人教部编版小学数学画图解题方法梳理
小学数学“画图”解题方法
1、平面图对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。
如,有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。
先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。
如图(l)所示。
根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。
从图中不难找出:原长方形的长(A)是120÷12=10原长方形的宽(B)是72÷12=6则两数的积为10×6=60借助长方形图,弄清了题中的条件,找到了解题的关键。
再如,一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为60平方厘米的平行四边形。
求原来梯形面积是多少平方厘米?根据题意画平面图:从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=0.5倍。
所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=50(平方厘米)。
2、立体图一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。
如,把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?如果只凭想象,做起来比较困难。
按照题意画图,可以帮助我们思考,找出解决问题的方法来。
按题意画立体图:从图中不难看出,表面积增加了8平方米,实际上是增加2个正方形的面,每个面的面积是8÷2=4(平方米)。
原正方体是6个面,即表面积为4×6=24(平方米)。
再如,用3个长3厘米、宽2厘米、高1厘米的长方体,拼成一个大长方体。
小学数学6类“画图”解题,快教
小学数学6类“画图”解题,快教给孩子借助画图解题,是孩子打开解决问题大门的一把“金钥匙”,其实很多问题都可以很快速的求解,比如几何问题、路程问题,如果光靠想是很难想出答案的,画图就一目了然,下面整理小学数学6类画图解答题,快为孩子收藏吧。
1平面图对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。
例1 有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。
先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。
如图(1)所示。
根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。
从图中不难找出:原长方形的长(A)是120÷12=10原长方形的宽(B)是72÷12=6则两数的积为10×6=60借助长方形图,弄清了题中的条件,找到了解题的关键。
例2 一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为6O平方厘米的平行四边形。
求原来梯形面积是多少平方厘米?根据题意画平面图:从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=O.5倍。
所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=5O(平方厘米)。
2立体图一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。
例1把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?如果只凭想象,做起来比较困难。
按照题意画图,可以帮助我们思考,找出解决问题的方法来。
(全)小学六年级数学必会6类“画图”解题法
小学六年级数学必会6类“画图”解题法1平面图对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。
例1 有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。
先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。
如图(1)所示。
