调节阀的流量特性.ppt

合集下载

调节阀的4种流量特性

调节阀的4种流量特性

调节阀的4种流量特性
1正逆行阀特性
正逆行阀特性是调节阀中最常见的流量特性,即调节阀的阀板由可调座在正、反两个方位转换。

随着阀板的移动,流量的增减空间是不断在正反之间变化的,最终达到设定的流量值。

正逆行阀的优势是,抗压力能力高,密封性好,动作健壮,结构简单,噪音小,前后行程最大化,但精度低,斜度梯形典型,处理流量噪音变化较大。

2双调节特性
双调节特性是指调节阀内部有两个独立行程空间,根据需要可以任意调节,从而让阀板呈现一个平滑的斜列面,流量曲线是多项式拟合的。

双调节特性的优势是控制的动作精度高,具有优异的空载性能和可控制性,流量响应迅速精准,过程变化具有很好的稳定性,但处理能力不足。

3耦合形态特性
耦合形态特性是指流量及阀板间运动耦合关系,结合正反行程和双调节空间特性,使流量曲线看起来像是拉扯。

耦合形态特性的优势是控制变比更大、流量控制可控性和稳定性更好以及噪音控制更出色,但回归特性较差。

4多阶梯形特性
多阶梯形特性是最复杂的阀板的移动特性,它是不同的阶梯组合在一起,通过多段流量曲线改善流量响应。

多阶梯形特性的优势是具有良好的抗压能力、可适应高温高压的环境,可实现优化的流量控制,控制响应快,精准,但设计和生产难度大,价格略高。

以上就是调节阀的4种流量特性,不同特性有着不同的优势和缺点,可以根据实际需要选择不同的流量特性来满足用户的需要。

实验二-电动调节阀的流量特性测试实验

实验二-电动调节阀的流量特性测试实验

实验二 电动调节阀的流量特性测试实验任何一个最简单的控制系统也必须由检测环节、调节单元及执行单元组成。

执行单元的作用就是根据调节器的输出,直接控制被控变量所对应的某些物理量,例如液位、温度、压力和流量等参数,从而实现对被控对象的控制目的。

因此,完全可以说执行单元是用来代替人的操作的,是工业自动化的“手脚”。

电动调节阀是本实验装置的执行单元之一。

一. 电动调节阀工作原理执行器按照使用能源的种类,可分为气动、液动和电动三种,本装置采用的是智能型单座调节阀。

顾名思义它是由电动执行器进行操作的,它接受调节器的输出电流4~20mA 信号,并转换为相应的输出轴直线位移,去控制调节机构以实现自动调节。

电动调节器的优点则是能源采用方便,信号传输速度快,传输距离远等。

执行器由执行机构和调节机构两部分组成。

执行机构是执行器的推动装置,它可以按照调节器的输出信号量,产生相应的推力,以带动智能调节阀的主推动轴产生直线位移,主推动杆总位移为16mm ,控制单座调节阀0~100%的开度连续变化。

而调节机构(调节阀)是执行器的调节装置,它受执行机构的操纵,可以改变调节阀阀芯与阀座间的流通面积,以达到最终调节被控介质的目的。

本执行器的结构如图1所示,电动执行器首先接受来自调节器的输出信号,以作为执行器的输入信号即执行器的动作依据;该输入信号送入信号转换单元,转换信号制式后与反馈的执行机构位置信号进行比较,其差值作为执行机构的输入,以确定执行机构的作用方向和大小;执行机构的输出结果再控制调节器的动作,以实现对被控介质的调节作用;其中执行机构的输出通过位置发生器可以产生其反馈控制所需要的位置信号。

图1 电动执行器的工作原理从上述描述和图1可知,电动调节阀执行机构的动作构成了负反馈控制回路,这是提高执行器调节精度、保证执行器工作稳定的重要手段。

为保证电动执行器输出与输入之间呈现严格的比例关系,必须采用比例负反馈构成闭环控制回路,图2为本套装置的电动执行器的工作原理示意图:图2 电动执行器原理图其中I i 表示输入电流,θ表示输出轴转角,两者存在如下关系:i I K ⋅=θ (1)K 是比例系数。

