB m m ∠=∠+∠-∠=︒+︒-︒=︒-︒.综上所述,满足条件的m 的值为70m ︒-︒或30m ︒-︒.【点睛】本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析

数学平面图形的认识试题答案及解析1.在公路上有四条小路通往小力家,其中有一条小路是与小力家垂直的,这条小路是()A.110米B.90米C.82米D.125米【答案】C【解析】根据点到直线的距离垂线段最短即可解答.解:因为这条小路与公路是垂直的,垂线段最短,82<90<110<125,所以这条小路的长度是82米.故选:C.点评:本题主要考查最短路线问题,解题关键是了解点到直线的距离垂线段最短.2.夜晚时离路灯越近,物体影子()A.越长B.越短C.不变【答案】B【解析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.解:由上图易得AB<CD,那么离路灯越近,它的影子越短,故选B.点评:用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.3.下列哪种方法不能检验直线与平面是否垂直()A.铅垂线B.两块三角尺C.长方形纸片D.合页型折纸【答案】C【解析】根据教材中的演示可知:铅垂线、两块三角尺、合页型折纸都是检验直线与平面是否垂直的方法;而长方形纸片是用来检验直线与平面平行的方法之一.解:由分析知:长方形纸不能检验直线与平面是否垂直片;故选:C.点评:解答此题应付认真审题,结合教材,并根据垂直和平行的特征进行解答即可.4.在点子图中画一个平行四边形和一个梯形【答案】【解析】有两组对边分别平行的四边形是平行四边形;只有一组对边平行的四边形是梯形,据此画图解答.解:根据题干分析画图如下:.点评:本题考查了学生根据平行四边形和梯形的定义在点子图上画图的能力.5.如图所示图形中哪几条边是互相垂直的?【答案】如图:EH⊥AE,DA⊥AE,BA⊥AE,EF⊥AE,EH⊥DH,AD⊥DH,CD⊥DH,GH⊥DH,BC⊥CG,FG⊥CG,DC⊥CG,HG⊥CG,AB⊥BF,EF⊥BF,BC⊥BF,FG⊥BF,AB⊥AD,CD⊥AD;EF⊥EH,GH⊥EH;AB⊥BC,DC⊥BC,EF⊥FG,HG⊥FG;【解析】根据互相垂直的含义:当两条直线相交成90度时,这两条直线就互相垂直;据此解答即可.解:如图:EH⊥AE,DA⊥AE,BA⊥AE,EF⊥AE,EH⊥DH,AD⊥DH,CD⊥DH,GH⊥DH,BC⊥CG,FG⊥CG,DC⊥CG,HG⊥CG,AB⊥BF,EF⊥BF,BC⊥BF,FG⊥BF,AB⊥AD,CD⊥AD;EF⊥EH,GH⊥EH;AB⊥BC,DC⊥BC,EF⊥FG,HG⊥FG;点评:明确互相垂直的含义,是解答此题的关键.6.过P点做已知直线m、n的平行线和垂线.【答案】【解析】(1)把三角板的一条直角边与已知直线m重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线m重合的直角边和P点重合,过P点沿三角板的直角边画直线即可.(2)用三角板的一条直角边的已知直线m重合,沿重合的直线平移三角板,使三角板的另一条直角边和P点重合,过P沿直角边向已知直线画直线即可,(3)用同样的方法,即可画出已知直线N的平行线与垂线.解:画图如下:点评:本题考查了学生画平行线和垂线的能力.7.同学们在东湖划船,1号船要从东湖西岸的A点划到东岸,怎样划船路程最短?把最短的路线画出来.【答案】【解析】把河的东岸看做一条直线,依据垂线段最短,作出A点到直线的垂线段即可解答.解:画图如下:点评:用到的知识点为:点到直线的最短距离为点到这条直线的垂线段的长度.8.在下面平行四边形中画出已知底的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.习惯上作平行四边形的高时都从一个顶点出发作一边的垂线.解:作图如下:点评:本题主要是考查作平行四边形的高.很多同学作高时画不垂直,可以用两个三角板来完成.高一般用虚线来表示,要标出垂足.9.画出下面每个平行四边形或梯形的一条高.【答案】【解析】根据平行四边形高和梯形高的定义来画高.据此解答.解:画图如下:点评:本题主要考查了学生对梯形和平行四边形高的画法的掌握情况.10.画出每个图形底边上的高.【答案】【解析】(1)从三角形的一个顶点向对边引垂线,顶点垂足之间的线段是三角形的高.(2)从平行四边形的一个顶点向对边引垂线,顶点垂足之间的线段是平行四边形的高.(3)从梯形的一个顶点向对边引垂线,顶点垂足之间的线段是梯形的高.据此可画图解答.解:画图如下点评:本题考查了学生作三角形,梯形,平行四边形高的能力.11.画出图中每个图形底边上的高.【答案】【解析】三角形底上的高只能画一条,由三角形的右底角向底做垂线即可.画平行四边形底的高可以画两条,从平行四边形的左上角向底做垂线.可以把底延长,垂线画在平行四边形的外面,也可以从平行四边形的左下角向底做垂线.梯形的高可以做两条,分别从两个顶角向底作垂线即可.点评:此题的知识点在于掌握作垂线的方法,有的做一条,有的把底边延长可以做几条,垂线可以作在图形的里面,也可以作在图形的外面,但都是从底所相对的角向底做垂线.12.过点A分别画直线的平行线.【答案】【解析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.解:作图如下:点评:本题考查了学生利用直尺和三角板作平行线的能力.13.过A点画直线的平行线,过B点画直线的垂线.【答案】【解析】(1)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的和已知直线重合的直角边和A点重合,过A点沿三角板的直角边画直线即可.(2)用三角板的一条直角边和已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和B点重合,过B沿直角边向已知直线画直线即可.解:画图如下:.点评:本题考查了学生画平行线和垂线的能力.14.过A点画直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:画图如下:点评:本题考查了学生过直线上一点作已知直线的垂线的画图能力.15.下面的各组直线中,哪组是平行线?哪组直线互相垂直?平行线画“∥”,直线互相垂直的画“⊥”,其余的画“△”..【答案】⊥∥⊥△∥△【解析】根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.解:据分析可知:⊥∥⊥△∥△.故答案为:⊥∥⊥△∥△.点评:此题考查了平行和垂直的定义,注意基础知识的积累.16.一条直线的平行线有无数条..(判断对错)【答案】√【解析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线即可作出判断.解:由平行线的定义可知,一条直线有无数条平行线是正确的.故答案为:√.点评:本题主要考查了平行线的定义.注意:在同一平面内,和一条已知直线平行的直线有无数条.17.根据“x的与x的2倍的和不大于1”列不等式为.【答案】x+2x≤1【解析】x的与x的2倍的和即x+2x,和不大于1,即最后算的和应小于或等于1,由此可列出关系式.解:∵x的与x的2倍的和不大于1,∴列不等式为x+2x≤1.点评:读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.18.如图,a、b、c、d分别表示平行四边形的四条边,在这四条边中、互相平行.【答案】a和c、b和d.【解析】根据平行四边形的定义:两组对边分别平行的四边形叫平行四边形;即可解答.解:根据平行四边形的含义可知:a∥c,b∥d;故答案为:a和c、b和d.点评:此题考查了平行四边形的定义.19.图中,AB和BC边的高分别是哪条线段?拓展创新.