根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。
从图中不难找出:原长方形的长(A)是120÷12=10原长方形的宽(B)是72÷12=6则两数的积为10×6=60借助长方形图,弄清了题中的条件,找到了解题的关键。
例2 一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为6O平方厘米的平行四边形。
求原来梯形面积是多少平方厘米?根据题意画平面图:从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=0.5倍。
所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=50(平方厘米)。
2立体图一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。
例1 把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?如果只凭想象,做起来比较困难。
按照题意画图,可以帮助我们思考,找出解决问题的方法来。
按题意画立体图:从图中不难看出,表面积增加了8平方米,实际上是增加2个正方形的面,每个面的面积是8÷2=4(平方米)。
原正方体是6个面,即表面积为4×6=24(平方米)。
小学生图形题求解题技巧
小学生图形题求解题技巧小学生图形题是小学阶段数学学习的重点内容之一,它不仅涵盖了几何图形的基本概念和性质,还要求学生能够运用逻辑思维和几何推理解决问题。
下面就是一些解题技巧,帮助小学生更好地应对图形题。
一、认识几何图形解决图形题首先要正确地认识几何图形,掌握图形的基本属性和特点。
1.常见的几何图形有:- 线段:两个端点确定,没有方向,可以测量长度。
- 直线:无数个点连成的无限延伸的线段。
- 射线:一个起点,无限延伸的线段。
- 角:两条射线共享一个起点,可以用数字表示角的大小。
- 三角形:有三条边和三个角的图形。
- 四边形:有四条边的图形,比如正方形、长方形、菱形等。
- 圆形:由一个中心点和半径确定,和中心点的距离相等的所有点构成的轨迹。
- 正多边形:有相等的边和相等的角的多边形,比如正三角形、正方形等。
掌握了这些基本的图形概念,对于解决图形题会有很大的帮助。
二、观察图形,找规律解决图形题的关键是观察图形,找到其中的规律。
有时候,规律可能并不明显,需要通过反复观察、分析和推理才能找到。
1. 观察图形的图案、形状和排列方式,看是否可以找到一些特定的规律。
2. 寻找对称性:图形中是否存在对称轴、对称中心等对称特点,对称的部分是否具有相等的性质。
3. 找到关键信息:有些图形题中,可能会给出一些关键的信息,比如某个角的度数,某个边的长度等,这些信息可能是解题的关键。
4. 尝试多种方法:如果一种方法无法解决问题,可以尝试其他的方法,比如构造图形、作图分析等。
三、运用逻辑推理解决问题在解决图形题的过程中,需要运用逻辑推理来得出答案。
逻辑推理是指基于已知条件和已有的知识,通过分析、判断和推理得出结论。
1. 利用已知条件:将已知条件进行整理,看是否能够得到一些有用的信息。
2. 运用逻辑关系:通过观察和分析,找到图形中的各种联系和关联,根据已知条件进行逻辑推理。
3. 利用反证法:有时候可以利用反证法来解决问题,即假设问题的答案是错误的,然后根据已知条件进行推理,得出矛盾,证明答案是正确的。
小学数学解题方法之一:图示法
方法点一用格子图解决实际问题例1一根彩带长240米,把它分成三段,第一段比第二段长20米,第三段是第一段2倍,三段各长多少米?方法指导解决此类问题主要是先根据总数量与总份数求出一份量,再求出其他数量。
此题中彩带总长度不变,三段相比较,第二段最短,所以把第二段看作一份,则第一段是一份多20米,第三段是第一段的2倍,则是第二段的两倍多两个20米。
如图:观察上图可以发现,这根彩带的总长度是4个第二段的长度和加上3个20米,用(240-20×3)除以4就可以得出第二段的长度,第二段的长度加20米就是第一段的长度,第一段的长度乘2就得到第三段的长度.正确解答第二段:(240-20×3)÷4=45(米)第一段:45+20=64(米)第三段:65×2=130(米)答:第一段长65米,第二段长45米,第三段长130米。
例2甲、乙、丙三人各拿出同样多的钱买气球。
甲拿到的气球比乙拿到的气球少6个,乙和丙拿到的气球同样多。
这样,乙和丙每人要各付给甲1.2元。
