高二双曲线练习题[1]
高二数学椭圆双曲线专项练习含答案
高二数学椭圆双曲线专项练习选择题:1、双曲线 x2-ay2= 1 的焦点坐标是()A .( 1 a , 0) , ( -1 a , 0)B. ( 1 a , 0), (-1 a , 0)C.(-a1a1D. (-a1,0),(a 1a, 0),(a, 0)a, 0)a2、设双曲线的焦点在x 轴上 ,两条渐近线为y 1)x ,则该双曲线的离心率为(2A .5B .5/2C.5D.5/43.椭圆x2y21的两个焦点为F1、F2,过 F1作垂直于 x 轴的直线与椭圆订交,一个交点为P,则| PF2|= 4()A. 3 /2B.3C. 4了D. 7/24.过椭圆左焦点 F 且倾斜角为60°的直线交椭圆于A, B 两点,若FA 2 FB ,则椭圆的离心率等于()A 2B2C1D2 3223 x2y2x 2y 25.已知椭圆3m25n2 和双曲线2m23n2= 1 有公共的焦点,那么双曲线的渐近线方程是()A . x=±15 y B. y=±15 x C. x=± 3 y D. y=± 3 x22446.设 F1和 F2为双曲线x2y2= 1 的两个焦点,点P 在双曲线上,且知足∠F1PF2=90°,则△ F1PF2的面积4是() A.1 B .5C. 2D.5 27.已知 F1、 F2是两个定点,点 P 是以 F1和 F2为公共焦点的椭圆和双曲线的一个交点,而且PF1⊥PF2,e1和e 分别是椭圆和双曲线的离心率,则有()2A .e1e22B .e12e224C.e1e2 2 2D.112 e12e228.已知方程x 2+y 2=1 表示焦点在 y 轴上的椭圆,则m 的取值范围是()| m | 2 m1A . m<2B .1<m<2C. m< - 1 或 1<m<2 D . m< - 1 或 1<m<32x 2y 2 x 2 y 29.已知双曲线 a 2-b 2=1和椭圆m 2 + b 2 =1( a>0,m> b>0) 的离心率互为倒数,那么以a 、b 、m 为边长的三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形x 2 y 2 1 上有 n 个不一样的点 :P 1 2 n n1 的10.椭圆3 , P , , P , 椭圆的右焦点为 F. 数列{ |P F|}是公差大于1004等差数列 , 则 n 的最大值是() A . 198 B .199C . 200D .201一、填空题:11.对于曲线 C ∶x 2 y 2 C 不行能表示椭圆;②4 k=1 ,给出下边四个命题:①由线k 1当 1<k < 4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则 k < 1 或 k > 4;④若曲线 C 表示焦点在 x 轴上的椭圆,则 1< k <5此中全部正确命题的序号为_______ ______212.设圆过双曲线x 2 y 2 =1 的一个极点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__916x 2 y 2 1 21 213.双曲线= 1 的两焦点为、,点 P 在双曲线上,若 PF ⊥ PF,则点 P 到 x 轴的距离 ____9 1614.若 A ( 1, 1),又 F 1 是 5x 2+ 9y 2=45 椭圆的左焦点,点P 是椭圆的动点,则 |PA|+|P F 1|的最小值 _______15、已知 B(-5 , 0) , C(5 , 0) 是△ ABC 的两个极点,且 sinB-sinC= 3sinA, 则极点 A 的轨迹方程是5二、解答题:16、设椭圆方程为x 2 y 2 =1,求点 M (0,1)的直线l 交椭圆于点 A 、 B , O 为坐标原点,点P 知足41 OB) ,当 l 绕点 M 旋转时,求动点 P 的轨迹方程 .OP(OA217、已知 F1、 F2为双曲线x 2y21(a>0,b>0)的焦点,过F2作垂直a 2b2于 x 轴的直线交双曲线于点P,且∠ PF1F2= 30°.求双曲线的渐近线方程.图18、已知椭圆x2y21( a b 0) 的长、短轴端点分别为A、B,此后椭圆上一点 M 向 x 轴作垂线,恰巧a2b2经过椭圆的左焦点F1,向量 AB 与 OM 是共线向量.(1)求椭圆的离心率e;( 2)设 Q 是椭圆上随意一点,F1、 F2分别是左、右焦点,求∠F1QF2的取值范围;19、已知中心在原点的双曲线 C 的右焦点为 (2,0),右极点为( 3,0)。
高中数学 第二章 圆锥曲线与方程 2.2 双曲线(1)练习 新人教A版高二选修1-1数学试题
2.2 双曲线(1)A 级 基础巩固一、选择题1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是导学号 03624438( C )A .双曲线B .双曲线左支C .一条射线D .双曲线右支[解析]∵|PM |-|PN |=|MN |=4,∴动点P 的轨迹是一条射线. 2.双曲线3x 2-4y 2=-12的焦点坐标为导学号 03624439( D ) A .(±5,0) B .(0,±5) C .(±7,0)D .(0,±7)[解析] 双曲线3x 2-4y 2=-12化为标准方程为y 23-x 24=1,∴a 2=3,b 2=4,c 2=a 2+b 2=7,∴c =7,又∵焦点在y 轴上,故选D .3.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值X 围是导学号 03624440( A )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1[解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.4.(2016·某某某某高二检测)已知双曲线2mx 2-my =4的一个焦点为(0,6),则m 的值为导学号 03624441( B )A .1B .-1C .73D .-73[解析] 将双曲线方程化为x 22m-y 24m=1.因为一个焦点是(0,6),所以焦点在y 轴上,所以c =6,a 2=-4m ,b 2=-2m ,所以a 2+b 2=-4m -2m =-6k=c 2=6.所以m =-1.5.双曲线x 210-y 22=1的焦距为导学号 03624442( D )A .3 2B .4 2C .3 3D .4 3[解析] 由双曲线的标准方程,知a 2=10,b 2=2,则c 2=a 2+b 2=10+2=12,因此2c =43,故选D .6.(2015·某某理)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于导学号 03624443( B )A .11B .9C .5D .3[解析] 由题,|||PF 1|-|PF 2|=2a =6, 即||3-|PF 2|=2a =6,解得|PF 2|=9. 二、填空题7.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__48__.导学号 03624444[解析] 依题意得|PF 2|=|F 1F 2|=10,由双曲线的定义得|PF 1|-|PF 2|=6,∴|PF 1|=16.∴S △PF 1F 2=12×16×102-1622=48.8.已知双曲线x 225-y 29=1的两个焦点分别为F 1、F 2,若双曲线上的点P 到点F 1的距离为12,则点P 到点F 2的距离为__2或22__.导学号 03624445[解析] 设F 1为左焦点,F 2为右焦点,当点P 在双曲线左支上时,|PF 2|-|PF 1|=10,|PF 2|=22;当点P 在双曲线右支上时, |PF 1|-|PF 2|=10,|PF 2|=2. 三、解答题9.求满足下列条件的双曲线的标准方程.导学号 03624446 (1)焦点在x 轴上,c =6且经过点(-5,2); (2)过P (3,154)和Q (-163,5)两点.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧25a 2-4b2=1a 2+b 2=6,解之得a 2=5,b 2=1, 故所求双曲线方程为x 25-y 2=1.(2)设双曲线方程为Ax 2+By 2=1(AB <0),由题意得 ⎩⎪⎨⎪⎧9A +22516B =12569A +25B =1,解之得⎩⎪⎨⎪⎧A =-116B =19.∴所求双曲线方程为y 29-x 216=1.B 级 素养提升一、选择题1.已知双曲线中心在原点,一个焦点为F 1(-5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是导学号 03624447( B )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1[解析] 由条件知P (5,4)在双曲线x 2a 2-y 2b2=1上,∴5a 2-16b2=1,又a2+b 2=5,∴⎩⎪⎨⎪⎧a 2=1b 2=4,故选B .2.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为导学号 03624448( D )A .13B .12C .23D .32[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D .3.已知m 、n 为两个不相等的非零实数,则方程mx -y +n =0与nx 2+my 2=mn 所表示的曲线可能是导学号 03624449( C )[解析] 把直线方程和曲线方程分别化为y =mx +n ,x 2m +y 2n=1.根据图形中直线的位置,判定斜率m 和截距n 的正负,从而断定曲线的形状.4.已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线与双曲线的左支交于A 、B 两点,线段AB 的长为5,若2a =8,那么△ABF 2的周长是导学号 03624450( D )A .16B .18C .21D .26[解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 5.