【答案】【解析】由图可以看出:AB边的高是CE,BC边的高是AF;这两条边上的高不止一条,过D 点可以作BA延长线的出现得到的垂线段也是AB的高.过D点作BC延长线的垂线段,也是BC 的高.解:如图AB边上的高是CE和DH,BC边上的高是AF和DH;点评:此题主要考查如何作平行四边形的高.20.做一做.(1)请你试着用肢体语言表示出垂直或平行,并请同桌判断.(2)把一张纸对折两次,使折痕互相垂直.(3)把一张纸对折两次,产生三条折痕,并使折痕互相平行.【答案】(1)将两条手臂向前放平伸出,即为平行;将一条手臂向侧方向平伸出,即为与身体垂直;(2)操作如下:(3)操作如下:【解析】(1)根据平行线和互相垂直的定义:在同一平面内,不相交的两条直线叫做平行线;在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.(2)实际操作一下即可完成;(3)实际操作一下即可完成;解:(1)将两条手臂向前放平伸出,即为平行;将一条手臂向侧方向平伸出,即为与身体垂直;(2)操作如下:(3)操作如下:点评:此题考查了平行和垂直的定义,注意基础知识的积累.21.给长4厘米,宽2厘米的长方形涂上自己喜欢的颜色.【答案】【解析】首先选定要涂色的长方形,然后再涂上自己喜欢的颜色即可.解:由题意可得:点评:此题主要考查的是如何给长方形上自己喜欢的颜色.22.画出下面图形的边a上的高.【答案】【解析】经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高,用三角板的直角可以画出三角形的高;在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高;梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线用三角板的直角可以画出梯形的一条高.解:作三角形、平行四边形、梯形的高如下:点评:本题是考查作三角形的高、平行四边形的高和梯形的高.注意作高用虚线,并标出垂足.23.过点A作已知直线的垂线.【答案】【解析】用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和A点重合,过A沿直角边向已知直线画直线即可.解:画图如下:点评:本题考查了学生过直线外一点向已知直线作垂线的能力.24.请分别画出图形的高.【答案】【解析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高,平行四边形有无数条高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线,用三角板的直角可以画出平行四形的高.梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线用三角板的直角可以画出梯形的一条高.解:作平行四边形的高、梯形的高如下:故答案为:点评:本题是考查作平行四边形、梯形的高.注意作高用虚线,并标出垂足.25.动手画一个长3厘米宽2厘米的长方形和一个边长2厘米的正方形,再计算它们的周长.【答案】(3+2)×2,=6×2,=12(厘米);2×4,=8(厘米);这个长方形的周长是12厘米;正方形的周长是8厘米;【解析】根据长方形的特点,长方形的对边平行且相等,四个角都是直角,用三角尺即可以画出一个长3厘米宽2厘米的长方形;根据正方形的特,正方形的四条边都相等,四个解都是直角,用三角板即可画出一个边长2厘米的正方形.解:画图如下:长方形:先画线段AB=3厘米,再用三角板的直角画出∠BAD=90°,且AD=2厘米,再过点D作CD平行于AB,且CD=3厘米,然后连接BC,则长方形ABCD就是所画的长是3厘米,宽是2厘米的长方形;正方形:先画线段AB=2厘米,再用三角板的直角画出∠BAD=90°,且AD=2厘米,再过点D作CD平行于AB,且CD=2厘米,然后连接BC,则长正形ABCD就是所画的边长是2厘米正方形;(3+2)×2,=6×2,=12(厘米);2×4,=8(厘米);答:这个长方形的周长是12厘米;正方形的周长是8厘米;点评:本题是考查指定长、宽画长方形、指定边长画正方形及长方形、正方形的周长的计算.画图的关键是根据图形的特点(性质)画.26.(2013•龙海市模拟)(1)在图中画出表示A点到直线的垂线.(2)量一量,A点到直线的距离是厘米.(3)过A点作已知直线的平行线.【答案】经过测量可知,点A到直线的距离是2厘米.【解析】(1)根据画垂线的方法,把直角三角板的一条直角边与已知直线对齐,另一条直角边经过点A,据此画直线即可,则点A到垂足的线段的长度,就是点A到直线的距离,据此测量即可;(2)先把直角三角板的一条边与已知直线重合,直尺与另一条直角边对齐,向上平移,使与已知直线重合的直角边经过点A,画直线即可得出经过点A,与已知直线平行的直线.解:根据题干分析画图如下:经过测量可知,点A到直线的距离是2厘米.故答案为:2.点评:此题主要考查画垂线与平行线的方法以及点到直线的距离.27.同一平面内,两条直线不就.平行线中的两条直线是的.【答案】相交,平行,相互平行【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线,组成平行线的两条直线相互平行;据此判断即可.解:根据根据平行的含义:同一平面内,两条直线不相交就平行;平行线中的两条直线是相互平行的;故答案为:相交,平行,相互平行.点评:此题考查了平行的含义,注意基础知识的积累.28.两条平行线之间画若干条与平行线垂直的线段,这些垂直线段的长度都相等..【答案】√.【解析】根据“在两条平行线之间的线段中,垂直两条平行线的线段最短,这条线段的长叫做平行线之间的距离”可知:在两条平行线之间再画几条和平行线垂直的线段,这些线段的长度都相等;据此选择即可.解:由分析可知:两条平行线之间画若干条与平行线垂直的线段,这些垂直线段的长度都相等;故答案为:√.点评:此题考查了垂直和平行的特征和性质,注意基础知识的灵活运用.29.在同一平面内,不重合的两条直线,不相交就平行..【答案】正确【解析】根据平行的含义:在同一平面内,不相交的两条直线叫做平行线;进行判断即可.解:根据平行的含义“在同一平面内,不相交的两条直线叫做平行线”可知:同一平面内,不重合的两条直线,不相交就平行;故答案为:正确.点评:此题考查了平行的含义.30.(对的打“√”,错的打“×”)①只有一组对边平行的图形叫梯形.;②正方形和长方形都是平行四边形.;③三角形和平行四边形都具有稳定性.;④平行四边形可以画出两条不同的高.;⑤梯形的上底一定比下底短.;⑥梯形的高一定比腰长.;⑦平行四边形是特殊的长方形..【答案】×,√,×,√,×,×【解析】①、⑤、⑥根据梯形的定义进行解答;②、③、④、⑦根据平行四边行、正方形、长方形和三角形的定义及特点进行解答.解:①、只有一组对边平行的“四边”形叫梯形,所以不正确;②、正方形和长方形的两组对边平行且相等,符合平行四边形的定义,所以正确;③、三角形具有稳定性,但是平行四边行不具有稳定性,所以不正确;④、平行四边行可以分别在两组对边上作高,所以正确;⑤、梯形的定义中只说到了上底和下底平行,没有说上底一定比下底短,所以不正确;⑥、梯形的高要比腰短,所以不正确;⑦、这句话正好说倒了,长方形是特殊的平行四边行,所以不正确.故答案为:×,√,×,√,×,×.点评:此题考查了平行四边行、正方形、长方形、梯形和三角形的定义入特点.31.用4个边长1厘米的正方形拼成一个长方形,这个长方形的周长是12厘米..【答案】错误【解析】用4个边长1厘米的正方形拼成一个长方形的方法只有一种,求出这个长方形的周长,即可判断.解:拼图如下长方形的周长:(4+1)×2,=5×2,=10(厘米);故答案:错误.点评:本题考查了学生对拼组图形周长的求法.32.一个长方形的周长是24厘米,如把它平均分成两个正方形,每个正方形的周长是12cm..