阀门流量特性曲线图结构

阀门流量特性曲线图结构



阀门是一种管路附件。 改变通路断面和介质流动方向,控制输送介质流动的一种装置。
1. 接通或截断管路中的介质。 2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。 7. 其他特殊用途。
阀体 阀盖 启闭件 阀芯、阀瓣 阀座 密封面 阀杆 填料函
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。
阀杆的密封通常用压缩填料。压缩填料是指压入填 料函内使阀杆周围密封的软质材料。
材质
1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
阀门流量特性曲线图结构
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
概念、用途
阀门是流体输送系统中的控制部件,具有截断、调 节、导流、防止逆流、稳压、分流或溢流泄压等功能。
阀门零部件
参数--公称通径
阀门的公称通径是管路系统中所有管路附件用数字表 示的尺寸。公称通径是供参考用的一个方便的圆整数,与加 工尺寸呈不严格的关系。
公称通径用字母“DN”后跟一个数字标志。
各种参数—压力
1.公称压力 阀门的公称压力PN是一个用数字表示的与压力有关的标示代号,是仅供参考用的一 个方便的圆整数。
2.试验压力 ⅰ阀门的壳体试验压力是指对阀门的阀体和阀盖等联结而成的整个阀门外壳进行试 验的压力,其目的是检验阀体和阀盖的致密性及包括阀体与阀盖联结处在内的整个壳体的 耐压能力。 ⅱ阀门的密封和上密封试验压力是检验启闭件和阀体密封副密封性能和阀杆与阀盖 密封副密封性能的试验压力。

调节阀流量特性介绍

调节阀流量特性介绍

调节阀流量特性介绍1. 流量特性调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。

其数学表达式为式中:Qmax-- 调节阀全开时流量L---- 调节阀某一开度的行程Lmax-- 调节阀全开时行程调节阀的流量特性包括理想流量特性和工作流量特性。

理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1)流量特性性质特点直线调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数①小开度时,流量变化大,而大开度时流量变化小②小负荷时,调节性能过于灵敏而产生振荡,大负荷时调节迟缓而不及时③适应能力较差等百分比单位相对行程的变化引起的相对流量变化与此点的相对流量成正比①单位行程变化引起流量变化的百分率是相等的②在全行程范围内工作都较平稳,尤其在大开度时,放大倍数也大。

工作更为灵敏有效③ 应用广泛,适应性强抛物线特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之①特性介于直线特性与等百分比特性之间②调节性能较理想但阀瓣加工较困难快开在阀行程较小时,流量就有比较大的增加,很快达最大①在小开度时流量已很大,随着行程的增大,流量很快达到最大②一般用于双位调节和程序控制在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。

一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。

另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。

因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。

称为工作流量特性[1]。

具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。

(1)串联管道时的工作流量特性调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。

调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。

阀的流量特性

阀的流量特性

(5)调节阀前、后两端压力差为
p p1 p2 0.09MPa
(6)蒸汽的压缩系数ε为
p2 0.2 0.5 p1 0.29
故调节阀的蒸汽流动为亚临界流动。
制 冷 装 置 及 其 自 动 化 课 件 设 计
p 1 0.46 0.802 p1
制 冷 装 置 及 其 自 动 化 课 件 设 计
调节阀流量特性及其选择计算 调节阀和调节蝶阀与风门是制冷空调系 统中的两种调节机关。 在自动调节系统中如何选择调节机关, 是一个很重要的问题。必须根据整个调节系 统慎重选择调节机关。 在选择调节阀时,必须考虑下列两个因 素: 第一为调节阀的调节范围; 第二为调节阀的工作流流量特性指介质流过阀门的相 对流量与阀门的相对开度之间的关系,即
q q max l f L
制 冷 装 置 及 其 自 动 化 课 件 设 计
调节阀的流量特性分为理想流量特性和 工作流量特性。

