哈工大机械原理大作业-凸轮机构设计(第3题)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理大作业二

课程名称:机械原理

设计题目:凸轮设计

院系:机电学院

班级: 1208103

完成者: xxxxxxx

学号: xx

指导教师:林琳

设计时间:

工业大学

凸轮设计

一、设计题目

如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。

二、凸轮推杆升程、回程运动方程及其线图

1 、凸轮推杆升程运动方程(6

50πϕ≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π=

Φ带入正弦加速度运动规律的升程段方程式中得:

⎥⎦⎤⎢⎣

⎡⎪⎭⎫ ⎝⎛-=512sin 215650ϕππϕS ;

⎥⎦

⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=512cos 1601ππωv ; ⎪⎭

⎫ ⎝⎛=512sin 1442

1ϕπωa ; 2、凸轮推杆推程远休止角运动方程(

πϕπ≤≤6

5) mm h s 50==;

0==a v ;

3、凸轮推杆回程运动方程(914πϕπ≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95'

0π=

Φ,6s π

=Φ带入余弦加速度运动规律的回程段方程式中得:

⎥⎦

⎤⎢⎣⎡-+=)(59cos 125πϕs ; ()πϕω--=5

9sin

451v ; ()πϕω-=5

9cos 81-a 21;

4、凸轮推杆回程近休止角运动方程(πϕπ29

14≤≤) 0===a v s ;

5、凸轮推杆位移、速度、加速度线图

根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图

编程如下: %用t 代替转角

t=0::5*pi/6;

s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5));

hold on

plot(t,s);

t=5*pi/6::pi;

s=50;

hold on

plot(t,s);

t=pi::14*pi/9;

s=25*(1+cos(9*(t-pi)/5));

hold on

plot(t,s);

t=14*pi/9::2*pi;

s=0;

hold on

plot(t,s),xlabel('φ/rad'),ylabel('s/mm'); grid on

hold off

所得图像为:

②速度线图

编程如下:

%用t代替转角,设凸轮转动角速度为1

t=0::5*pi/6;

v=60/pi*(1-cos((12*t)/5));

hold on

plot(t,v);

t=5*pi/6::pi;

v=0;

hold on

plot(t,v);

t=pi::14*pi/9;

v=-45*sin(9*(t-pi)/5);

hold on

plot(t,v);

t=14*pi/9::2*pi;

v=0;

hold on

plot(t,v),xlabel('φ(rad)'),ylabel('v(mm/s)'); grid on

hold off

所得图像为:

③加速度线图

利用matlab编程如下:

%用t代替转角,设凸轮转动角速度为1

t=0::5*pi/6;

a=144/pi*sin(12*t/5);

hold on

plot(t,a);

t=5*pi/6::pi;

a=0;

hold on

plot(t,a);

t=pi::14*pi/9;

a=-81*cos(9*(t-pi)/5);

hold on

plot(t,a);

t=14*pi/9::2*pi;

a=0;

hold on

plot(t,a),xlabel('φ(rad)'),ylabel('a(mm/s^2)');

grid on

hold off

所得图形:

三、绘制s d ds -ϕ

线图 根据运动方程求得:

()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤≤≤-≤≤≤≤--=πϕππϕππϕπϕππϕπππϕ29

14.0914,59sin 4565,0650),512cos 6060(d ds 利用matlab 编程:

%用t 代替φ,a 代替ds/d φ,

t=0::5*pi/6;

a=-(60/pi-60/pi*cos(12*t/5));

s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5));

hold on

plot(a,s);

t=5*pi/6::pi;

a=0;

s=50;

hold on

plot(a,s);

t=pi::14*pi/9;

a=45*sin(9*(t-pi)/5);

s=25*(1+cos(9*(t-pi)/5));

hold on

plot(a,s);

t=14*pi/9::2*pi;

a=0;

s=0;

hold on

plot(a,s),title('ds/d φ-s'),xlabel('ds/d φ(mm/rad)'),ylabel('s(mm)'); grid on

hold off

得s d ds -ϕ

图:

相关文档
最新文档