每个气球售价多少钱?方法指导此题中甲、乙、丙三人花了同样多的钱,说明三人买的气球一样多,甲比乙和丙都少拿6个气球,则乙和丙比甲各多拿6个。
甲、乙、丙花同样多的钱!,应该得到同样多的气球,这样如果乙和丙每人给甲2个气球,则甲、乙、丙三人的气球一样多,如图所示。
即2个气球的售价是1.2元。
由此可以求出一个气球的价钱。
正确解答1.2÷(6-6×2÷3)=1.2÷(6-4)=1.2÷2=0.6(元)答:每个气球售价0.6元。
例3冰化成水体积要减少,水结成冰体积要增加几分之几?方法指导解决此类问题,首先要确定把哪一个量看作单位“1”,冰化成水体积减少是和冰本身来比,把冰看作单位“1”;水结成冰体积增加是和水本身来比,把水看作单位“1”。
观察上图发现,11份的冰化成水后,体积为10份,比原来减少1份,10份的水结成冰后,体积是11份,比原来增加1份,增加的1份除以水的体积10份就得到所求问题。
画图法解决小学数学练习题
画图法解决小学数学练习题画图法是小学数学学习中常用的一种解题方法,通过画图来辅助理解、分析和解决数学问题。
它不仅可以帮助学生更好地理解和记忆数学知识,还能提高学生的逻辑思维和问题解决能力。
本文将从画图法的定义、应用、优势以及小学数学练习题中的具体案例等方面进行论述。
一、画图法的定义及基本原理画图法是指通过绘制相关图形来辅助解决数学问题的方法。
它可以将抽象的数学概念具象化,使问题更加直观、具体,有助于学生理解问题的含义和内涵。
同时,图形也是沟通帮助理解和交流的工具,通过观察和分析图形,学生能够更加清晰地思考问题,找到解决问题的思路。
画图法的基本原理是通过将问题中的信息转化为图形来帮助学生更好地理解问题,并从中找到解决问题的方法。
对于一些几何题、数据统计题等,画图法尤为适用。
通过画图,学生可以更直观地观察、比较和分析图形的特征,从而更好地解答问题。
二、画图法在小学数学中的应用画图法在小学数学中有广泛的应用。
例如,在几何学习中,学生通过画图可以更好地理解各种几何形状的特征以及它们之间的关系。
在解决面积、周长等问题时,通过画图可以直观地观察到图形的变化规律,进而得出解答。
此外,在数据统计方面,画图法也起到了很大的作用。
学生可以通过绘制条形图、折线图等图形,更好地展示数据之间的比较和关系。
通过观察图形,学生可以更精确地获取相关信息,加深对数据的理解。
三、画图法的优势画图法在解决小学数学练习题中具有以下优势:1. 直观明了:通过画图,学生可以将问题中的抽象概念转化为具体形象,更好地理解问题的意义和目标。
2. 逻辑清晰:画图法能够帮助学生整理思路、建立逻辑关系,使问题求解的过程更为清晰和条理。
3. 探究性学习:通过画图分析问题,学生能够发现问题规律,激发学生的问题意识和独立思考能力。
4. 培养创新意识:画图法能够激发学生的创造力,引导学生寻找多种解决方法,并培养学生的创新思维。
四、小学数学练习题中的画图法案例以下是几个小学数学练习题,通过画图法来解决:1. 甲、乙两个盒子中,甲盒有4个红球,乙盒有5个红球。
小学数学6类“画图”解题方法
01平面图对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题.例1 有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积.根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系.先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积.如图(1)所示.根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3).从图中不难找出:原长方形的长(A)是120÷12=10原长方形的宽(B)是72÷12=6则两数的积为10×6=60借助长方形图,弄清了题中的条件,找到了解题的关键.例2 一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为60平方厘米的平行四边形.求原来梯形面积是多少平方厘米?根据题意画平面图:从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-1=0.5倍.所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=50(平方厘米).02立体图一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题.