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值X 围是导学号 03624451( C )A .(-∞,1)B .(2,+∞)C .(-∞,-2)D .(-2,1)[解析] 由题意,方程可化为y 2m 2-4-x 21-m=3,∴⎩⎪⎨⎪⎧m 2-4>01-m >0,解得m <-2.故选C .二、填空题6.(2016·某某某某高二检测)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,有一个交点的坐标为(15,4),则此双曲线的方程为y 24-x 25=1 .导学号 03624452[解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),根据双曲线的定义,知2a=|152+12-152+72|=4,故a =2.又b 2=c 2-a 2=5,故所求双曲线的方程为y 24-x 25=1. 解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去).故所求双曲线方程为y 24-x 25=1. 7.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于__4__.导学号 03624453[解析] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 三、解答题8.已知双曲线方程为2x 2-y 2=k ,焦距为6,求k 的值.导学号 03624454 [解析] 由题意知c =3,若焦点在x 轴上,则方程可化为x 2k 2-y 2k =1,∴k 2+k =32,即k =6.若焦点在y 轴上,则方程可化为y 2-k -x 2-k2=1.∴-k +(-k2)=32,即k =-6.综上,k 的值为6或-6.C 级 能力提高1.双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值为__-1__.导学号 03624455[解析] 将双曲线的方程化为x 21k-y 28k=1,因为双曲线的一个焦点坐标是(0,3), 所以焦点在y 轴上,且c =3. 所以a 2=-8k ,b 2=-1k.所以-8k -1k=9,解得k =-1.2.当0°≤α≤180°时,方程x 2cos α+y 2sin α=1表示的曲线如何变化?导学号 03624456[解析] (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1. (2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1. ①当0°<α<45°时,0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45<α<90°时,1cos α>1sin α>0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1,它表示两条平行直线y =±1. (4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.。
高二数学双曲线练习题及答案
高二数学双曲线练习题及答案下面是一份高二数学双曲线练习题及答案的文章,请你仔细阅读:高二数学双曲线练习题及答案双曲线是数学中重要的曲线之一,在高二数学学习中也占有重要地位。
为了帮助同学们更好地掌握双曲线知识,我们提供一些练习题以及答案,供同学们进行巩固和练习。
题目一:已知双曲线C的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,焦点F在y轴上,顶点坐标为(0, a),离心率为 $\frac{1}{\sqrt{2}}$,求双曲线C的方程。
答案一:由双曲线的性质可知,焦点到顶点的距离与焦点到曲线上一点的距离之比等于离心率。
设F的坐标为(0, c),则离心率为:$\frac{CF}{Ca}=\frac{1}{\sqrt{2}}$由焦点的坐标可得c=a(1/√2)由离心率的定义可得:$\sqrt{a^2-c^2}=\frac{a}{\sqrt{2}}$解得a^2=4c^2。
将焦点的坐标带入,得到方程:$\frac{x^2}{a^2}-\frac{y^2}{4c^2}=1$题目二:已知双曲线C的一支渐近线方程为y=3x-2,焦点的坐标为(1,0),求双曲线C的方程。
答案二:由双曲线的性质可得,双曲线的渐近线的斜率为圆心到焦点连线的斜率。
设焦点坐标为(F, 0),则斜率为:k = tanα,其中α为双曲线的倾斜角又由渐近线y=3x-2可得,圆心到焦点连线的斜率为3因此,k=3=tanα,则α为60度,倾斜角为60度。
由焦点坐标可知,焦点在(x1, y1)上,即(1,0)由双曲线的方程性质可得,双曲线的公式为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$根据双曲线标准方程,我们可以将双曲线方程改写为:$\frac{(y-y1)^2}{a^2}-\frac{(x-x1)^2}{b^2}=1$代入焦点坐标(1,0)得到:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}=1$将双曲线的倾斜角代入,可得:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}-\frac{(y-x)^2}{a^2}=1$化简得:$\frac{2x^2+2xy+2x+2y^2-4y}{a^2}=0$这样得到了双曲线C的方程。
人教版高二数学选修1-1双曲线及其标准方程练习题答案及详解
-+--= C.-= D.-5(5,A.-= B.-=--=.椭圆+m 2=与双曲线m 2-=A.-= B.-=C.-=-= D.- D.m -b.已知方程=.以椭圆椭圆=A.==-+a 2=与双曲线a -+.过双曲线=.如果椭圆椭圆=.设双曲线与椭圆=3=1. 5、C ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、C ∵c 9-y 22m ,由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a ,∴|PF 1|·|·||PF 2|=m -a . 11、x 273-y 275=1 12、833∵a 2=3,b 2=4,∴c 2=7,∴c ïìx =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 13、1 由题意得a >0,且4-a 2=a +2,∴a =1. 14、 x 24-y 212=1(x ≤-2) 设动圆圆心为P (x ,y ),由题意得|PB |-|P A |=4<|AB |=8, 由双曲线定义知,点P 的轨迹是以A 、B 为焦点,且2a =4,a =2的双曲线的左支.其方程为:x 24-y 212=1(x ≤-2). 15、椭圆x 227+y 236=1的焦点为(0,±3),由题意,设双曲线方程为:y 2a 2-x 2b 2=1(a >0,b >0),人教版高二数学选修1-1双曲线及其双曲线及其标准方程标准方程练习题答案及详解 1、D 2、A 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1. 3、A 设动圆设动圆半径半径为r ,圆心为O ,x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、B 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双,双曲线方程曲线方程为y 2-x 2=5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|·||PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、A 验证法:当m =±1时,m 2=1,对,对椭圆椭圆来说,a 2=4,b 2=1,c 2=3. 对双曲线来说,a 2=1,b 2=2,c 2=3,故当m =±1时,它们有相同的焦点. 直接法:显然双曲线焦点在x 轴上,故4-m 2=m 2+2.∴m 2=1,即m =±1. 8、D 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点,为焦点,实轴实轴长为6的双曲线的右支,其方程为:x 27=1(x >0) 9、D |A F AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 10、A 设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|==7,该弦所在,该弦所在直线直线方程为x =7, 由îïí+2-b 2=∴16a 2-15b -=3,(3-3(3--3)·((3-y 2=-y M 2=-3-)(3--y 2M 2=±233,=233. =12|F =3,∴x 2M +y 2M =3①-y M 2=±233,=233. 椭圆=双曲线a 2=为:。
高二数学椭圆双曲线专项练习含答案