【答案】错误【解析】如图所示,先依据长方形的周长公式求出其长和宽的和,由题意可知,长方形的长应等于其宽的2倍,从而依据正方形的周长公式即可求解.解:设长方形的宽为a,则其长为2a,a+2a=24÷2,3a=12,a=4,4×4=16(厘米);答:每个正方形的周长是16厘米.故答案为:错误.点评:此题主要考查长方形和正方形的周长的计算方法的灵活应用.33.一个长方形,长和宽各增加3厘米,面积增加了60平方厘米,原长方形的周长是多少厘米?【答案】原长方形的周长是34厘米【解析】如图所示,增加的面积即为边长为3厘米的正方形的面积和两个长方形的面积,据此等量关系即可求解.解:60﹣3×3=51(平方厘米);3×长+3×宽=51,3×(长+宽)=51,长+宽=17,(长+宽)×2=34(厘米).答:原长方形的周长是34厘米.点评:解决此题的关键是依据题目条件求出长与宽的和,从而求得长方形的周长.34.王大叔家有一块菜园(如图),他打算把菜园用篱笆围起来,为了知道所需篱笆的长度,他要女儿小英丈量出这块菜地周长.小英先在A、B、C、D、E五点处各打一个木桩,分别量一下AB,BC和DE的长度,就能计算出这块菜地的周长.这块菜园的周长是多少米?【答案】这块菜地的周长是34米【解析】通过平移转化可以看再一个长8米、宽6米的长方形的周长加上中间两个3米即可.解:(8+6)×2+3×2,=14×2+6,=28+6,=34(米),答:这块菜地的周长是34米.点评:此题考查的目的是运用转化的思想方法,再根据长方形的周长公式解决问题.35.一块长方形布料长5米,宽比长短2米,这块布料的周长是多少米?【答案】这块布料的周长是16米【解析】首先求出它的宽,再根据长方形的周长公式:c=(a+b)×2,把数据代入公式解答即可.解:(5+5﹣2)×2,=8×2,=16(米);答:这块布料的周长是16米.点评:此题主要考查长方形的公式的灵活运用.36.下面是由四个周长为12厘米的长方形拼成的一个大长方形.求大长方形的周长.【答案】大长方形的周长是24厘米【解析】四个周长为12厘米的长方形拼成的一个大长方形的长是小长方形长的2倍,宽是小长方形宽的2倍,根据长方形的周长公式可得大长方形的周长是小大长方形周长的2倍.解:12×2=24(厘米);答:大长方形的周长是24厘米.点评:考查了长方形的周长,本题得出大长方形的长与宽同小长方形的长与宽之间的关系是解题的关键.37.学校操场是一个长方形,长0.6千米,宽0.42千米.小芳沿着操场跑了两圈半,小芳一共跑了多少千米?【答案】小芳一共跑了5.1千米【解析】要求跑的长度,需要先根据长方形周长=(长+宽)×2计算出长方形的周长,再乘2.5即可解答.解:(0.6+0.42)×2×2.5,=2.04×2.5,=5.1(千米).答:小芳一共跑了5.1千米.点评:此题主要考查长方形周长的计算.38.一个篮球场长26米,宽14米.小红沿着它的周围跑了8圈.她一共跑了多少米?【答案】640米【解析】首先根据长方形的周长公式:c=(a+b)×2,求出这个篮球场的周长小红沿着它的周围跑了8圈,,也就是走了周长的8倍.由此解答.解:(26+14)×2×8,=40×2×8,=80×8,=640(米).答:一共跑了640米.点评:此题属于长方形的周长的实际应用,直接把数据代入长方形的周长公式进行解答即可.39.一个长方形周长是100米,已知长是宽的1.5倍,长方形的宽是多少?请列方程计算并写出计算过程.【答案】20米【解析】设出长方形的宽,长方形的长=宽×1.5,则根据:长方形的周长=(长+宽)×2,列方程解答即可.解:设长方形的宽为x米,则长方形的长为1.5x米,(1.5x+x)×2=100,2.5x×2=100,5x=100,x=100÷5,x=20;答:长方形的宽为20米.点评:解决本题要先设出宽,再用宽表示出长,再代入周长计算公式列方程解答.40.一个正方形花坛,边长是67米.围着这个花坛走一周,要走多少米?【答案】268米【解析】根据正方形的周长公式:C=4a代入数据进行解答.解:C=4a=4×67=268(米)答:要走268米.点评:本题主要考查了学生对正方形周长公式的掌握情况.41.一块长方形菜地的周长是184米,它的长是宽的3倍.这块菜地的长和宽各是多少米?【答案】长方形的长与宽分别是69米、23米【解析】根据题干,设宽是x米,则长就是3x米,据此根据长方形的周长公式即可列出方程解决问题.解:设宽是x米,则长就是3x米,根据题意可得方程:2(x+3x)=184,8x=184,x=23,则长是23×3=69(米),答:长方形的长与宽分别是69米、23米.点评:此题考查长方形的周长公式的灵活应用.42.找出下列各图中的底和高.(1)以为底,是高.(2)以AB为底,是高.【答案】DC,AF,DE【解析】根据平行四边形高的含义:平行四边形边上任意一点到对边距离,叫做平行四边形的高,垂足所在的边是平行四边形的底;梯形高的含义:根据梯形的高的含义,在梯形上底上任取一点,过这一点向下底作垂线段即为梯形的高.解:(1)以DC为底,AF是高.(2)以AB为底,DE是高;故答案为:DC,AF,DE.点评:此题考查了平行四边形的底和高的含义和梯形高的含义,应注意灵活运用.43.一个长方形花坛,长75dm,宽24dm,这个花坛面积是多少dm2?合多少m2?【答案】这个花坛的面积是1800平方分米,合18平方米【解析】根据正长方形的面积公式:s=ab,把数据代入公式解答,再根据1平方米=100平方分米,进行换算.解:75×24=1800(平方分米),1800平方分米=18平方米,答:这个花坛的面积是1800平方分米,合18平方米.点评:此题主要考查长方形的面积公式的灵活运用以及面积单位之间的换算.44.学校运动场跑道如图:两端是两个半圆形,中间是一个长方形.求这条跑道的长度.【解析】运动场跑道的周长,实际上就是一个圆周长加上长方形的两个长,长方形的长和圆的直径已知,从而可以求出跑道的周长;解:跑道周长:3.14×35+45.05×2,=109.9+90.1,=200(米);答:这条跑道的周长是200米.点评:解答此题的关键是:弄清楚跑道的周长由哪几部分组成.45.下面是一块边长为5米的正方形菜地,有一面靠墙,如果在其余几面围竹排,竹排要围多少米?【答案】15【解析】根据题意可知,一块边长为5米的正方形菜地,有一面靠墙,也就是竹排的长度等于这个正方形的3条边的长度.根据正方形的周长的计算方法解答.解:5×3=15(米),答:竹排要围15米.点评:此题主要考查正方形的周长公式的灵活运用,关键是明白一面靠墙,竹排的长度等于这个正方形的3条边的长度.46.一个正方形相框,它的边长是20厘米,用一条90厘米的彩带能给相框镶一圈吗?【答案】用一条90厘米的彩带能给相框镶一圈【解析】先根据正方形的周长=边长×4计算得出正方形相框的周长,再与90厘米相比较即可解答.解:20×4=80(厘米),80厘米<90厘米,答:用一条90厘米的彩带能给相框镶一圈.点评:此题考查正方形周长公式的计算应用.47.一根铁丝能做一个长2分米,宽12厘米的长方形,如果用这根铁丝做两个同样大的正方形,那么这两个正方形的边长是多少厘米?【答案】8【解析】由题意可知用同一根铁丝做成长方形或正方形,也就是长方形等于两个正方形的周长的和,首先根据长方形的周长公式:c=(a+b)×2,求出长方形的周长;再根据正方形的公式:c=4a,把数据代入公式解答.解:2分米=20厘米,(20+12)×2÷2÷4,=32×2÷2÷4,=64÷2÷4,=32÷4,=8(厘米);答:这两个正方形的边长是8厘米.点评:此题主要考查长方形和正方形的周长公式的灵活应用.48.一块长方形菜地长35米,宽10米.它的一条短边靠墙,其他三边围上篱笆,需要围多少米的篱笆?【答案】需要围80米的篱笆【解析】考虑到一条短边靠墙,只需要围其它三面,是由一条宽和两条长组成,即篱笆的长度=宽+长×2,代入数据计算即可.解:10+35×2,。