例1把一个正方体切成两个长方体,表面积就增加了8平方米.原来正方体的表面积是多少平方米?如果只凭想象,做起来比较困难.按照题意画图,可以帮助我们思考,找出解决问题的方法来.按题意画立体图:从图中不难看出,表面积增加了8平方米,实际上是增加2个正方形的面,每个面的面积是8÷2=4(平方米).原正方体是6个面,即表面积为4×6=24(平方米).例2 用3个长3厘米、宽2厘米、高1厘米的长方体,拼成一个大长方体.这个大长方体的表面积是多少?按题意画立体图来表示,三个长方体拼成的大长方体有以下三种(1)拼成长方体的长是2×3=6(厘米),宽3厘米,高1厘米.表面积为(6×3+6×1+3×1)×2=54(平方厘米).(2)拼成长方体的长是3×3=9(厘米),宽2厘米,高1厘米.表面积为(9×2+9×1+2×1)×2=58(平方厘米).(3)拼成长方体的长是3厘米,宽是2厘米,高是1×3=3(厘米).表面积为(3×2+3×3+2×3)×2=42(平方厘米).这道题有以上三种答案,通过画图起到审题和理解题意的作用.03分析图一些应用题,为了能正确审题和分析题目中的数量关系,可以把题目中的条件、问题的相互关系用分析图表示出来.例1新华中学买来8张桌子和几把椅子,共花了817.6元.每张桌子价78.5元,比每把椅子贵62.7元,买来椅子多少把?分析图:(l)买椅子共花多少钱?817.6-78.5×8=189.6元)(2)每把椅子多少钱?78.5-62.7=15.8(元)(3)买来椅子多少把?189.6÷15.8=12(把)综合算式为:(817.6-78.5×8)÷(78.5-62.7)=189.6÷15.8=12(把)答:买来椅子12把.04线段图一些题目条件多,条件之间关系复杂,一时难以解答.可画线段图表示,寻求解题的突破口.例1光明小学六年级毕业生比全校总人数的还多30人.新学期一年级新生人学360人,这样现在比原全校总人数增加了.求原来全校学生有多少人?从图中可以清楚看出,(360-30)人与全校人数的(+)相对应,求全校人数用除法计算.列式为:(360-30)÷(+)=330÷=900(人).例2 甲乙两人同时从相距88千米的两地相向而行,8小时后在距中点4千米处相遇.甲比乙速度快,甲、乙每小时各行多少千米?按照题意画线段图:从图中可以清楚看出,甲、乙8小时各行的距离,甲行全程的一半又多出4千米,乙行全程的一半少4千米,这样就可以求出甲、乙的速度了.甲速:(88÷2+4)÷8=6(千米)有些问题因为分析的角度不同,因此解题的思路也不同.通过画图能清楚看出解题思路,便于分析比较.例1有一个伍分币、4个贰分币、8个壹分币,要拿出8分钱,一共有多少种拿法?这道题从表面港一点也不难,但是要不重复.不遗漏地把全部拿法一一说出来也不容易,可以用枚举法把各种情况一一列举出来,把思路写出来.从图表中可以清楚着出不同的拿法.此题一共有不重复的7种拿法.从以上各例题中可看出:解题时通过画图来帮助理解题意,起到了化繁为简、化难为易的作用.我们不妨在解题中广泛使用.。
小学数学图形解题方法大全
小学数学图形解题方法大全小学数学图形解题方法大全一、线、角1.直线没有端点,没有长度,可以无限延伸。
2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。
3. 在一条直线上的一个点可以引出两条射线。
4. 线段有两个端点,可以测量长度。
圆的半径、直径都是线段。
5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。
6.几个易错的角边关系:(1)平角的两边是射线,平角不是直线。
(2)三角形、四边形中的角的两边是线段。
(3)圆心角的两边是线段。
7.两条直线相交成直角时,这两条直线叫做互相垂直。
其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。
9.在同一个平面上不相交的两条直线叫做平行线。
二、三角形1.任何三角形内角和都是180度。
2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。
3.任何三角形都有三条高。
4.直角三角形两个锐角的和是90度。
5.两个三角形等底等高,则它们面积相等。
6.面积相等的两个三角形,形状不一定相同。
三、正方形面积1.正方形面积:边长×边长2.正方形面积:两条对角线长度的积÷2四、三角形、四边形的关系1.两个完全一样的三角形能组成一个平行四边形。
2.两个完全一样的直角三角形能组成一个长方形。