理想流量特性
调节阀在前后两端压差一定的情况下, 得到的流量特性,称为理想流量特性。调节 阀的理想流量特性取决于阀心形状,见图2- 84。
(7)按最大流量计算流通能力Cmax为
Cmax qmax 31 100 p1
式中ρ1=1.57——阀前p1状态的饱和蒸汽密度。 (8)按最小流量计算流通能力Cmin为
Cmin qmin 6.96 100 p1
制 冷 装 置 及 其 自 动 化 课 件 设 计
查调节阀产品目录资料,选择直通单座, 通径Dg=0.05m,口径dg=0.05m,行程 S=0.025m,阀的流通能力C=32。 (9)验算
q’min=210kg/h,调节阀阀前压力约0.19MPa(表

调节阀流量特性

调节阀流量特性

② 随着S的减小,管道总阻力增大,控制阀全开 时的最大流量相应减小,使实际可调比 R f 下降。 RS f 之间的关系为 实际可调比 与
Rf » R S
③ 随着S的减小,控制阀的流量特性发生畸变,线 性理想流量特性渐渐接近快开特性;等百分比理 想流量特性趋向于线性特性。 在实际使用中,S值选得过大或过小都有不妥之处。 选得过大,阀上的压降很大,消耗能量过多;选 得过小,则控制阀流量特性畸变严重,对控制不 利。因此,一般希望S值最小不低于0.3。设计中的 S通常为0.3~0.6。
1-永久磁钢;2-导磁体;3-主杠杆(衔铁);4-平衡弹簧; 5-反馈凸轮支点; 6-反馈凸轮;7-副杠杆;8-副杠杆支点;9-薄膜执行机构; 10-反馈杆;11一滚轮; 12-反馈弹簧;13-调零弹簧;14-挡板;15-喷嘴;16-主杠杆支点; 17-放大器 图2.39 电-气阀门定位器动作原理
系统总压差:
p pV p f
p pV p f
压力比系数S: S的定义为,控制阀全开时,阀两端的压 降占系统总压降的比值。
pv min S= p
图2.34
串联管道时控制阀的工作流量特性
在S≤1,串联管道中控制阀特性曲线的畸变规律如下:
① 当系统压降全部损失在控制阀上时(管道阻力 损失为零),S=1,这时工作流量特性与理想流量 特性相同。
不同流量特性的阀芯曲面形状
1-线性;2-等百分比;3-快开;4-抛物线
(1)线性流量特性 或叫直线流量特性 线性流量特性是指控制阀的相对流量与相对开度 成直线关系。
q d q 其数学表达式为: max K l d L q l
将上式积分得 q =K L +C max 根据已知边界条件在l=0时,q=qmin 则C=qmin/qmax l=L时,q=qmax 则K=1-C=1-(1/R)

调节阀流量特性选择

调节阀流量特性选择

调节阀的流量特性如何选择控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。

但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。

在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。

理性流量特性主要由线性、等百分比、抛物线及快开四种。

在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。

控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。

因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。

目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑:1、从调节系统的质量分析下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。

K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。

很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。

通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。

调节阀流量特性选择

调节阀流量特性选择

调节阀的流量特性如何选择控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。

但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。

在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。

理性流量特性主要由线性、等百分比、抛物线及快开四种。

在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。

控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。

因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。

目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑:1、从调节系统的质量分析下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。