小学平面图形试题及答案

小学平面图形试题及答案

小学平面图形试题及答案一、选择题(每题2分,共20分)1. 下列哪个图形是轴对称图形?A. 菱形B. 圆C. 正方形D. 所有选项2. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 30厘米B. 50厘米C. 15厘米D. 20厘米3. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7厘米B. 14厘米C. 28厘米D. 21厘米4. 下列哪个图形的面积是最大的?A. 边长为4厘米的正方形B. 长为6厘米,宽为4厘米的长方形C. 直径为8厘米的圆D. 边长为5厘米的等边三角形5. 一个平行四边形的底是8厘米,高是5厘米,它的面积是多少平方厘米?A. 40平方厘米B. 20平方厘米C. 16平方厘米D. 10平方厘米6. 一个三角形的底是9厘米,高是6厘米,它的面积是多少平方厘米?A. 27平方厘米B. 54平方厘米C. 36平方厘米D. 18平方厘米7. 下列哪个图形的周长是最小的?A. 边长为3厘米的正方形B. 长为4厘米,宽为2厘米的长方形C. 直径为5厘米的圆D. 边长为4厘米的等边三角形8. 一个梯形的上底是6厘米,下底是10厘米,高是5厘米,它的面积是多少平方厘米?A. 40平方厘米B. 50平方厘米C. 60平方厘米D. 30平方厘米9. 一个正五边形的每个内角是多少度?A. 108度B. 120度C. 144度D. 90度10. 一个圆的周长是31.4厘米,那么它的直径是多少厘米?A. 10厘米B. 20厘米C. 15厘米D. 5厘米二、填空题(每题3分,共30分)1. 一个长方形的长是15厘米,宽是10厘米,它的面积是______平方厘米。