高二数学椭圆双曲线专项练习含答案The document was finally revised on 2021高二数学椭圆双曲线专项练习选择题:1、双曲线x 2-ay 2=1的焦点坐标是( ) A .(a +1, 0) , (-a +1, 0) B .(a -1, 0), (-a -1, 0)C .(-a a 1+, 0),(a a 1+, 0) D .(-a a 1-, 0), (aa 1-, 0) 2、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率为( )A .5BCD .5/43.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( ) A .3/2B .3C .4 了D .7/24.过椭圆左焦点F 且倾斜角为60°的直线交椭圆于B A ,两点,若FB FA 2=,则椭圆的离心率等于 ( ) A32 B 22 C 21 D 32 5.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215 B .y =±x 215 C .x =± y 43 D .y =±x 436.设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( ) A .1 B .25C .2D .5 7.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,则有( ) A .221≥e eB .42221≥+e e C .2221≥+e eD .2112221=+e e 8.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<23 9.已知双曲线22a x -22b y =1和椭圆22mx +22b y =1(a >0,m>b >0)的离心率互为倒数,那么以a 、b 、m为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形10.椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F. 数列{|P n F|}是公差大于1001的等差数列, 则n 的最大值是( ) A .198 B .199 C .200 D .201 一、 填空题: 11.对于曲线C ∶1422-+-k y k x =1,给出下面四个命题:①由线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25其中所有正确命题的序号为_____________12.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__13.双曲线16922y x -=1的两焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离____14.若A (1,1),又F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|P F 1|的最小值_______15、已知B(-5,0),C(5,0)是△ABC 的两个顶点,且sinB-sinC=53sinA,则顶点A 的轨迹方程是二、 解答题:16、设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.17、已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.18、已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;图19、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。
高二数学双曲线试题
高二数学双曲线试题1.双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.【答案】B【解析】设,易求M坐标为,在三角形中,即,由得,答案选B.【考点】双曲线的性质2.已知双曲线的右焦点是抛物线的焦点,两曲线的一个公共点为,且,则双曲线的离心率为A.B.C.D.【答案】C【解析】由题意可得:双曲线的焦点为,且两曲线的一个公共点为在y轴右侧,因为,因此可设点,所以,所以,所以双曲线的离心率为.【考点】双曲线、抛物线的定义及性质.3.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.4.已知集合P={x|1≤x≤8,x∈Z},直线y=2x+1与双曲线mx2-ny2=1有且只有一个公共点,其中m、n∈P,则满足上述条件的双曲线共有__________________个.【答案】3【解析】依题意,将直线y=2x+1与双曲线mx2-ny2=1的方程联立,消去y得:(m-4n)x2-4nx-n-1=0;分①直线y=2x+1与双曲线mx2-ny2=1相切,②直线y=2x+1与双曲线mx2-ny2=1相交,讨论,分利用判别式与直线y=2x+1与双曲线mx2-ny2=1的一条渐近线y=x平行即可求得答案.【考点】直线与双曲线的位置关系.5.已知双曲线中心在原点,一个焦点为,点P在双曲线上,且线段的中点坐标为(0,2),则此双曲线的方程是________________.【答案】【解析】由题可得P(,4),∵,∴把P(,4)代入双曲线标准方程,解方程组即可.【考点】双曲线的标准方程.6.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.7.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程8.已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.B.C.D.【答案】C【解析】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴,离心率=,∴,故选C.【考点】1、双曲线的性质;2、直线与圆锥曲线的位置关系.9.抛物线的准线与双曲线交于两点,点为抛物线的焦点,若△为直角三角形,则双曲线的离心率为()A.B.C.D.【答案】D【解析】先根据抛物线方程求得准线方程,代入双曲线方程求得,根据双曲线的对称性可知为等腰直角三角形,进而可求得或的纵坐标为,进而求得,利用和的关系求得,则双曲线的离心率可得. 解:依题意知抛物线的准线方程为,代入双曲线的方程得,不妨设,设准线与轴的交点为,∵是直角三角形,所以根据双曲线的对称性可知,为等腰直角三角形,所以即,解得,∴,所以离心率为,选D.【考点】双曲线的性质.10.若中心在原点,以坐标轴为对称轴的圆锥曲线,离心率为,且过点,则曲线的方程为________.【答案】【解析】离心率为的圆锥曲线是双曲线,而且是等轴双曲线,故可设基方程为,把点代入可求出.因此双曲线方程为.【考点】等轴双曲线的标准方程.11.过双曲线的左焦点且垂直于x轴的直线与双曲线相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于______.【答案】2.【解析】本题MN实质上是双曲线的通径,(可令代入双曲线方程求出的坐标,从而得出通径长),根据题意应该有,.【考点】双曲线的通径与离心率.12.已知双曲线(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离是.(Ⅰ)求双曲线的方程及渐近线方程;(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.【答案】(Ⅰ),;(Ⅱ)=【解析】本题主要考察双曲线的标准方程、韦达定理等基础知识,考察学生运算能力、综合分析和解决问题的能力.(Ⅰ)离心率为,∴,∴①,直线的方程为即,利用点到直线的距离公式得到:②,两式联立,可求出,∴双曲线方程为,渐近线方程为:;(Ⅱ)两点在以为圆心的同一个圆上,的中垂线过点,将直线与双曲线联立,消去,可得,设,中点为,则∴,解得=,并检验是否满足(.试题解析:(Ⅰ)直线的方程为:即又原点到直线的距离由得 3分所求双曲线方程为 4分(注:也可由面积法求得)渐近线方程为: 5分(Ⅱ)方法1:由(1)可知(0,-1),设,由得: 7分∴3+3+=3+3+,整理得:=0,∵,∴,∴,又由-10+25-3=0 (),∴y+y=, 10分2=7, 11分由△=100-4(1-3)(25-3)>0=7满足此条件,满足题设的=. 12分方法2:设,中点为,由, 7分∵,的中垂线过点 9分∵∴ 11分整理得解得=.(满足 12分【考点】1、双曲线的标准方程;2、点到直线的距离公式和直线方程;3、韦达定理.13.双曲线的焦距为()A.B.C.D.【答案】D【解析】中,所以,双曲线的焦距为2c=,故选D。
人教版高二数学选修1-1双曲线的几何性质练习题及答案
一、选择题(每小题四个选项中,只有一项符合题目要求)1.双曲线)0,0(12222>>=-b a by a x 的一条准线l 与一条渐近线F 是与l 相应的焦点,则|PF|等于( )交于P 点,F 是与l 相应的焦点,则|PF|等于( )A .aB .bC .2aD .2b2.已知平面内有一定线段AB ,其长度为4,动点P 满足|PA|-|PB|=3,O 为AB 的中点,则|PO|的最小值为( )A .1B .23 C .2 D .4 3.双曲线12222=-by a x 的离心率为1e ,双曲线12222-=-b y a x 的离心率为则21e e +的最小值是( )A .2B .2C .22D .44.已知双曲线12222=-by a x 的焦点为1F 、2F ,弦AB 过1F 且在若||2||||22AB BF AF =+,双曲线的一支上,则|AB|等于( )A .2aB .3aC .4aD .不能确定5.椭圆和双曲线有相同的中心和准线,椭圆的焦点1F 、2F 三等分以双曲线点1F '、2F '为端点的线段,则双曲线的离心率e ′与椭圆的离心率e 的比值是( )A .2B .3C .2D .36.已知两点)45,1(M ,)45,4(--N ,给出下列曲线方程 ①4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④二、填空题7.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有_________条。
8.设1F 、2F 是双曲线222a y x =-的两焦点,Q 是双曲线上任意一点,从1F 引21QF F ∠的平分线的垂线,垂足为P ,则点P 的轨迹方程是__________。
高中高二双曲线练习题(必考)