3.两个完全一样的等腰直角三角形能组成一个正方形。
4.两个完全一样的梯形能组成一个平行四边形。
五、圆把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。
半圆的周长等于圆的周长的一半加直径。
半圆的周长公式:C=∏d÷2在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
小学一年级数学画图解题策略
小学一年级数学画图解题策略今天学习方法网小编今天为大家整理了小学一年级数学画图解题策略,快来学习吧!画图”作为小学一年级学生解决数学问题的方法,清楚,容易理解。
人教版小学数学一年级上册就有这方面的内容,对于同一个数学问题,解决的方法可以列式,数一数,还可以画一画。
但对于一年级的孩子来说,列式,对于一般的解决问题比较容易理解,像“一共”是多少,“还差”多少,“谁比谁”多多少,少多少,该用什么方法他们清楚。
但对于像这样的问题,他们可能就为难了。
例如,上册课本79页例6是一幅插图,小朋友们排成一排在动物园参观动物,还提供了两个小朋友说的话,小丽说:我排第10;小宇说:我排第15.要我们解决的问题是,小宇和小丽之间有几人?首先,要让学生“理解”之间就不包括小丽和小宇两人。
如果列式解答,对于孩子们来说,给他们增加难度了,而且方法不一定掌握。
但如果用画图方法解决,通过数数就可以知道,小宇和小丽之间有4人。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
还是排队问题,小朋友们排成一队做操,小红前面有7人,后面有4人,那么,从前往后数,小红排第( ),从后往前数,她排第( ),这一队一共有( )人。
这个题如果用画图方法就简单多了先画出小红的位置(用来代替也可以,简单),然后画前面的7人,再画后面的4人,根据图就可以把问题解决了。
部编版小学数学考场答题规范与考试技巧
部编版小学数学考场答题规范与考试技巧关于题型1、答卷不能用铅笔,红笔。
一般要求为黑色签字笔。
作图用铅笔,图形辅助线需用铅笔、虚线。
2、【选择题】、【填空题】只写最后结果,无需写出计算过程在试卷上。
3、【计算题(非方程)】开头写上“解:原式=”【计算题(解方程)】开头写上“解:”,等号上下对齐计算题不能直接写出结果,至少需写三步再给出答案。
4、【解答题】开头写“解:”,最后写“答”:,每步有“小标题”。
解答题中的计算,可以写出算式后直接写出算式结果,不用写出算式的计算过程。
列方程做的应用题可以列出方程后,直接写出方程的解。
解答题务必分步去写过程。
并且要保证过程详尽,该体现在卷面上的要点,不要轻易跳过。
对于那些没有把握的题目,分步去写可以得到分步的分数。
解答题的评分标准都是分步给的。
9个细节1、一道数学题结果要不要带单位,题目要不要进行单位换算,是数学审题的“头等大事”。
2、只需要字体工整,不需要字写的多么好看,就可以让一份答卷看起来赏心悦目。
而整齐的卷面,是可以通过“刻意练习”短期习得的。
根据我个人的教学实践,只要愿意,每个学生都可以把卷面写的很整洁。
3、一道解答题不是完全做对才能得到分数。
把自己想到的思路都写上,只要正确,就可以得到分步的分数。
不要把解答题完全空下来。
每一分都很宝贵。
4、计算的结果若是一个大于1的分数,写成带分数与假分数都可(若分子相较分母过大,可考虑化成带分数,让人一眼能看出分数的大小)。
5、π如果没有明确说明,一定要取3.14代入计算。
6、一道题的最后一步若出现除不尽的情况,比如2÷3:若题目对结果没有明确要求,就写成2/3;若要求结果是小数(但并没有明确说明写成几位小数),则保留小数点后两位,写成0.67;若要求结果是百分数,则百分号前面的数保留小数点后一位,写作66.7%。
7、几何题碰到要作辅助线的情况,最好把辅助线怎么作的简单描述出来,比如说“连接AC”。
但是如果不写,直接只在图上画出来,在小学阶段是不会扣分的。
小学数学画图的方法与技巧
小学数学画图的方法与技巧
1. 准备绘图工具。
在画图前,要准备好各种画图工具,例如铅笔、橡皮、尺子、圆规、直角板等。
2. 规划画图内容。
在画图前,应该规划好画图内容,包括画图对象、尺寸、比例等,以便于画图过程中能够按照既定的计划来操作。
3. 注意比例关系。
在画图过程中,要注意各个部分之间的比例关系,尤其是长度、宽度、高度等方面,可以通过使用比例尺等方法来保证正确性。
4. 采用简单的几何图形。
在小学数学中,大部分的图形都可以用一些简单的几何图形来组合而成,例如圆、三角形、矩形等,所以可以先画出这些简单的图形,然后再组合成复杂的图形。