2. 一个圆的半径是7厘米,它的直径是______厘米。

3. 一个平行四边形的底是12厘米,高是8厘米,它的面积是______平方厘米。

4. 一个三角形的底是12厘米,高是9厘米,它的面积是______平方厘米。

5. 一个梯形的上底是8厘米,下底是14厘米,高是6厘米,它的面积是______平方厘米。

初中数学基本平面图形基础训练1含答案

初中数学基本平面图形基础训练1含答案

基本平面图形基础训练1一.选择题(共18小题)1.如图,分别以△ABC的三个顶点为圆心作⊙A、⊙B、⊙C,且半径都是0.5cm,则图中三个阴影部分面积之和等于()A.cm2B.cm2C.cm2D.cm22.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上3.下列说法错误的是()A.两点之间线段最短B.两点确定一条直线C.作射线OB=3厘米D.延长线段AB到点C,使得BC=AB4.如图,从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.无法确定5.如图,已知⊙O的半径为2,∠AOB=90°,则图中阴影部分的面积为()A.π﹣2B.C.πD.26.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB,OD.若∠BOD=∠BCD,则的度数为()A.60°B.90°C.120°D.150°7.已知如图,在⊙O中,OA⊥OB,∠A=35°,则的度数为()A.20°B.25°C.30°D.35°8.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为()A.3π﹣3B.3π﹣6C.6π﹣3D.6π﹣69.如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°10.如果在数轴上的A、B两点所表示的有理数分别是x,y,且|x|=3,|y|=1,则A,B两点间的距离是()A.4B.2C.4或2D.以上都不对11.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2πB.πC.D.12.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°13.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm14.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条15.有下列说法:①平角是一条直线;②线段AB是点A与点B的距离;③射线AB与射线BA表示同一条直线;④过一点有且只有一条直线与已知直线平行;⑤圆柱的侧面是长方形.其中正确的有()A.0个B.1个C.2个D.3个16.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA 平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:417.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟18.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间二.填空题(共18小题)19.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°,则∠DF A=______度.20.如图,用圆规比较两条线段A′B′和AB的长短,A′B′和AB的大小关系是______.21.如图,是从甲地到乙地的四条道路,其中最短的路线是______,依据是______.22.把弯曲的河道改直,能够缩船舶航行的路程,这样做的道理是______.23.下列现象:①用两个钉子就可以把一根木条固定在墙上;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了;③把原来弯曲的河道改直,以缩短路程;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路.其中可以用数学“两点之间,线段最短”来解释的有______(填序号).24.如图,有一块草地三面靠墙,其中BC=3米,∠BCD=120°,一根5米长的绳子,一端拴在柱子上另一端拴着一只羊(羊只能在草地上活动),羊的活动区域面积为______平方米.25.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=______度.26.已知扇形所在的圆半径为6cm,面积为6πcm2,则扇形圆心角的度数为______.27.如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数______.28.⊙O的弦AB等于半径,那么弦AB所对的圆心角度数是______.29.若∠AOB=100°,∠BOD=60°,∠AOC=70°时,则∠COD=______°(自己画图并计算)30.已知⊙O的半径r=acm,弦AB=acm,则∠AOB的度数是______.31.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,甲同学认为是两点确定一条直线,乙同学认为是两点之间线段最短.你认为______同学的说法是正确的.32.如图,若点O为⊙O的圆心,则线段______是圆O的半径;线段______是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.33.已知线段AC,点D为AC的中点,B是直线AC上的一点,且BC=AB,BD=1cm,则AC=______.34.计算:53°40′30″+75°57′28″=______.35.甲看乙在北偏东50度,那么乙看甲的方向为______.36.如图,∠AOB=35°,∠BOC=90°,OD是∠AOC的平分线.求∠BOD的度数.三.解答题(共4小题)37.如图,平面上有A、B、C、D,4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上.38.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.39.如图,已知点A、B、C在同一直线上,M、N分别是AC、BC的中点.(1)若AB=20,BC=8,求MN的长;(2)若AB=a,BC=8,求MN的长;(3)若AB=a,BC=b,求MN的长;(4)从(1)(2)(3)的结果中能得到什么结论?40.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.基本平面图形基础训练1参考答案与试题解析一.选择题(共18小题)1.解:∵⊙A、⊙B、⊙C的半径都是0.5,扇形的三个圆心角正好构成三角形的三个内角,∴阴影部分扇形的圆心角度数为180°,∴S阴影==.故选:B.2.解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.3.解:A、两点之间线段最短,正确,不合题意;B、两点确定一条直线,正确,不合题意;C、作射线OB=3厘米,错误,射线没有长度,符合题意;D、延长线段AB到点C,使得BC=AB,正确,不合题意;故选:C.4.解:从A地到B地有多条道路,人们一般会选中间的直路,而不会走其它的曲折的路,这是因为两点之间,线段最短.故选:B.5.解:∵⊙O的半径为2,∠AOB=90°,∴△AOB的面积=,∴扇形面积=,∴图中阴影部分的面积=扇形面积﹣△AOB的面积=π﹣2,故选:A.6.解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的度数为120°故选:C.7.解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴的度数为20°,故选:A.8.解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.∵S扇形AMO=×π×MA2=.S△AMO=AM•MO=1,∴S弓形AO=﹣1,∴S三叶花=6×(﹣1)=3π﹣6.故选:B.9.解:∵OD边平分∠AOB,OE平分∠BOC,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠EOD=∠AOB+∠BOC=∠AOC,∵∠EOD=60°,∴∠AOC=2×60°=120°.故选:C.10.解:∵|x|=3,∴x=±3,∵|y|=1,∴y=±1,∴当x与y是同号时,A、B两点间的距离是2;当x与y是异号时,A、B两点间的距离是4;∴A、B两点间的距离是2或4;故选:C.11.解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是(m2),故选:C.12.解:①当OC在∠AOB内部时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;②当OC在∠AOB外部时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.13.解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.14.解:如图,共有5条.故选:D.15.解:①错误,角是由两条射线组成;②错误,只能说“线段AB的长度是点A与点B的距离”;③错误,只有说“射线AB与射线BA在同一条直线”;④错误,应说“过直线外一点有且只有一条直线与已知直线平行”;⑤错误,只有是圆柱的侧面展开图是长方形;故选:A.16.解:∵OM是∠AOB平分线,OQ是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.17.解:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选:C.18.解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共18小题)19.解:如图所示:∠EFD′=∠DFE,则∠DF A=180﹣2∠DFE=180﹣70=110°,故∠DF A=110度.故答案为:110.20.解:由图知A′B′>AB,故答案为:A′B′>AB.21.解:由图可得,最短的路线为①,因为两点之间,线段最短.故答案为:①,两点之间,线段最短.22.解:弯曲的河道改直,能够缩船舶航行的路程,这样做的道理是:两点之间线段最短.故答案为:两点之间线段最短.23.解:①用两个钉子就可以把一根木条固定在墙上,是两点确定一条直线;②植树时,只要定出两个树坑的位置,就能使同一行树坑在一直线上了,是两点确定一条直线;③把原来弯曲的河道改直,以缩短路程,是两点之间,线段最短;④现实生活中,总有一些人不愿意选择过街天桥而是直接横穿马路,是两点之间,线段最短;故答案为:③④.24.解:如图所示:∵大扇形的圆心角是90度,半径是5,所以面积==π(m2),∵小扇形的圆心角是180°﹣120°=60°,半径是2m,则面积==(m2),∴羊E在草地上的最大活动区域面积=π+π=π(m2).故答案为π.25.解:连接OB,∵OB=OE=BC,∠C=40°,∴∠COB=∠C=40°,∴∠ABO=∠C+∠COB=80°,∵OA=OB,∴∠A=∠ABO=80°,△AOC中,∠EOA=180°﹣40°﹣80°=60°,故答案为:60.26.解:设扇形的圆心角是n°,根据扇形的面积公式得:6π=,解得n=60.故答案为:60°27.解:∵,∠COD=32°,∴∠BOC=∠EOD=∠COD=32°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=84°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣84°)=48°.故答案为:48°28.解:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故答案为:60°29.解:如图①∵∠AOB=100°,∠BOD=60°,∠AOC=70°,∴∠COD=∠BOC+∠BOD=∠AOB﹣∠AOC+∠BOD=100°﹣70°+60°=90°;如图②∠COD=360°﹣∠AOB﹣∠BOD﹣∠AOC=360°﹣100°﹣60°﹣70°=130°;如图③∠COD=∠AOD+∠AOC=∠AOB﹣∠BOD+∠AOC=100°﹣60°+70°=110°;如图④,∠COD=∠AOC+∠BOD﹣∠AOB=70°+60°﹣100°=30°;故答案为:30°或90°或110°或130.30.解:∵⊙O的半径为acm,弦AB的长也是acm,∴△AOB是等边三角形∴∠AOB=60°.故答案为:60°.31.解:在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,应该是两点确定一条直线,而不是两点之间线段最短.故答案为:甲.32.解:如图,若点O为⊙O的圆心,则线段OA、OB、OC是圆O的半径;线段AC、AB、BC是圆O的弦,其中最长的弦是AC;、是劣弧;、是半圆.故答案为OA、OB、OC;AC、AB、BC;AC;、;、;33.解:如图1,设BC=xcm,则AB=2xcm,AC=3xcm,∵点D为AC的中点,∴AD=CD=AC=1.5xcm,∴BD=0.5xcm,∵BD=1cm,∴0.5x=1,解得:x=2,∴AC=6cm;如图2,设BC=xcm,则AB=2xcm,AC=xcm,∵点D为AC的中点,∴AD=CD=AC=0.5xcm,∴BD=1.5xcm,∵BD=1cm,∴1.5x=1,解得:x=,∴AC=cm,故答案为:6cm或cm.34.解:53°40′30″+75°57′28″=128°97′58″=129°37′58″,故答案为:129°37′58″.35.解:甲看乙在北偏东50度,那么乙看甲的方向为南偏西50°.故答案为:南偏西50°.36.解:∵∠AOB=35°,∠BOC=90°,∴∠AOC=∠AOB+∠BOC=35°+90°=125°.∵OD平分∠AOC,∴∠AOD=∠AOC=×125°=62.5°.∴∠BOD=∠AOD﹣∠AOB=62.5°﹣35°=27.5°.三.解答题(共4小题)37.解:所画图形如下:38.解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.39.解:(1)∵AB=20,BC=8,∴AC=AB+BC=28,∵点A、B、C在同一直线上,M、N分别是AC、BC的中点,∴MC=AC=14,NC=BC=4,∴MN=MC﹣NC=14﹣4=10;(2)根据(1)得MN=(AC﹣BC)=AB=a;(3)根据(1)得MN=(AC﹣BC)=AB=a;(4)从(1)(2)(3)的结果中能得到线段NM始终等于线段AB的一半,与C的点的位置无关.40.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.。

七年级基本平面图形测试题及答案

七年级基本平面图形测试题及答案

基本平面图形单元检测时间:90分钟满分:100分姓名:一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B 地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短"来解释的现象有().A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是( ).A.周角B.周角C。

平角D。

平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=AB-BD D.CD=AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于().A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是().A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A.点A B.点B C.AB之间D.BC之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB比折线AMB__________,理由是:____________________.12.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=__________.13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南—-淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.15. M、N、Q三点不在同一直线上,那么经过其中任何两点画直线,一共可以画________条直线,它们可表示为________________。

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(有答案解析)

(好题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(有答案解析)