高二数学双曲线同步练习一、选择题(本大题共10小题,每小题5分,共50分)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++kyk x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可能是 ( )A B C D6.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有( )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点8.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L条数共有 ( ) A .4条 B .3条 C .2条 D .1条10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④1222=-y x ,其中与直线y=-2x -3有交点的所有曲线是 ( ) A .①③ B .②④ C .①②③ D .②③④二、填空题(本题共4小题,每小题6分,共24分)13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .三、解答题(本大题共6题,共76分)15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).(12分)17.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13.(1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.(12分)18.已知不论b 取何实数,直线y=k x +b 与双曲线1222=-y x 总有公共点,试求实数k的取值范围.(12分)20.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).(14分)① ② 参考答案11.47 12.14522=-x y 13.64 14.0543=-+y x三、解答题(本大题共6题,共76分) 15.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .16.(12分)[解析]:易知2,2,===e a c a b ,准线方程:2a x ±=,设()y x P ,,则)2(21a x PF +=,)2(22a x PF -=,22y x PO +=,2222212)2(2a x ax PF PF -=-=⋅∴ 222222)(PO y x a x x =+=-+= 21PF PO PF 、、∴成等比数列. 17.(12分)[解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22,∴a> 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1 ∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x 23+y 2=1.(2)设l :y =kx +m (k ≠0),则由,⎪⎩⎪⎨⎧+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上,∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③ 又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0,∴k 的取值范围是k ∈(-1,0)∪(0,1).18.(12分)[解析]:联立方程组⎩⎨⎧=-+=1222y x b kx y 消去y 得(2k 2-1)x 2+4kb x +(2b 2+1)=0,当时,即22k ,0212±==-k 若b=0,则k φ∈;若bb x 22120b 2+±=⇒≠,不合题意.当时,即22k ,0212±≠≠-k 依题意有△=(4kb)2-4(2k 2-1)(2b 2+1)>0,12222+<⇒b k 对所有实数b 恒成立,min 22)12(2+<∴b k ∴2k 2<1,得2222<<-k . 20.(14分)[解析]:以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020)设P (x ,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PB|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360由双曲线定义知P 点在以A 、B 为焦点的双曲线12222=-by a x 上, 依题意得a =680,c=1020,:,34056801020222222故双曲线方程为⨯=-=-=∴a c b 134056802222=⨯-y x用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|,,5680,5680=-=∴y x10680),5680,5680(=-PO P 故即,答:巨响发生在接报中心的西偏北45°距中心m 10680处.Q。
3.2.1 双曲线及其标准方程 练习册正文
3.2 双曲线3.2.1 双曲线及其标准方程一、选择题1.双曲线y 24-x 25=1的焦距为( ) A .6B .3C .2D .12.焦点分别为(-2,0),(2,0),且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1B .x 23-y 2=1C .y 2-x 23=1D .x 22-y 22=13.已知F 1,F 2是平面内两个不同的定点,则“||MF 1|-|MF 2||为定值”是“动点M 的轨迹是双曲线”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.[2024·益阳高二期末] 点M (x ,y )的坐标满足√(x +5)2+y 2-√(x -5)2+y 2=8,则点M 的轨迹方程为 ( )A .x 216+y 29=1B .x 216-y 29=1C .x 216-y 29=1(x>0)D .y 216-x 29=1(y>0) 5.若F 1,F 2分别是双曲线8x 2-y 2=8的左、右焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为( ) A .17B .16或12C .20D .16或206.[2024·福建南平一中高二月考] 设双曲线C 2与椭圆C 1:x 216+y 212=1有公共焦点F 1,F 2.若双曲线C 2经过点A (1,0),设P 为双曲线C 2与椭圆C 1的一个交点,则∠F 1PF 2的余弦值为( )A .35B .23C .34D .457.已知F 1,F 2分别是双曲线C :x 24-y 24=1的左、右焦点,P 是C 上一点,且位于第一象限,PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0,则P 的纵坐标为 ( )A .1B .2C .√2D .√38.(多选题)[2024·河南商丘高二期中] 已知方程x 2m 2-1+y 22m+2=1(m ≠±1)表示曲线C ,则下列结论正确的是 ( ) A .若m=3,则曲线C 是圆B .若曲线C 是椭圆,则m>3C .若曲线C 是双曲线,则m<1且m ≠-1D .若m<-1,则曲线C 是焦点在x 轴上的双曲线9.(多选题)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右顶点分别是A 1,A 2,左、右焦点分别是F 1,F 2,P 是双曲线上异于A 1,A 2的任意一点,给出下列结论,其中正确的是( )A .||PA 1|-|PA 2||=2aB .直线PA 1,PA 2的斜率之积等于定值b 2a 2C .使得△PF 1F 2为等腰三角形的点P 有且仅有四个D .若PA 1⃗⃗⃗⃗⃗⃗⃗ ·PA 2⃗⃗⃗⃗⃗⃗⃗⃗ =b 2,则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =0 二、填空题10.若双曲线y 22-x 2m =1的焦点与椭圆x 24+y 29=1的焦点重合,则m= .11.[2024·天津西青区高二期末] 已知双曲线x 2a 2-y 236=1(a>0)的两个焦点为F 1,F 2,焦距为20,点P 是双曲线上一点,|PF 1|=17,则|PF 2|= .12.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线上任意一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH|= .三、解答题13.(1)求与双曲线x 22-y 2=1有公共焦点,且过点(√2,√2)的双曲线的标准方程.(2)已知圆C 1:(x+2)2+y 2=254,圆C 2:(x-2)2+y 2=14,动圆P 与圆C 1,C 2都外切,求动圆圆心P 的轨迹方程.14.[2024·安徽芜湖一中高二月考] 已知点A (-2,0)与点B (2,0),P 是动点,且直线AP 与BP 的斜率之积等于34.(1)求动点P 的轨迹方程;(2)若点O 为原点,P 在第二象限,当|OP|=√232时,求点P 的坐标.15.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况,如图所示,已知三个发射台分别为A,B,C且刚好三点共线,已知AB=34海里,AC=20海里,现以AB的中点为原点,AB所在直线为x轴建立平面直角坐标系.根据船P接收到C发射台与A发射台发出的电磁波的时间差计算出距离差,得知船P在双曲线(x-27)236-y264=1的左支上,根据船P接收到A发射台与B发射台发出的电磁波的时间差,计算出船P到B发射台的距离比到A发射台的距离远30海里,则点P的坐标为( )A.(907,±32√117)B.(1357,±32√27)C.(17,±323) D.(45,±16√2)16.已知椭圆x 2a2+y2b2=1(a>b>0)与双曲线x2m2-y2n2=1(m>0,n>0)的一个交点为P,且有公共的焦点F1,F2,若∠F1PF2=2α,求证:tan α=nb.。
高二数学 双曲线综合训练题 试题(共3页)
双曲线综合(zōnghé)训练题
1. 在双曲线的一支上有三个点、
、与焦点的间隔成等差数列.(1)求
;(2)求证线段的垂直平分线经过某个定点,并求出定点的坐标.