K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。

很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。

通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。

第十讲调节阀-资料.ppt

第十讲调节阀-资料.ppt

常用调节阀结构示意图及特点——隔膜调节阀
2021/1/5
隔膜调节阀
常用调节阀结构示意图及特点——隔膜调节阀
隔膜调节阀用耐腐蚀衬里的阀体和耐腐 蚀隔膜代替阀芯、阀座组件,由隔膜位移起 调节作用。隔膜调节阀耐腐蚀性强,适用于 对强酸、强碱等强腐蚀牲介质流量的调节。 它结构简单,流路阻力小,流通能力较同口 径的其他阀大,无泄漏量。但由于隔膜和衬 里的限制,一般只能在压力低于1M pa,温度 低于150℃的情况下使用。
薄膜式
2021/1/5
8.2.3 调节机构的结构类型 与作用方式
调节机构是一个局部阻力可 以改变的节流元件。由于阀芯 在阀体内移动,改变了阀芯与 阀座之间的流通面积,即改变 了阀的阻力系数,被调介质的 流量也就相应地改变,从而达 到调节工艺参数的目的。
(1)结构类型
2021/1/5
(1)结构类型
②角形阀一般使用于底进侧出,此时调
节阀稳定性好,
③在高压差场合下,为了延长阀芯使用
寿命,也可采用侧进底出。但侧进底 出在小开度时易发生振荡。
④角形阀还适用于工艺管道直角形配管
的场合。
角形调节阀
2021/1/5
常用调节阀结构示意图及特点——三通调节阀
阀体有三个接管口,适用于三个方向流 体的管路控制系统,大多用于热交换 器的温度调节、配比调节和旁路调节。
2021/1/5
常用调节阀结构示意图及特点——“O”形球 阀
“O”形球阀
阀芯为一球体:
①阀芯上开有一个直径和管道直
径相等的通孔,转轴带动球体 旋转,起调节和切断作用。
②该阀结构简单,维修方便,密
封可靠,流通能力大
③流量特性为快开特性,一般用
于位式控制。

阀门流量特性曲线图结构

阀门流量特性曲线图结构
阀门流量特性曲线图结构
概念、用途
阀门是流体输送系统中的控制部件,具有截断、调节、 导流、防止逆流、稳压、分流或溢流泄压等功能。


阀门是一种管路附件。
改变通路断面和介质流动方向,控制输送介质流动的一种装置。 1. 接通或截断管路中的介质。
2. 调节、控制管路中介质的流量和压力。
3. 改变管路中介质流动的方向。 4. 阻止管路中的介质倒流。 5. 分离介质。 6. 指示和调节液面高度。
密封性能—阀杆
阀杆是带动启闭件使阀门开启和关闭的重要部件,因 为阀杆是可动件。所以是最易产生外漏的部件。因此,阀 杆密封对于阀门来讲是非常重要的。 阀杆的密封通常用压缩填料。压缩填料是指压入填料 函内使阀杆周围密封的软质材料。


1.壳体:铜(黄铜、青铜)、铸铁、球墨铸铁、铸钢 2.内件:铜、不锈钢 3.密封:EPDM、NBR、PTFE
密封性能--密封面
阀门的密封面是指阀座与关闭件互相接触而进行关闭 的部分。 由于阀门在使用过程中密封面在进行密封中要受到冲 刷和磨损,所以阀门的密封性能随着使用时间而减低。
1. 金属密封面
2. 软密封面
密封性能—垫片
垫片是阀门产生外漏的关键因素之一 1. 金属平垫片 2. 压缩石棉纤维垫片 3. 缠绕式垫片
阀权度对流量特性曲线的影响
等百分比特性
线性特性
快开型:行程较小时,流量就比较大,随着行程的增大流量很快 达到最大。阀的有效行程<d/4(d为阀座直径)。行程再增大时已不 起调节作用,适用于双位控制。
调节阀流量特性曲线的选择
期望的阀门控制信号—热量输出曲线图
实际的换热器/风机盘管流量—热量输出特性曲线
期望的阀门开度/信号—流量特性曲线

调节阀的流量特性

调节阀的流量特性

调节阀的流量特性、流通能力的计算与选择摘要:企业的能源计量已成为节能减排的重要方式,而流量调节阀作为流量控制中的重要方法,文章详细介绍了调节阀的流量特性,直线特性、等百分比特性及介于两者之间的抛物线特性的流量调节阀的作用及如何选型。

关键词:调节阀;流量特性;流通能力;等百分比特性;直线特性调节阀作为一个执行器将来自控制器的信号,变成控制量作用在对象上。

它是控制系统的重要组成部分,在选择使用时,应和选用传感器、变送器一样,从现有的商品中,选择能满足要求的产品。

下面介绍调节阀的流量特性和口径的计算。

1 调节阀的流量特性及其选择1.1 调节阀的流量特性调节阀的流量特性是指流过调节阀介质的相对流量与调节阀的相对开度之间的关系,即:式中:Q/Q max:相对流量,即调节阀某一开度下的流量与全开流量之比;L/L max:相对开度,即调节阀某一开度下的行程与全开行程之比。