一、选择题1.下列说法不正确的是()A.两点确定一条直线B.两点间线段最短C.两点间的线段叫做两点间的距离D.正多边形的各边相等,各角相等CD=,若线段AB的长度是一个正整数,则图中2.如图,线段CD在线段AB上,且3以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.不能确定3.下列说法正确的是()A.射线AB和射线BA是同一条射线B.连接两点的线段叫两点间的距离C.两点之间,直线最短D.七边形的对角线一共有14条4.下列说法:①把弯曲的河道改直,能够缩短航程,这是由于两点之间线段最短;②若=,则点C是线段AB的中点;③射线OB与射线OC是同一条射线;④连线段AC BC结两点的线段叫做这两点的距离;⑤将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.其中说法正确的有()A.1个B.2个C.3个D.4个5.如图,甲从点A出发向北偏东65°方向走到点B,乙从点A出发向南偏西20°方向走到∠的度数是()点C,则BACA.85°B.135°C.105°D.150°CD=,若线段AB的长度是一个正整数,则图中6.如图,线段CD在线段AB上,且2以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.317.下列说法中,正确的是()A.射线是直线的一半B.线段AB是点A与点B的距离C.两点之间所有连线中,线段最短D.角的大小与角的两边所画的长短有关8.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向,则∠BAC 的度数是( )A .85°B .80°C .90°D .95°9.如图,点C 在线段AB 上,且13AC AB =.点D 在线段AC 上,且13CD AD =.E 为AC 的中点,F 为DB 的中点,且11EF =,则CB 的长度为( )A .15B .16C .17D .18 10.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°11.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定12.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个二、填空题13.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.14.如图,已知线段DA 与B 、C 两点,用圆规和无刻度的直尺按下列要求画图并计算:(不写作法但要保留作图痕迹)⑴ 画线段AC 、直线AB 、射线DC ,且直线AB 与射线DC 相交于点O ;延长线段DA 至点E ,使AE=AC ;⑵ 若AC=2cm ,AD=3cm ,点F 为线段AD 的中点,求线段EF 的长.15.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.16.新定义问题如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠、BOC ∠、AOB ∠.若这三个角中有一个角是另外一个角的2倍,则称射线OC 为AOB∠的“幸运线”.(本题中所研究的角都是大于0︒而小于180︒的角.)(阅读理解)(1)角的平分线_________这个角的“幸运线”;(填“是”或“不是”) (初步应用)(2)如图①,45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,则AOC ∠的度数为_______; (解决问题)(3)如图②,已知60AOB ∠=︒,射线OM 从OA 出发,以每秒20︒的速度绕O 点逆时针旋转,同时,射线ON 从OB 出发,以每秒15︒的速度绕O 点逆时针旋转,设运动的时间为t 秒(09t <<).若OM 、ON 、OA 三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t 值. 17.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上; (1)画图:(只要求画图,不必写画法) (2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.18.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.19.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长; (2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________. 20.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.三、解答题21.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)当13CN CD =时,求BD 的长. 22.点A 、B 在数轴上的位置如图所示,点A 表示的数是5,线段AB 的长是线段OA 的1.2倍,点C 在数轴上,M 为线段OC 的中点,(1)点B 表示的数为 ;(2)若线段BM 的长是4,求线段AC 的长. 23.将一副三角板按图甲的位置放置,(1)∠AOD ∠BOC (选填“<”或“>”或“=”); (2) 猜想∠AOC 和∠BOD 在数量上的关系是 .(3)若将这副三角板按图乙所示摆放,三角板的直角顶点重合在点O 处.(1)(2)中的结论还成立吗?请说明理由.24.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.25.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.26.如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =65°,求∠AOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别利用直线的性质,线段的性质,正多边形的性质以及两点间的距离的定义分析求出即可.【详解】解:A.两点确定一条直线是正确的,不符合题意;B.两点间线段最短是正确的,不符合题意;C.两点间的垂线段的长度叫做两点间的距离,原来的说法错误,符合题意;D.正多边形的各边相等,各角相等是正确的,不符合题意.故选:C.【点睛】此题主要考查了直线的性质,线段的性质,正多边形的性质以及两点间的距离等知识,正确把握相关性质是解题关键.2.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD)=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.3.D解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A、射线AB和射线BA是不同的射线,故本选项不符合题意;B、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C、两点之间,线段最短,故本选项不符合题意;D、七边形的对角线一共有7(73)142条,正确故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.4.B解析:B【分析】根据线段的性质及两点间距离的定义对各说法进行逐一分析即可.【详解】解:①符合两点之间线段最短,故本说法正确;②当ABC不共线时,点C不是线段AB的中点,故本说法错误;③射线OB与射线OC可能是两条不同的射线,故本说法错误;④连接两点的线段的长度叫做这两点的距离,故本说法错误;⑤符合两点确定一条直线,故本说法正确.故选:B.【点睛】本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.5.B解析:B【分析】如图,先求出∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,根据BAC∠=∠BAD+∠EAD+∠CAE即可计算得出答案.【详解】如图,∵∠BAD=906525︒-︒=︒,∠CAE=20°,∠EAD=90︒,∴BAC∠=∠BAD+∠EAD+∠CAE=135°,故选:B..【点睛】此题考查方位角的计算,正确掌握方位角的表示及角度的和差计算是解题的关键.6.B解析:B【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,依次对选项进行判断即可解答本题.【详解】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,∴AC+CD+DB+AD+CB+AB=3AB+2,∴A选项中:当和为28时,即3AB+2=28,解得:AB=263,与AB长度是正整数不符,故不符合要求;B选项中:当和为29时,即3AB+2=29,解得:AB=9,AB长度是正整数,故符合要求;C选项中:当和为30时,即3AB+2=30,解得:AB=283,与AB长度是正整数不符,故不符合要求;D选项中:当和为31时,即3AB+2=31,解得:AB=293,与AB长度是正整数不符,故不符合要求;故选:B.【点睛】本题考查线段的长度,解题的关键是明确题意,找出所求问题需要的条件.7.C解析:C【分析】依据射线、直线、线段、角的概念,以及两点之间的连线,线段最短,即可进行判断;【详解】A.射线的长度无法度量,故不是直线的一半,故本选项错误;B.线段AB的长度是点A与点B的距离,故本选项错误;C.两点之间所有连线中,线段最短,故本选项正确;D .角的大小与角的两边所画的长短无关,故本选项错误; 故选:C . 【点睛】本意主要考查了射线、直线、线段以及角的概念,两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短;8.C解析:C 【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解. 【详解】∵∠DBA =40°,∠DBC =75°,∴∠ABC =∠DBC−∠DBA =75°−40°=35°, ∵DB ∥EC ,∴∠DBC +∠ECB =180°,∴∠ECB =180°−∠DBC =180°−75°=105°, ∴∠ACB =∠ECB−∠ACE =105°−50°=55°, ∴∠BAC =180°−∠ACB−∠ABC =180°−55°−35°=90°. 【点睛】本题考查了方向角.解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.9.B解析:B 【分析】设CB x =,然后根据题目中的线段比例关系用x 表示出线段EF 的长,令它等于11,解出x 的值. 【详解】 解:设CB x =, ∵13AC AB =,∴1122AC BC x ==, ∵13CD AD =,∴1148CD AC x ==, ∵E 是AC 中点,∴1124CE AC x ==, 111488DE CE CD x x x =-=-=,1988BD BC CD x x x =+=+=, ∵F 是BD 中点,∴19216DF BD x ==, 91111116816EF DF DE x x x =+=+==,解得16x =.故选:B.【点睛】本题考查线段之间和差计算,解题的关键是设未知数帮助我们理顺线段与线段之间的数量关系,然后列式求解未知数.10.B解析:B【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B.【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.11.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:+=,从图中我们可以发现AC BC AB所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.12.B解析:B根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.二、填空题13.(1)∠DOE=90°;(2)∠AOE=155°【分析】(1)首先根据角平分线定义可得∠COD=∠AOC∠COE=∠BOC然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数再利用∠AOE解析:(1)∠DOE=90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD的度数,再利用∠AOE =∠AOD+∠DOE可得答案.【详解】解:(1)∵OD平分∠AOC,OE平分∠COB,∴∠DOC=12∠AOC,∠COE=12∠COB,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.14.(1)见解析;(2)35cm 【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶因为AD=3cmF 为线段AD 的中点所以AF=15cm 又因为AE=AC=2c解析:(1)见解析;(2)3.5cm【分析】(1)根据题目条件作图即可;(2)根据线段中点的性质求解即可;【详解】解:⑴作图如右;⑶ 因为AD=3cm ,F 为线段AD 的中点,所以 AF=1.5cm ,又因为AE=AC=2cm ,所以 EF=AE+AF=3.5cm .【点睛】本题主要考查了作图-基本作图,准确分析作图是解题的关键.15.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB =∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.16.