2.双曲线的离心率,左、右焦点分别为
、,左准线为,能否在双曲线的左支上找到一点,使得是P到l的间隔与的等比中项?
3.直线与双曲线的左支相交于,两点,设过点和中点的直线l在轴上的截距为,求b的取值范围.
4.双曲线的两条渐近线过坐标(zuòbiāo)原点,且与以
为圆心,1为半径的圆相切,双曲线S的一个顶点
和A关于直线对称,设直线l过点A,斜率为.(1)求双曲线S的方程;(2)当时,在双曲线S的上支求点B,使其与直线l的间隔为;
5.如下列图,给出定点和直线,B是直线l上的动点,的角平分线交AB于,求点C的轨迹方程,并讨论方程表示的曲线类型与值的关系.
6. 双曲线C 的实轴在直线(zh íxi àn)上,由点发
出的三束光线射到轴上的点P 、
及坐标原点
被x 轴反射,
反射线恰好分别通过双曲线的左、右焦点1F 、2F 和双曲线的中心
.假设
,过右焦点的反射光线与右准线交点的纵
坐标为,求双曲线C 的方程和入射光线、
所在直线的
方程.
内容总结
(1)双曲线综合训练题
1. 在双曲线的一支上有三个点、、与焦点的间隔 成等差数列.(1)求
(2)双曲线综合训练题
1. 在双曲线的一支上有三个点、、与焦点的间隔 成等差数列.(1)求
(3)(2)当时,在双曲线的上支求点,使其与直线的间隔 为。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.双曲线的渐近线与圆相切,则双曲线离心率为(). A.B.2C.D.3【答案】B【解析】双曲线的渐近线方程是,即;因为渐近线与圆相切,所以,即,则,.【考点】双曲线的几何性质.2.已知,分别是双曲线的左、右焦点,过点且垂直于轴的直线与双曲线交于,两点,若是钝角三角形,则该双曲线离心率的取值范围是A.B.C.D.【答案】B【解析】为钝角三角形,且,,即,,,即,.【考点】双曲线的简单几何性质.3.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为 .【答案】17.【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.【考点】双曲线的定义.4.若双曲线的左焦点在抛物线的准线上,则P的值为A.2B.3C.4D.【答案】C【解析】双曲线的左焦点坐标为:,抛物线y2=2px的准线方程为,所以,解得:p=4,故选C.【考点】双曲线和抛物线的性质.5.若原点和点分别是双曲线的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为 ( )A.B.C.D.【答案】A【解析】因为是双曲线的左焦点,所以,解得,所以双曲线的方程为,设点,则有,因为,所以,此二次函数对应的抛物线的对称轴为,而,所以当时,取得最小值,所以的取值范围为,选A.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.6.以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③,则双曲线与的离心率相同;④已知两定点和一动点,若,则点的轨迹关于原点对称.其中真命题的序号为(写出所有真命题的序号).【答案】②③④【解析】对于①,由双曲线的定义可知,动点的轨迹为双曲线的一支,所以①不正确;对于②,由,可知点为弦的中点,连结,则有即,而均为定点,所以点的轨迹是以为直径的圆,所以②正确;对于③,设的离心率分别为,则有,,所以③正确;对于④,设动点,则由可得,将代入等式左边可得,所以动点的轨迹关于原点对称,即④正确;综上可知,真命题的序号是②③④.【考点】1.双曲线的定义;2.动点的轨迹问题;3.双曲线的离心率.7.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是()A.B.C.D.【答案】C【解析】根据题意,△PQF1是等腰直角三角形,且被F1F2分成两个全等的等腰直角三角形.由此结合双曲线的定义,可解出a=(-1)c,即可得到该双曲线的离心率.【考点】求双曲线的离心率问题.8.双曲线的离心率为_______;渐近线方程为_______.【答案】2;【解析】由于双曲线,所以,所以所以离心率.故填2.由于双曲线的焦点在x轴上,所以渐近线的方程为.故填.【考点】1.双曲线的性质.2.双曲线中三个基本量的关系.9.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.10.双曲线的渐近线方程是 .【答案】【解析】因为双曲线的渐近线方程为,所以可得所求渐近线方程为.【考点】双曲线的几何性质.11.双曲线的渐近线方程为 .【答案】【解析】因为双曲线的方程为,所以,所以该双曲线的渐近线方程为.【考点】双曲线的性质.12.抛物线的焦点F恰好是双曲线的右焦点,且它们的交点的连线过点F,则双曲线的离心率为.【答案】【解析】因为抛物线的焦点为.所以.由于双曲线与抛物线的对称性可知,要使两交点的连线过.只有一种情况该直线垂直于x轴.因此可得抛物线过点代入抛物线的方程可得离心率为.故填.【考点】1.双曲线的性质.2.抛物线的性质.3.圆锥图形的对称性.4.离心率的概念.13.设是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为()A.B.C.D.【答案】D【解析】不妨设是双曲线右支上的一点,根据定义可得,又,所以,又且,所以的最小内角为,根据余弦定理可得,又,即代入化简可得,故选D.【考点】1.双曲线的定义;2.用余弦定理解三角形.14.已知双曲线的两个焦点为F1(-,0)、F2(,0),M是此双曲线上的一点,且满足则该双曲线的方程是()A.B.C.D.【答案】A【解析】由题意知且,所以。
高二数学双曲线试题(有答案)
高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,则m 的值为( ) A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为( ) A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,则12PF F ∆的面积等于( )(A )45(B )315(C )53(D )210【答案】B4.已知双曲线的中心在坐标原点,两个焦点为F 1(﹣,0),F 2(,0),点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是( ) A .B .C .D .解:设双曲线的方程为:﹣=1, ∵两焦点F 1(﹣,0),F 2(,0),且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点, ∴||PF 1|﹣|PF 2||=2a ,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,故选C.5.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.解:由已知条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.6.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是()A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x故选D7.已知中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为()A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1故选A.8.已知抛物线y2=8x的准线与双曲线相交于A,B两点,点F是抛物线的焦点,若双曲线的一条渐近线方程是,且△FAB是直角三角形,则双曲线的标准方程是()A.B.C.D.