调节阀流量特性是由调节阀阀芯形状决定的。

阀芯形状有柱塞阀和开口阀两类,而每一类都分为直线特性、等百分比特性和抛物线特性。

此外还有平板形的快开特性。

图1 是阀芯形状示意图,图2 是理想流量特性图。

图1 阀芯形状图2 理想流量特性(1)直线特性;(2)等百分比特性;(3)快开特性;(4)抛物线特性所谓理想流量特性是指阀前后压差在流量改变时保持不变条件下,所得到的流量特性,这自然应在实验条件下才能形成恒定的压差。

从图2 可以看出,各流量特性线,当开度为零时,相对流量为3.3%,可知在相对开度为零时为最小流量,且此最小流量与最大流量之比为3.3%,或者说最大流量与最小流量之比为30。

直线流量特性的斜率等于常数,与相对流量值无关;等百分比流量特性的斜率与相对流量成正比;抛物线特性介于直线和等百分比特性之间。

1.2 调节阀流量特性的选择工程所用调节阀的特性有直线特性、等百分比特性及介于两者之间的抛物线特性,此外还有快开特性。

对于直通调节阀可用等百分比特性阀代替抛物线特性阀,而快开特性阀只应用于双位控制和程序控制中。

调节阀讲义PPT课件

调节阀讲义PPT课件

工作压力
根据管道系统的工作压力选择 调节阀的额定压力,确保阀门 安全可靠。
控制精度
根据工艺要求选择调节阀的控 制精度,确保满足生产需求。
安装前准备工作和步骤
检查调节阀
在安装前对调节阀进行外观检查,确 保无损坏、无缺陷。
准备安装工具和材料
准备好安装所需的工具(如扳手、螺 丝刀等)和密封材料(如垫片、密封 胶等)。
建立完善的故障诊断和维修体 系,提高维修效率和质量。
06
发展趋势及新技术应用前 景
当前存在问题和挑战
精度和稳定性问题
现有调节阀在精度和稳定性方面仍有待提高,特别是 在高压、高温等极端工况下。
智能化程度不足
传统调节阀缺乏智能化功能,无法实现远程监控和自 动调节。
节能环保要求
随着环保意识的提高,对调节阀的节能环保性能要求 也越来越高。
适用范围
适用于流体管道中需要直角转弯的场合。
04
选型、安装与调试注意事 项
选型依据和建议
公称通径
根据管道系统的公称通径选择 合适的调节阀通径,确保流体 顺畅通过。
温度范围
考虑介质的工作温度范围,选 择能够适应相应温度的调节阀。
介质类型
根据介质的不同(如气体、液 体、蒸汽等),选择适合的调 节阀类型和材质。
02
调节阀性能指标与评价
流量特性曲线分析
流量特性曲线概念
描述调节阀相对开度与相对流量之间关系的曲线。
流量特性曲线类型
线性、等百分比、快开等。
流量特性曲线选择
根据工艺要求、系统特性及调节阀本身特性进行 选择。
泄漏量与密封性能评估
泄漏量定义
影响密封性能的因素
在规定的压差和温度下,调节阀处于 关闭状态时,流经阀门的流体量。

常用调节阀的计算与选型【共50张PPT】

常用调节阀的计算与选型【共50张PPT】

四、调节阀的术语
17、固有可调比R:在调节阀前后压差为定值的条件下的可调比。
它是反映调节阀特性的一个重要参数,也是调节阀选择是否合理的
FF……指临界标压力之比系一数 。R实质上反映调节阀调节能力的大小。从控制的角
e8、、调综节合度阀工管艺看路 等系条,统件中确R防定越护执闪行大蒸机与构越汽的蚀型好的式方,法 但受阀芯结构好加工工艺的限制,最小流量系 数不能太小,一般调节阀的R为30。 根据计算得出的Kv和选定的调节阀型式在该阀型的流量系数标准系列中,选择适当的Kvmax,条件是: 40%≤Kv/Kvmax≤85%