5. 注意图形的对称性。
对称性是数学中一个非常重要的概念,在画图时也同样要注意图形的对称性,例如直线对称、中心对称等。
6. 细心认真。
在画图时,要细心认真,仔细考虑每一个细节,尤其是长度、尺寸等方面,一旦出现差错,就需要重新作图。
7. 练习、复习。
画图是一项需要多次练习才能掌握的技能,所以要多加练习、复习。
可以通过绘制课本中的例题、习题等来提高画图技巧。
小学数学解题方法——图示法(1)画示意图法
方法点一用格子图解决实际问题例1一根彩带长240米,把它分成三段,第一段比第二段长20米,第三段是第一段2倍,三段各长多少米?方法指导解决此类问题主要是先根据总数量与总份数求出一份量,再求出其他数量。
此题中彩带总长度不变,三段相比较,第二段最短,所以把第二段看作一份,则第一段是一份多20米,第三段是第一段的2倍,则是第二段的两倍多两个20米。
如图:观察上图可以发现,这根彩带的总长度是4个第二段的长度和加上3个20米,用(240-20×3)除以4就可以得出第二段的长度,第二段的长度加20米就是第一段的长度,第一段的长度乘2就得到第三段的长度.正确解答第二段:(240-20×3)÷4=45(米)第一段:45+20=64(米)第三段:65×2=130(米)答:第一段长65米,第二段长45米,第三段长130米。
例2甲、乙、丙三人各拿出同样多的钱买气球。
甲拿到的气球比乙拿到的气球少6个,乙和丙拿到的气球同样多。
这样,乙和丙每人要各付给甲1.2元。
每个气球售价多少钱?方法指导此题中甲、乙、丙三人花了同样多的钱,说明三人买的气球一样多,甲比乙和丙都少拿6个气球,则乙和丙比甲各多拿6个。
甲、乙、丙花同样多的钱!,应该得到同样多的气球,这样如果乙和丙每人给甲2个气球,则甲、乙、丙三人的气球一样多,如图所示。
即2个气球的售价是1.2元。
由此可以求出一个气球的价钱。
正确解答1.2÷(6-6×2÷3)=1.2÷(6-4)=1.2÷2=0.6(元)答:每个气球售价0.6元。
例3冰化成水体积要减少,水结成冰体积要增加几分之几?方法指导解决此类问题,首先要确定把哪一个量看作单位“1”,冰化成水体积减少是和冰本身来比,把冰看作单位“1”;水结成冰体积增加是和水本身来比,把水看作单位“1”。
观察上图发现,11份的冰化成水后,体积为10份,比原来减少1份,10份的水结成冰后,体积是11份,比原来增加1份,增加的1份除以水的体积10份就得到所求问题。
小学数学5种画图法解应用题,孩子轻松理解题意
小学数学5种画图法解应用题,孩子轻松理解题意如果一个学生学会了画应用题,可以有把握地说,他一定学会了解应用题。
“画图法“可以说是帮助学生理解题意,解决应用题最有效的工具!下面一一举例:一、线段图法例:两个小同学折纸鹤,小红折的数量比小丽的3倍还多5个,她俩一共折了53个,问两个人分别折了多少个?根据题意作图:解析:看这个线段图,很容易发现53-5,得出的结果再平均分成4份,其中的1份就是小丽折的纸鹤个数。
列式计算:小丽折的个数:(53-5)÷4=12(个),小红折的个数:12 ×3+5=41(个)。
二、平面图法例:有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
解析:这道题可以画长方形图来具象化,长表示A,宽表示B,那么两数的积就是长方形的面积。
A、B原来两数用长方形图a表示,当A增加12即长增加12,宽不变,即B不变,如图b;当B增加12即宽增加12,长不变,也就是A不变,如图c。
所以:长方形的宽也就是B=72÷12=6,长方形的长也就是A=120÷12=10,那么,A、B的积为6×10=60。
三、立体图法例:把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?根据题意作图:解析:由图可知,增加的8平方米,就是正方体的2个面,每个面的面积是8÷2=4(平方米),则正方体的表面积是:4×6=24(平方米)。
四、列表图法例:有一个5分币,4个2分币,8个1分币。
要拿9分钱,有几种拿法?根据题意作图:由列表图,可以清楚看到共有7种拿法。
五、树状图法例:小明是个小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清就随便穿了两只。