解:依题意知抛物线的准线x=﹣2.代入双曲线方程得y=±.双曲线的一条渐近线方程是,∴则不妨设A (﹣2,),F (2,0)∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20, ∴双曲线的标准方程是故选C9..已知椭圆2222:1(0)x y C a b a b+=>>的离心学率为3.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,则第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线离心率为( ) A .B .C .D .解:设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,故选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A .B .C .D .解:设双曲线方程为,则F (c ,0),B (0,b )直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或(舍去)12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值围是( C )A.33(,)33- B.(3,3)- C.33[,]33- D.[3,3]-13.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.33 B 。
人教新课标版(A)高二选修1-1 2.2.1双曲线及其标准方程(一)同步练习题
人教新课标版(A )高二选修1-1 2.2.1 双曲线及其标准方程(一)同步练习题【基础演练】题型一:双曲线的定义平面内到两定点1F 、2F 的距离的绝对值为定值(小于|F F |21)的点的轨迹叫双曲线,其中两定点为焦点,两焦点之间的距离为焦距,请根据以上知识解决以下1~4题。
1. 已知定点1F (-2,0)、2F (2,0),在满足下列条件的平面内动点P 的轨迹中为双曲线的是A. 3|PF ||PF |21±=-B. 4|PF |PF |21±=-C. 5|PF ||PF |21±=-D. 4|PF ||PF |2221±=-2. 若动点P 到1F (-5,0)与P 到2F (5,0)的距离的差为8±,则P 点的轨迹方程是A.116y 25x 22=+ B.116y 25x 22=- C.19y 16x 22=+ D.19y 16x 22=- 3. 已知双曲线的两个焦点坐标为()2,2F 1--、()2,2F 2,双曲线上一点P 到1F 、2F 的距离的差的绝对值等于22,求双曲线的方程。
4. 在△ABC 中,B (4,0)、C (-4,0),点A 运动时满足A sin 21C sin B sin =-,求A 点轨迹。
题型二:双曲线的标准方程(1)焦点在x 轴上,方程为1b y a x 2222=-,焦点为F (c ±,0);(2)焦点在y 轴上,方程为1bx a y 2222=-,焦点为F (0,c ±);(3)a 、b 、c 之间的关系:222c b a =+。
请根据以上知识解决5~7题。
5. 已知方程b ay ax 22=-,如果实数a 、b 异号,则它表示的曲线是A. 焦点在x 轴上的双曲线B. 焦点在y 轴上的双曲线C. 圆D. 椭圆6. 已知双曲线的焦距为26,1325c a 2=,则双曲线的标准方程是 A.1169y 25x 22=- B.1169x 25y 22=- C.25x 21144y 2=- D.1144y 25x 22=-或1144x 25y 22=- 7. 已知双曲线过M (1,1)、N (-2,5)两点,求双曲线的标准方程。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.已知双曲线方程,则过点和双曲线只有一个交点的直线有________条.【答案】【解析】由双曲线方程可知它是焦点在轴上的等轴双曲线,直线为它的渐近线,点在两个顶点之间,过可作与渐近线平行的两条直线,它们与此双曲线都各有一个公共点,但它们与双曲线是相交关系,此外过还可以作两条与双曲线右支都相切的直线,因此过点和双曲线只有一个交点的直线共有条,要注意两条是相交,另两条是相切,关注双曲线渐近线的特殊作用.【考点】直线与双曲线的位置关系.2.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为( )A.0B.1C.2D.3【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选A.【考点】直线的方程,双曲线的渐近线,3.已知抛物线()的焦点为双曲线()的一个焦点,经过两曲线交点的直线恰过点,则该双曲线的离心率为()A.B.C.D.【答案】B【解析】抛物线()的焦点,它也是双曲线()的一个焦点,所以有①,由两曲线交点的直线恰过点,可知它们在第一象限的交点为,此点也在双曲线上,故有②,由①②消去,得,即,即,因为,所以,选择B,求离心率的值关键是寻找到关于的等式,然后转化到的方程,从而解出.【考点】圆锥曲线的性质4.过双曲线的左焦点作圆的两条切线,切点分别为、,双曲线左顶点为,若,则该双曲线的离心率为( )A.B.C.3D.2【答案】D.【解析】如图,根据对称性,,∴为等边三角形,∴,∴.【考点】双曲线离心率的计算.5.已知双曲线的虚轴长是实轴长的2倍,则实数的值是( ) A.B.C.D.【答案】C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.【考点】双曲线的标准方程与简单几何性质.6.已知P是双曲线的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是( ).A.双曲线的焦点到渐近线的距离为; B.若,则e的最大值为;C.△PF1F2的内切圆的圆心的横坐标为b ;D.若∠F1PF2的外角平分线交x轴与M, 则.【答案】D【解析】的焦点坐标为,渐近线方程为,对于选项A, 焦点到渐近线的距离,故A错;对于选项B,设,若,令所以即解得.故B错;对于选项C:如图,设切点A,由切线长定理得:,即,所以,故△PF1F2的内切圆的圆心的横坐标为a,所以选项C错.对于选项D:由外角平分线定理得:,故选D.【考点】渐近线方程;点到直线的距离公式;焦半径公式;外角平分线定理;合比定理.7.已知双曲线的一条渐近线方程为,则双曲线离心率=( ) A.B.C.D.【答案】A【解析】:∵双曲线的焦点在x轴上,∴渐近线方程为y=±,又∵渐近线方程为y=,∴∴∵,联立得:,化简得=.故选A【考点】双曲线的性质及其方程;渐近线方程;离心率8.已知双曲线的左右焦点分别是,过的直线与双曲线相交于、两点,则满足的直线有 ( )A.1条B.2条C.3条D.4条【答案】C【解析】由双曲线的标准方程可知点坐标为,过点斜率不存在的直线,即,与双曲线的交点,代入可求得为,则,又双曲线两顶点分别为,即实轴长为,结合图像,由双曲线的对称性知满足条件的直线还有两条.故共有三条直线满足条件.【考点】双曲线的几何性质.9.如果方程表示双曲线,那么实数的取值范围是()A.B.或C.D.或【答案】B【解析】由双曲线方程的标准形式可知,解得:或.【考点】本题考查双曲线标准方程的形式.10.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.【答案】存在双曲线的方程满足题中的两个条件.【解析】先根据(1)的条件设出双曲线的方程,再设双曲线上的动点,然后利用两点间的距离公式得出,结合,最后化简得到,根据二次函数的图像与性质确定的最小值(含),并由计算出的值,如果有解并满足即可写出双曲线的方程;如果无解,则不存在满足要求的双曲线方程.