四、调节阀的术语
11、正作用式:当信号压力增大时,推杆向下动作。 12、反作用式:当信号压力增大时,推杆向上动作。
四、调节阀的术语
13、流开流向:也称为流开式,流体流动促使阀芯打开。
14、流闭流向:也称为流关式,流体流动促使阀芯关闭。 15、压降分配比S:调节阀全开时阀前后压差之比。
S=△P全开/ △P总
8、死区:输入信号正、反方向的变化不致引起阀杆
行程有任何可觉察变化的有限区间。用输入信号量 程的百分比表示。
四、调节阀的术语
9、额度行程偏差:实际到达全开位置上的行程与 规定全开位置行程之间的偏差。用额度行程的 百分比表示。
项目 基本误差 % 回差 % 死区 % 额度行程偏差 %
电动调节阀 ≤±2.5 ≤1.5 ≤3.0 ≤2.0
小 △控开制度压时力降,来消斜改除率汽小蚀变,从而调时防节止平破,稳坏。缓和调; 节阀的可调比会发生变化,此时的可调比为实际可
调比。 8、死区:输入信号正、反方向的变化不致引起阀杆行程有任何可觉察变化的有限区间。
下面就四种固有流量特性分别加以说明:

调节阀流量特性

调节阀流量特性
变化所引起的相对流量变化与该点的相对流量成正比 关系,即控制阀的放大系数KV是变化的,它随相对 流量的增加而增加。 等百分比流量特性数学式为
d
q q max
K
q
d l
q max
L
右图中曲线2
由于等百分比阀的放大系数KV随相对开度的增大而增 大,因此,在小开度时等百分比阀的放大系数小, 控制平稳缓和;在大开度时放大系数大,控制灵敏 有效。自动控制系统中最常用的流量特性。
控制阀口径的选择是根据流通能力C值进行选择。
流通能力C的定义是: 在控制阀全开时,当阀两端压差为100 kPa、流体密度 为1 g/cm3时,每小时流经控制阀的流体流量是控制阀 的流通能力C(以m3/h表示)。
1.控制阀流量系数CVmax的计算 对不可压缩流体,且阀两端的压差p1-p2不太大(即流 体为非阻塞流)时,其体积流量
可以直接根据被控变量和工艺情况选择控制阀的理想特性被控变量对象特性选用的控制阀理想流量特性min线性max02min等百分比压力快过程等百分比慢过程恒定线性max02min等百分比变送器输出与流量成正比设定值变化线性负荷变化等百分比变送器输出与流量平方成正比串接设定值变化线性负荷变化等百分比旁路连接等百分比温度等百分比243控制阀气开气关形式的选择1
2.4.5 控制阀口径的选择
正常工况下,要求控制阀开度处于15%~85%,不宜将 控制阀口径选得过小或过大
若口径选择得过小,会使流经控制阀的介质达不到所 需要的最大流量。
若口径选择得过大,不仅会浪费设备投资,而且会使 控制阀经常处于小开度的工作状态。
在小开度时,阀芯由于受不平衡力的作用,容易产生振荡现 象,易损坏阀芯和阀座,造成控制阀失灵。
(2)并联管道中的工作流的有两个:

调节阀的流量特性、流量调节及调节范围问题解析

调节阀的流量特性、流量调节及调节范围问题解析

当前,调节阀被广泛的应用于电站行业,尤其是在锅炉系统中更为常见。

例如:锅炉旁路系统、主给水系统、减温水系统等。

并且调节阀性能的好坏直接影响着整个系统的运转,因此,合理的设计及选取调节阀对于整个系统的安全性、稳定性、经济性和可靠性有着十分重要的作用。

随着电站行业的迅速发展,对调节阀的要求也越来越高,调节阀往往要在一个较大的流量范围内高度精确地调节或控制流体的流动,并且能根据阀杆的规定运动方式预计流量。

因此,流量调节、调节范围及调节特性是设计及选取调节阀时所必须考虑的因素。

一、流量特性调节阀的流量特性是指介质流过调节阀的流量与阀瓣升程值之间的关系。

通常用流量与阀杆位置或升程的关系曲线表示。

在实际工况中,由于多种因素的影响,通过阀门的流量可能随压降而变化。

为了便于分析,我们先假定阀门的压降不变,然后再引申到真实情况进行分析,前者称为阀门固有流量特性,后者称为阀门工作流量特性。

1、固有流量特性我们经常用到的固有流量特性主要有直线、等百分比(对数)、抛物线及快开特性。

图3为这4种流量特性的关系曲线图,图4为不同流量特性的阀瓣形状。

图3 理想的固有流量特性图4 不同流量特性的阀瓣形状直线流量特性是指调节阀的相对流量与阀杆相对位移成直线关系,即单位位移变化所引起的流量变化是常数。

具有此特性的阀门在开度小时流量相对变化大,灵敏度高,不易控制,甚至发生振荡;而在开度大时,流量相对变化值小,调节缓慢,不够及时。

等百分比流量特性也称为对数流量特性,它是指阀杆单位相对位移变化所引起的相对流量变化与此点的相对流量成正比关系。

在小开度时,调节平稳缓和;在大开度时,调节灵敏有效,从图3可看出,等百分比特性在直线特性下方,因此,在同一位移时,直线阀通过的流量要比等百分比大。

抛物线流量特性是指阀杆单位位移的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系,它介于直线特性与等百分比特性之间,相对来说此特性应用较少。

快开特性在开度较小时就有较大的流量,随开度的增大,流量很快达到最大;此后再增加开度,流量变化很小。

调节阀流量特性选择方法

调节阀流量特性选择方法

调节阀流量特性选择方法调节阀流量特性主要有直线、等百分比、快开和抛物线四种流量特性, 提醒用户:调节阀流量特性要根据系统的控制质量、工况条件、符合变化和被控对象来选择。

调节阀是个局部阻力可以变化的节流件。

对于不可压缩流体,调节阀的流量方程为: 式中Q为调节阀某一开度的流量;△P为调节阀进出口压差;Cv为调节阀的流量系数;ρ为流体密度。

由上面的公式可知,调节阀流量系数Cv与阀门的结构和开度有关。

不同的阀芯,其流量系数Cv值与阀门开度之间都有固定的关系,这就是固有流量特性,在控制系统中,控制器的输出信号控制调节阀的开或关,也就改变了阀门阻力的大小,从而改变了被控流体的流量。

不同的控制系统,需要选择不同的调节阀,调节阀的选型首先需要确定阀芯的类型,即流量特性。

流量特性就是流过调节阀的相对流量与调节阀相对开度间的关系,如下面公式所示:式中Q为调节阀某一开度时流量,mm3/s;Qmax为调节阀全开时流量,mm3/s;L为调节阀某一开度时行程,mm;Lmax为调节阀全开时行程,mm。

调节阀量特性包括理想流量特性和工作流量特性。

理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,常见的有直线、快开、等百分比、抛物线特性,如图所示:调节阀的相对流量与相对开度呈直线关系,即单位相对行程变化引起的相对流量变化是一个常数。