(1)是;(2)15°或225°或30°;(3)或或或【分析】(1)若OC 为∠AOB 的角平分线则有则根据题意可求解;(2)根据幸运线的定义可得当时当时当时然后根据角的和差关系进行求解即可;(3)由题解析:(1)是;(2)15°或22.5°或30°;(3)127t =或125t =或1211t =或365t = 【分析】(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,则根据题意可求解; (2)根据“幸运线”的定义可得当2AOB AOC ∠=∠时,当2AOC BOC ∠=∠时,当2BOC AOC ∠=∠时,然后根据角的和差关系进行求解即可;(3)由题意可分①当04t <<时ON 在与OA 重合之前,则有20MOA t ∠=,6015AON t ∠=-,由OA 是MON ∠的幸运线可进行分类求解;②当49<<t 时,ON 在与OA 重合之后,则有560MON t ∠=+,1560AON t ∠=-,由ON 是AOM ∠的幸运线可分类进行求解.【详解】解:(1)若OC 为∠AOB 的角平分线,则有2AOB AOC ∠=∠,符合“幸运线”的定义,所以角平分线是这个角的“幸运线”;故答案为是;(2)由题意得:∵45AOB ∠=︒,射线OC 为AOB ∠的“幸运线”,∴①当2AOB AOC ∠=∠时,则有:22.5AOC ∠=︒;②当2AOC BOC ∠=∠时,则有2303AOC AOB ∠=∠=︒;③当2BOC AOC ∠=∠时,则有1153AOC AOB ∠=∠=︒; 综上所述:当射线OC 为AOB ∠的“幸运线”时,∠AOC 的度数为15︒,22.5︒,30, 故答案为15︒,22.5︒,30;(3)∵60AOB ∠=︒,∴射线ON 与OA 重合的时间为15460︒÷︒=(秒),∴当04t <<时ON 在与OA 重合之前,如图所示:∴20MOA t ∠=,6015AON t ∠=-,OA 是MON ∠的幸运线,则有以下三类情况:①206015t t =-,127t =, ②()2026015t t =-,125t =, ③2206015t t ⨯=-,1211t =; 当49<<t 时,ON 在与OA 重合之后,如图所示:∴560MON t ∠=+,1560AON t ∠=-,ON 是AOM ∠的幸运线,则有以下三类情况:①5601560t t +=-,12t =(不符合题意,舍去),②()56021560t t +=-,365t =, ③()25601560t t +=-,36t =(不符合题意,舍去);综上:127t =或125t =或1211t =或365t =. 【点睛】本题主要考查角平分线的定义及角的动点问题,熟练掌握角平分线的定义及和差关系是解题的关键. 17.(1)见解析;(2)或;(3)45cm 【分析】(1)画线段AM=3aAN=b 点AMN 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时MN=3a-b 或当点N 在MA 的延长线上时MN=3a+b ;(解析:(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=, 又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.(1)30;(2)1;(3)【分析】(1)根据可推出即可求出结果(2)根据OMON 分别是和角平分线可得出通过化简计算从而得到进而求出比值结果(3)根据OMON 分别是和角平分线可得到进而求出比值结果【解析:(1)30;(2)1;(3)12 【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果. 【详解】 (1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD ∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC ∠=∠+∠BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC =∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠,1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠, 又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠; 【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.19.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可;(2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可;(3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论.【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=;(2)∵16cm AB =,6cm AC =,∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm .∵点M 、N 分别是AC 和BC 的中点,∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.20.【分析】根据平角的定义求∠BOC 后利用角的平分线垂直的定义计算即可【详解】解:∵∴∵平分∴∵∴∴【点睛】本题考查了平角的定义角的平分线垂直的定义熟练掌握互补的定义角的平分线的性质是解题的关键解析:70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.三、解答题21.(1)14(2)37823 【分析】 (1)根据题意可得出CM =12 AC ,CN =12CD ,所以MN =CM+CN = 12(AC+CD)=12 AD =9,从而得出AD 的长,根据AB :BC :CD =2:3:4,可得出AB 的长,继而求出BD 的长;(2)根据题意,当CN =13CD 时,设AB =2x ,BC =3x ,CD =4x ,可得AC =5x ,因为点M 是线段AC 的中点,可得CM =2.5x ,因为CN =13CD ,可求出CN= 43x ,根据MN=9,可解出x 的值,继而得出BD 的长;【详解】解:(1)如图,∵点M 是线段AC 的中点,点N 是线段CD 的中点,∴CM =12 AC ,CN =12CD , ∴MN =CM+CN =12 (AC+CD)=12AD =9, ∴AD =18,∵AB :BC :CD =2:3:4,∴AB =29×AD =4, ∴BD =AD ﹣AB =18﹣4=14;(2)∵当CN =13CD 时,如图,∵AB :BC :CD =2:3:4,∴设AB=2x,BC=3x,CD=4x,∴AC=5x,∵点M是线段AC的中点,∴CM=12AC=2.5x,∵CN=13CD=43x,∴CM+CN=52x+43x=MN=9,∴x=5423,∴BD=7x=37823;【点睛】本题考查了线段的中点,线段的和与差的计算及线段三等分点的计算.能求出各个线段的长度是解题的关键.22.(1)-1;(2)1或15【分析】(1)根据点A表示的数为5,线段AB的长为线段OA长的1.2倍.即可得点B表示的数;(2)根据线段BM的长为4.5,即可得线段AC的长.【详解】解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=1.2×5=6∵OA=5,∴OB=AB-OA=1,∴点B表示的数为-1.故答案为-1;(2)若点M在点B的右边,点B表示的数是-1,且|BM|=4,所以点M表示的数是3,即|OM|=3又M是线段OC的中点,所以|OC|=6,即点C所表示的数是6,点A表示的数是5,所以|AC|=1;若点M在点B的左边,点B表示的数是-1,且|BM|=4,所以点M表示的数是-5,所以|OM|=5而M是线段OC的中点,所以|OC|=10,即点C所表示的数是-10,点A表示的数是5,所以|AC|=15【点睛】本题考查了数轴,解决本题的关键是用数轴表示两点之间的距离.23.(1)∠AOD=∠BOC;(2)∠AOC+∠BOD=180°;(3)任然成立,理由如见解析【分析】(1)根据角的和差关系解答,(2)利用周角的定义和直角解答;(3)根据同角的余角相等解答∠AOD和∠BOC的关系,根据图形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原关系仍然成立.【详解】解:(1)∠AOD和∠BOC相等,∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,∴∠AOD=∠COB;(2)∠AOC和∠BOD互补.∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°,∴∠AOC和∠BOD互补;⑶成立.∵∠AOB=∠COD=90°,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠AOD=∠COB,∵∠AOB=∠COD=90°,∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB,=90°+∠BOD+∠COB,=90°+∠DOC,=90°+90°,=180°.【点睛】本题主要考查角的和、差关系,互余互补的角关系,理清角的和或差,互余与互补关系是解题的关键.24.5cm【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案.【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ),∵点D 为线段AC 的中点,∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ).【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键. 25.75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线, ∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.26.(1)∠DOE =90°;(2)∠AOE =155°.【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC ,∠COE=12∠BOC ,然后再根据角的和差关系可得答案;(2)首先计算出∠AOD 的度数,再利用∠AOE =∠AOD +∠DOE 可得答案.【详解】解:(1)∵OD 平分∠AOC ,OE 平分∠COB ,∴∠DOC =12∠AOC ,∠COE =12∠COB ,∴∠DOE=∠DOC+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=12×180°=90°;(2)∵OD平分∠AOC,∠COD=65°,∴∠AOD=∠COD=65°,∴∠AOE =∠AOD+∠DOE=65°+90°=155°;【点睛】此题主要角平分线,关键是掌握角平分线把角分成相等的两部分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章简单平面图形单元测试题
(总分100分,时间90分钟)
一、选择题(每小题3分,共39分)
1、如图1,以O为端点的射线有()条.
A、3
B、4
C、5
D、6
2、下列各直线的表示法中,正确的是().
A、直线A
B、直线AB
C、直线ab
D、直线Ab
3、一个钝角与一个锐角的差是().
A、锐角
B、钝角
C、直角
D、不能确定
4、下列说法正确的是().
A、角的边越长,角越大
B、在∠ABC一边的延长线上取一点D
C、∠B=∠ABC+∠D BC
D、以上都不对
5、下列说法中正确的是().
A、角是由两条射线组成的图形
B、一条射线就是一个周角
C、两条直线相交,只有一个交点
D、如果线段AB=BC,那么B叫做线段AB的中点
6、同一平面内互不重合的三条直线的交点的个数是().
A、可能是0个,1个,2个
B、可能是0个,2个,3个
C、可能是0个,1个,2个或3个
D、可能是1个可3个
7、下列说法中,正确的有().
①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.
A、1个
B、2个
C、3个
D、4个
8、钟表上12时15分钟时,时针与分针的夹角为().
A、90°
B、82.5°
C、67.5°
D、60°
9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是().
A、AB=8cm,BC=19cm,AC=27cm
B、AB=10cm,BC=9cm,AC=18cm
C、AB=11cm,BC=21cm,AC=10cm
D、AB=30cm,BC=12cm,AC=18cm
10、已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为().
A、30°
B、150°
C、30°或150° D 、以上都不对
11、下图中表示∠ABC的图是().
A 、
B 、
C 、
D 、
12、如图2,从A到B最短的路线是().
A、A-G-E-B
B、A-C-E-B
C、A-D-G-E-B
D、A-F-E-B
13、∠1和∠2为锐角,则∠1+∠2满足().
A、0°<∠1+∠2<90°
B、0°<∠1+∠2<180°
C、∠1+∠2<90°
D、90°<∠1+∠2<180°
二、填空题(每空3分,满分30分)
14、如图3,点A、B、C、D在直线l上.(1)AC= ﹣CD;AB+ +CD=AD;(2)共有条线段,共有条射线,以点C为端点的射线是.
15、用三种方法表示图4的角:.图2
图1
图3
图4
16、将一张正方形的纸片,按图5所示对折两次,相邻两条折痕(虚线)间的夹角为 度.
17、如图6,OB ,OC 是∠AOD 的任意两条射线,OM 平分∠AOB,ON 平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD 的代数式是∠AOD= .
18、如图7,∠AOD=∠AOC+ =∠DOB + .
三、解答题(共5小题,满分31分)
19、如图8,M 是线段AC 的中点,N 是线段BC 的中点.(6分)
(1)如果AC=8cm ,BC=6cm ,求MN 的长.(2)如果AM=5cm ,CN=2cm ,求线段AB 的长.
20、如图9,已知∠AOB 内有一点P ,过点P 画MN ∥OB 交OA 于C,过点P 画PD ⊥OA,垂足为D,并量出点P 到OA 距离。