试题解析:由(1)知,设双曲线为设在双曲线上,由双曲线焦点在轴上,,在双曲线上关于的二次函数的对称轴为即所以存在双曲线的方程满足题中的两个条件.【考点】1.双曲线的标准方程及其几何性质;2.二次函数的图像与性质.11.设抛物线的焦点与双曲线的上焦点重合,则p的值为【答案】8【解析】因为抛物线的焦点为,双曲线的焦点为,所以【考点】抛物线及双曲线的焦点12.双曲线的焦距是10,则实数的值是()A.B.4C.16D.81【答案】C【解析】由双曲线的方程,可得,而,所以由可得,故选C.【考点】双曲线的定义及其标准方程.13.双曲线的焦距为A.B.C.D.【答案】D【解析】由条件知,∴,∴.【考点】双曲线的定义.14.已知双曲线的渐近线方程为,虚轴长为4,则该双曲线的标准方程是【答案】【解析】根据题意知,若焦点在轴上,则,∴,∴方程是:;若焦点在轴上,则,∴,∴方程为:.【考点】双曲线的应用.15. .设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【答案】D【解析】设F(c,0),B(0,b),则直线FB的斜率是,相对应的渐近线的斜率为,由题可得∵,∴两边同除以ac得:即可解得离心率.【考点】双曲线的几何性质.16.若方程表示双曲线,则实数的取值范围是A.B.C.或D.以上答案均不对【答案】A【解析】解:,由方程表示双曲线,根据双曲线标准方程的特点,有解之得:,故选A.【考点】1双曲线的标准方程;2、一元二次不等式的解法.17.已知点是双曲线的两个焦点,过点的直线交双曲线的一支于两点,若为等边三角形,则双曲线的离心率为 .【答案】【解析】由双曲线的对称性可知为的中点,又因为为等边三角形,所以。
3.2.1 双曲线(第一课时)(精练)(解析版)
3.2.1 双曲线【题组一 双曲线的定义】1.(2019·山东青岛二中高二月考)平面内,一个动点P ,两个定点1F ,2F ,若12PF PF -为大于零的常数,则动点P 的轨迹为( ) A .双曲线 B .射线C .线段D .双曲线的一支或射线【答案】D【解析】两个定点的距离为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线; 不存在1212PF PF F F ->的情况. 综上所述,P 的轨迹为双曲线的一支或射线. 故选:D2.(2019·上海市宜川中学高二期末)设P 是双曲线22143y x -=上的动点,则P 到该双曲线两个焦点的距离之差为( )A .4B .C .D .【答案】A【解析】由题得24,2a a =∴=.由双曲线的定义可知P 到该双曲线两个焦点的距离之差24a =. 故选:A3.已知点F 1(0,-13),F 2(0,13),动点P 到F 1与F 2的距离之差的绝对值为26,则动点P 的轨迹方程为( ) A .y =0 B .y =0(|x|≥13)C .x =0(|y|≥13) D .以上都不对 【答案】C【解析】∵||PF 1|-|PF 2||=|F 1F 2|,∴点P 的轨迹是分别以F 1,F 2为端点的两条射线.所以点P 的轨迹方程为x =0(|y|≥13).故答案为:C4.(2020·四川内江)一动圆与两圆x 2+y 2=1和x 2+y 2﹣8x +12=0都外切,则动圆圆心轨迹为( ) A .圆B .椭圆C .双曲线的一支D .抛物线【答案】C【解析】设动圆圆心(,)M x y ,半径为r ,圆x 2+y 2=1的圆心为(0,0)O ,半径为1, 圆x 2+y 2﹣8x +12=0,得22(4)4x y -+=,则圆心(4,0)C ,半径为2,根据圆与圆相切,则||1MO r =+,||2MC r =+,两式相减得||||1MC MO -=, 根据定义可得动圆圆心轨迹为双曲线的一支. 故选:C5.(2020·渝中)若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( ) A .11 B .9C .6D .5【答案】B【解析】由双曲线22:1916x y E -=,可得3a =,由双曲线的性质可得:126PF PF -=,可得29PF =或23PF =-(舍去),故选:B.6.双曲线的左右焦点为F 1,F 2,过点F 2的直线l 与右支交于点P,Q ,若|PF 1|=|PQ|,则|PF 2|的值为( ) A .4 B .6C .8D .10【答案】B 【解析】因为双曲线的左右焦点为F 1,F 2,过点F 2的直线l 与右支交于点P,Q ,若|PF 1|=|PQ|,利用双曲线的定义,以及直线与双曲线联立方程组得到弦长,得到|PF 2|的值为6选B 【题组二 双曲线定义的运用】1.(2020·四川省遂宁市第二中学校)已知双曲线221259x y -=上有一点M 到右焦点1F 的距离为18,则点M到左焦点2F 的距离是( ) A .8 B .28C .12D .8或28【答案】D【解析】双曲线221259x y -=的5a =,3b =,c ==由双曲线的定义得12||||||210MF MF a -==,即为21810MF -=,解得28MF =或28.检验若M 在左支上,可得15MF c a ≥-=,成立;若M 在右支上,可得15MF c a ≥+=+,成立.故选:D2.(2020·全国高二课时练习)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .C .(0,3)D .)【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n-=+-表示双曲线,所以10{30n n +>->,解得1{3n n >-<,所以n 的取值范围是()1,3-,故选A . 3.(2020·全国)“35m -<<”是“方程22153x y m m -=-+表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】可以直接求出方程22153x y m m -=-+表示双曲线的充要条件,即为(5)(3)035m m m -+>⇔-<<,因此可知条件和结论之间的关系是充要条件,因此选C.4.(2019·绥德中学高二月考(理))方程22111x y k k+=+-表示双曲线,则k 的取值范围是( )A .11k -<<B .0k >C .0k ≥D .1k >或1k <-【答案】D【解析】方程22111x y k k+=+-表示双曲线,则()()k k +-<110,解得1k >或1k <-.故选:D.5.(2019·黑龙江龙凤大庆四中高二月考(文))方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .-3<m <0 B .-3<m <2 C .-3<m <4 D .-1<m <3【答案】A【解析】由题意知,()()23032m m m -+<⇒-<<,则C ,D 均不正确,而B 为充要条件,不合题意,故选A.6.(2020·山东青岛)已知曲线C 的方程为()222126x y k k k-=∈--R ,则下列结论正确的是( )A .当8k时,曲线C 为椭圆,其焦距为4B .当2k =时,曲线C C .存在实数k 使得曲线C 为焦点在y 轴上的双曲线D .当3k =时,曲线C 为双曲线,其渐近线与圆()2249x y -+=相切 【答案】B【解析】对于A ,当8k 时,曲线C 的方程为221622x y +=,轨迹为椭圆,焦距2c ==,A 错误;对于B ,当2k =时,曲线C 的方程为22124x y -=,轨迹为双曲线,则a =c =∴离心率==ce a,B 正确; 对于C ,若曲线C 表示焦点在y 轴上的双曲线,则26020k k -<⎧⎨-<⎩,解集为空集, ∴不存在实数k 使得曲线C 为焦点在y 轴上的双曲线,C 错误;对于D ,当3k =时,曲线C 的方程为22173x y -=,其渐近线方程为7y x =±,则圆()2249x y -+=的圆心到渐近线的距离4214323035214910d ±===≠+,∴双曲线渐近线与圆()2249x y -+=不相切,D 错误.