小开度时流量变化大,大开度时流量变化小;小负荷时调节过于灵敏易振荡,大负荷时调节平缓不及时,适应能力较差。

在阀行程较小时,流量就有比较大的增加,很快达最大。

小开度时流量很大,随着行程的增大,阀门开度流量很快达到最大。

常用在位式和程序控制的场合。

单位行程变化引起流量变化的百分率是相等的。

在全行程范围内工作较平稳,尤其在大开度时,放大倍数大、灵敏。

应用广泛,适应性强。

特性介于直线特性和等百分比特性之间,使用上常以等百分比特性代之。

调节性能较理想。

在实际应用中,调节阀进出口的压差是变化的,这时调节阀相对流量与相对开度之间的关系称为工作流量特性。

控制阀的流量特性

控制阀的流量特性

调节器
执行器
对象
被控对象y
测量值z
测量变送
1、变送器
• 概念:
• 模拟变送器 • 数字变送器
将各种工艺变量和电气信号转换成相应的统一 标准信号。包括测量部分(输入转换部分)、放 大器和反馈部分。
(1)模拟变送器的构成
调零、零点迁移
Z0
X
测量部分 C
Zi + e _ Zf
放大部分 K
y
反馈部分 F
K y (Cx Z 0 ) 1 KF
(2)数字变送器组成
• 传感器部件 • 电子部件
由微处理器、A/D转换器、D/A转换器、通信 器件等组成。
2、调节器
• 概念
• 模拟调节器
调节器接收偏差信号后,按一定的运算规律输出控制 信号,作用于被控对象,以消除扰动对被控变量的影响, 从而使被控变量回到给定值上来。 采用模拟技术,以运算放大器等模拟器件为基本部件。 模拟式控制器所传送的信号形式为连续的模拟信号,其基 本结构包括比较环节、反馈环节放大器等。比较环节
测量信号 指示电路
给定信号 指示电路
硬手操电路
输出指示
Ui 1~5V
输入电路
U01
U02 PD电路 PI电路
U03 输出电路
I0 4~20mA
S6 Is 4~20mA 软手操电路 250Ω 外 内 1~5V
基型调节器方框图
• 控制器的工作状态有“自动”、“软手动”、
“硬手动”及“保持”四种。
1.比例调节 比例控制的输出与输入的关系为:y=Kpe KP是比例增益,它决定了比例控制作用的强弱。KP越大,比例控制作用越强。 KP越小, 比例控制作用越弱。 特点:及时、迅速(控制器的输出与输入成正比,只要有偏差存在,控制器输出就会马 上与偏差成比例地变化) 2.比例积分调节 比例积分作用的数学表达式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 调节阀的流量特性
流量特性的定义
调节阀的流量特性,是指介质流过调节阀的相对流量与 调节阀的相对开度之间的关系。
Q
l
= f( )
Qmax
lmax
Q :相对流量,即调节某一开度下的流量与全开流量之比 Q max
l :相对开度,即调节阀某一开度下的行程与全开时行程之比 lmax
理想流量特性
调节阀在前后压差固定的情况下得到的流量特性称为理 想流量特性(有时相对流量与相对开度成直线 关系,即单位相对行程变化所引起的相对流量变化是一 个常数
dQ Qmax = K
dl lmax
(2)等百分比流量特性
等百分比流量特性亦称对数流量特性,它是指单位相对 行程变化所引起的相对流量变化与此点相对流量成正比 关系
dQ
Qmax = K Q
直通调节阀的串联工作流量特性-实际可调比
Rr
Qmax Qm in
Cmax
C m in
p1 m in r R
p1 m a x r
p1 m in p1 m a x
S p1min p1min p1min p p1 p2 p1max
Rr R S
Q100
直通调节阀的并联工作流量特性
Q100 :表示调节阀全开时的通过调节阀的流量
dl
Qmax
lmax
(3)快开流量特性
快开流量特性是在调节阀的行程比较小时,流量就比较 大,随着行程的增大,流量很快就达到最大,因此称快 开特性。
(4)抛物线流量特性
流量特性曲线是一条抛物线,介于直线特性曲线和等百 分比特性曲线之间
(5)三通调节阀的流量特性
工作流量特性
所谓调节阀的工作流量特性是指调节 阀在前后压差随负荷变化的工作条件 下,调节阀的相对开度与相对流量之 间的关系。
直通调节阀的串联工作流量特性
S p1min p1min p p1 p2
称S为阀门能力,S在数值上等于调节阀在全开时, 阀门上的压差占总系统的百分数。
直通调节阀的串联工作流量特性
图4-24 串联管道时调节阀的工作流量特性(以Q100作参比值)
(a)直线流量特性;
(b)等百分比流量特性
Q100表示存在管道阻力时调节阀的全开流量, 称作以Q/Q100为参比的调节阀的相对流量,
Q max :表示总管最大流量
Q x 100
:表示旁路的程度
Q
max
Q100
直通调节阀的并联工作流量特性
Q x 100
:希望x值最小不低于0.8l
Q
max
1 R
S 1 x
相关文档
最新文档