(6分)
21、如图10,已知∠AOB=∠BOC, ∠COD=∠AOD=3∠AOB, 求∠AOB 和∠COD 的度数。

(6分)
22、如图11,污水处理厂要把处理过的水引入排水沟PQ ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由。

(6分)
23、如图12,已知点C 为AB 上一点,AC =12cm, CB =
AC ,D 、E 分别为AC 、AB 的中点求DE 的长。

(7分)
图5
图12
图6
图7
图8
图9
图10
图11
答案及解析:
一、选择题(共13小题,每小题4分,满分52分)
1、B
2、A
3、D
4、D
5、C
6、C
7、B 8、B.9、B.10、B 11、C 12、C
13、B.
二、填空题(共5小题,每小题5分,满分25分)
14、如图,点A、B、C、D在直线l上.(1)AC=AD﹣CD;AB+BC+CD=AD;(2)如图共有6条线段,共
有8条射线,以点C为端点的射线是CA、CD.
考点:直线、射线、线段。

专题:计算题。

分析:(1)线段也可以相减,移项后结合图形即可得出答案.
(2)根据线段及射线的定义结合图形即可的出答案.
解答:解:(1)由图形得:AC=AD﹣CD,AB+BC+CD=AD;
(2)线段有:AB,AC,AD,BC,BD,CD,共6条;
直线上每个点对应两条射线,射线共有8条,以点C为端点的射线是CA,CD.
故答案为:AD,BC;6,8,CA,CD.
点评:本题考查射线及线段的知识,属于基础题,掌握基本概念是关键.
15、用三种方法表示如图的角:∠C,∠1,∠ACB.
考点:角的概念。

分析:角的表示方法有:①一个大写字母;②三个大写字母;③阿拉伯数字;④希腊字母.
解答:解:图中的角可表示为:∠C,∠1,∠ACB.
点评:本题考查了角的表示方法,是基础知识,比较简单.
16、将一张正方形的纸片,按如图所示对折两次,相邻两条折痕(虚线)间的夹角为22.5度.
考点:翻折变换(折叠问题)。

分析:正方形的纸片,按图所示对折两次,两条折痕(虚线)间的夹角为直角的.
解答:解:根据题意可得相邻两条折痕(虚线)间的夹角为90÷4=22.5度.
点评:本题考查了翻折变换和正方形的性质.
17、如图,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD 的代数式是∠AOD=2α﹣β.
考点:角的计算;列代数式;角平分线的定义。

分析:由角平分线的定义可得∠1=∠2,∠3=∠4,又有∠MON与∠BOC的大小,进而可求解∠AOD的大小.解答:解:如图,
∵OM平分∠AOB,ON平分∠COD,∴∠1=∠2,∠3=∠4,
又∠MON=α,∠BOC=β,∴∠2+∠3=α﹣β,
∴∠AOD=2∠2+2∠3+∠BOC=2(α﹣β)+β=2α﹣β.
故答案为2α﹣β.
点评:熟练掌握角平分线的性质及角的比较运算.
18、如图,∠AOD=∠AOC+∠COD=∠DOB+∠AOB.
考点:角的计算。

专题:计算题。

分析:如果一条射线在一个角的内部,那么射线所分成的两个小角之和等于这个大角.
解答:解:如右图所示,
∵∠AOC+∠COD=∠AOD,∠BOD+∠AOB=∠AOD,
∴∠AOD=∠AOC+∠COD=∠BOD+∠AOB,
故答案是∠COD,∠AOB.
点评:本题考查了角的计算.
三、解答题(共3小题,满分23分)
19、如图,M是线段AC的中点,N是线段BC的中点.
(1)如果AC=8cm,BC=6cm,求MN的长.
(2)如果AM=5cm,CN=2cm,求线段AB的长.
考点:两点间的距离。

专题:常规题型。

分析:(1)因为M是AC的中点,N是BC的中点,则MC=AC,CN=BC,故MN=MC+CN可求;
(2)根据中点的概念,分别求出AC、BC的长,然后求出线段AB.
解答:解:(1)∵M是AC的中点,N是BC的中点,
∴MN=MC+CN=AC+BC=AB=7cm.
则MN=7cm.
(2)∵M是线段AC的中点,N是线段BC的中点,
若AM=5cm,CN=2cm,
∴AB=AC+BC=10+4=14cm.
点评:本题主要考查两点间的距离的知识点,能够根据中点的概念,用几何式子表示线段的关系,还要注意线段的和差表示方法.
20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.
考点:轴对称-最短路线问题。

分析:可过点M作MN⊥PQ,沿MN铺设排水管道,才能用料最省
解答:解:如图因为点到直线间的距离垂线段最短.
点评:熟练掌握最短路线的问题,理解点到直线的线段中,垂线段最短.
21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.
考点:垂线;对顶角、邻补角。

专题:计算题。

分析:根据对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可.
解答:解:如图,∵∠COE=35°,
∴∠DOF=∠COE=35°,
∵AB⊥CD,
∴∠BOD=90°,
∴∠BOF=∠BOD+∠DOF,
=90°+35°
=125°.
点评:本题主要利用对顶角相等的性质及垂线的定义求解,准确识别图形也是解题的关键之一.。

相关文档
最新文档