小明正好穿的是同一双袜子的可能性是多少?解析:假设2双袜子为A袜、B袜,那么4只袜子分别是A1、A2、B1、B2,根据题意作图:由树状图可知,2双袜子任意搭配有12种情况,其中同一双的情况有4种,所以小明穿同一双袜子的的可能性是4/12,也就是1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教部编版小学数学画图解题方法梳理
一、小学数学到底学什么
学过数学的人都知道,思维方式的运用在学习数学这一科目上的重要性,小学阶段的数学主要培养的是孩子的逻辑思维能力,是从形象思维逐步过度到抽象思维的过程,如果在小学阶段没有将基础打牢,那么等孩子上初中后面对更复杂的学习内容,就会变得更吃力。
可以这样说,审题是对题目进行初步的感知,特别是应用题,而理解题意这个环节,决定你考了问题的角度,确定你考虑问题的方法,因此,这是做题中的重要环节。
二、小学数学“画图”解题立竿见影
根据审题的内容画图,把该题的条件、问题在图上表明,借助线段图或实物图把抽象的数学问题具体化,还原本来的面目,从而找到解决问题的方法,从图中一下子就可以找到答案,而且通过画图也能很快找到自己的错误。
很多小学生做应用题,就知道看题目,草稿纸也不用,紧盯着啊看啊......能看出花来?光看题,又不是看小说。
借助画图帮助孩子理解题意,是至关重要的一步
借助画图解题,它是孩子打开解决问题大门的一把“金钥匙”,很多问题都可以很快速的求解,比如几何问题、路程问题,如果光靠想是很难想出答案的画图就一目了然,下面我
们举几个栗子来看看。
1、平面图
对于题目中条件比较抽象、不易直接根据所学知识写出答案的问题,可以借助画平面图帮助思考解题。
如,有两个自然数A和B,如果把A增加12,B不变,积就增加72;如果A不变,B增加12,积就增加120,求原来两数的积。
根据题目的条件比较抽象的特点,不妨借用长方形图,把条件转化为因数与积的关系。
先画一个长方形,长表示A,宽表示B,这个长方形的面积就是原来两数的积。
如图(l)所示。
根据条件把A增加12,则长延长12,B不变即宽不变,如图(2);同样A不变即长不变,B增加12,则宽延长12,如图(3)。
从图中不难找出:
原长方形的长(A)是120÷12=10
原长方形的宽(B)是72÷12=6
则两数的积为10×6=60
借助长方形图,弄清了题中的条件,找到了解题的关键。
再如,一个梯形下底是上底的1.5倍,上底延长4厘米后,这个梯形就变成一个面积为60平方厘米的平行四边形。
求原来梯形面积是多少平方厘米?
根据题意画平面图:
从图中可以看出:上、下底的差是4厘米,而这4厘米对应的正好是1.5-l=0.5倍。
所以上底是4÷(1.5-1)=8(厘米),下底是8×1.5=12(厘米),高是60÷12=5(厘米),则原梯形的面积是(8+12)×5÷2=50(平方厘米)。
2、立体图
一些求积题,结合题目的内容画出立体图,这样做,使题目的内容直观、形象,有利于思考解题。
如,把一个正方体切成两个长方体,表面积就增加了8平方米。
原来正方体的表面积是多少平方米?
如果只凭想象,做起来比较困难。
按照题意画图,可以帮助我们思考,找出解决问题的方法来。
按题意画立体图:从图中不难看出,表面积增加了8平方米,实际上是增加2个正方形的面,每个面的面积是8÷2=4(平方米)。
原正方体是6个面,即表面积为4×6=24(平方米)。
再如,用3个长3厘米、宽2厘米、高1厘米的长方体,拼成一个大长方体。
这个大长方体的表面积是多少?
按题意画立体图来表示,三个长方体拼成的大长方体有以下三种情况:
(l)拼成长方体的长是2×3=6(厘米),宽3厘米,高1厘米。
表面积为(6×3+6×1+3×1)×2=54(平方厘米)。
(2)拼成长方体的长是3×3=9(厘米),宽2厘米,高1厘米。
表面积为(9×2+9×1+2×1)×2=58(平方厘米)。
(3)拼成长方体的长是3厘米,宽是2厘米,高是1×3=3(厘米)。
表面积为(3×2+3×3+2×3)×2=42(平方厘米)。
这道题有以上三种答案,通过画图起到审题和理解题意的作用。
3、分析图
一些应用题,为了能正确审题和分析题目中的数量关系,可以把题目中的条件、问题的相互关系用分析图表示出来。
如,新华中学买来8张桌子和几把椅子,共花了817.6元。
每张桌子价78.5元,比每把椅子贵62.7元,买来椅子多少把?
分析图:
(l)买椅子共花多少钱?817.6-78.5×8=189.6元)(2)每把椅子多少钱?78.5-62.7=15.8(元)
(3)买来椅子多少把?189.6÷15.8=12(把)
综合算式为:
(817.6-78.5×8)÷(78.5-62.7)
=189.6÷15.8
=12(把)
答:买来椅子12把。
4、线段图。