故选:B .7.(2019·浙江高二期末)设F 1,F 2是双曲线x 25−y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|:|PF 2|=2:1,则ΔPF 1F 2的面积等于__________. 【答案】12 【解析】由于x 25−y 24=1,因此a =√5,c =3,故|F 1F 2|=2c =6,由于|PF 1|:|PF 2|=2:1即|PF 1|=2|PF 2|,而|PF 1|−|PF 2|=2a =2√5,所以|PF 1|=4√5,|PF 2|=2√5,cos∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2=45,所以sin∠F 1PF 2=35,因此S ΔPF 1F 2=12|PF 1||PF 2|sin∠F 1PF 2=12. 8.(2019·湖北高二期中(文))已知双曲线2214x y -=的两个焦点分别为F 1、F 2,点P 在双曲线上且满足∠F 1PF 2=60°,则△F 1PF 2的面积为_______.【解析】因为22212121212||||||2||||cos F F PF PF PF PF F PF =+-∠212121212(||||)2||||2||||cos PF PF PF PF PF PF F PF =-+-∠,所以21212π4(41)(22)2||||2||||cos3PF PF PF PF +=⨯+-,12121π||||=44sin 23PF F PF PF S∴=⨯⨯=, 【题组三 双曲线标准方程】1.(2020·全国高三其他(文))已知双曲线221(0)6x y m m m -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A .22124x y -=B .22148x y -=C .2218y x -=D .22128x y -=【答案】D【解析】由题意可得:22,6a m b m ==+,则实轴长为:由题意有:2=,解得:2m =,代入2216x y m m -=+可得双曲线方程为22128x y -=.本题选择D 选项.2.(2020·全国高二月考(文))过双曲线C :22221x y a b -=的左焦点F 的直线,恰好与圆222x y a +=相切,C 的右顶点为A ,且2AF =C 的标准方程为( )A .2213y x -=B .2213x y -=C .2214y x -=D .2214x y -=【答案】B【解析】设左焦点为(),0F c -,则直线方程)y x c =+,0y -+=0y -+=恰好与圆222x y a +=相切,所以圆心()0,00y -+=的距离等于半径,即2a =a c =,则2a c =.则22AF a c c =+=+=解得2c =,a =则1b =.所以双曲线C 的标准方程为2213xy -=.故选:B .3.(2020·甘肃城关)已知双曲线C :22221x y a b-=,O 为坐标原点,直线x a =与双曲线C 的两条渐近线交于A ,B 两点,若OAB ∆是边长为2的等边三角形,则双曲线C 的方程为( )A .2213x y -=B .2213y x -=C .221124x y -=D .221412x y -=【答案】A 【解析】由图可知,a =30,所以b a =1b =,所以双曲线C 的方程为2213x y -=.故选:A4.(2020·河南开封)已知双曲线的一条渐近线方程为2y x =,且经过点(2,,则该双曲线的标准方程为( )A .2214x y -=B .2214y x -=C .2214y x -=D .2214x y -=【答案】B【解析】对于A 选项,双曲线的渐近线为12y x =±,不符合题意.对于B 选项,双曲线的渐近线为2y x =±,且过点(2,,符合题意.对于C 选项,双曲线的渐近线为2y x =±,但不过点(2,,不符合题意.对于D 选项,双曲线的渐近线为12y x =±,不符合题意.综上所述,本小题选B.5.(2020·湖南)已知双曲线C ,点(P 在C 上,则C 的方程为()A .22142-=x yB .221714x y -=C .22124x y -=D .221147y x -=【答案】B【解析】当双曲线的焦点在x 轴,设双曲线的方程为:22221(a 0,b 0)x y a b-=>>.根据题意可得:22222821ca abc a b ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,解得22714a b ,==,所以221714x y -=.当双曲线的焦点在y 轴,设双曲线的方程为:22221(a 0,b 0)y x a b-=>>.根据题意可得:22222281ca abc a b ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,方程无解.综上C 的方程为221714x y -=.故选B.【题组四 双曲线的渐近线】1.(2020·河北石家庄二中高二月考)已知双曲线22142-=y x ,则其渐近线方程为( )A.y = B.2y x =±C .12y x =±D .2y x =±【答案】A【解析】双曲线方程为22142-=y x,则渐近线方程为:02y =即y =.故选:A . 2.(2020·河北承德第一中学高二月考)设焦点在x 轴上的双曲线的虚轴长为2,焦距为的渐近线方程( ) A.y = B .2y x =±C.2y x =±D .12y x =±【答案】C【解析】因为焦点在x 轴上的双曲线虚轴长为2,焦距为22b =,2c =则有1b =,c =,则a ==22121x y-= ,该双曲线的渐近线方程为为:2y x =±故选:C .3.(2019·福建省南安市侨光中学高三月考(文))设双曲线的中心在原点,焦点在x 轴上,离心率e =则该双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .4y x =±D .y x =±【答案】B【解析】由题可知c e a ==,222c a b =+,解得2ba=,所以双曲线的渐近线方程为:2y x =±,选B.4.(2020·全国高三其他(文))设双曲线()222210,0x y a b a b-=>>的左、右顶点分别为1A 、2A ,若点P 为双曲线左支上的一点,且直线1PA 、2PA 的斜率分别为1-,13-,则双曲线的渐近线方程为______________.【答案】3y x =±【解析】1PA 的方程为()y x a =-+,2PA 的方程为()13y x a =--,则()2,P a a -,将点P 的坐标,代入双曲线,则222241a a a b -=,则2213b a =,则b a =则双曲线渐近线方程为y x =.故答案为:y x =. 5.(2019·黑龙江哈尔滨市第六中学校高二月考(文))已知双曲线22143y x -=,则焦点到渐近线的距离为 。
高二双曲线习题及答案典藏
双曲线习题及答案典藏1.有一凸透镜其剖面图〔如图〕是由椭圆22221x ya b+=和双曲线22221(0)x ya mm n-=>>的实线局部组成,两曲线有共同焦点M、N;A、B分别在左右两局部实线上运动,那么周长的最小值为: 〔〕A.2()a m- B.()a m- C.2()b n- D.2()a m+2.双曲线2221(0)2x ybb-=>的两条渐近线互相垂直,那么e=〔〕3.椭圆与双曲线共焦点1F,2F,它们的交点P对两公共焦点1F,2F张的角为123F PFπ∠=.椭圆与双曲线的离心率分别为1e,2e,那么〔〕A.221231144e e+= B.221213144e e+= C.22124413ee+= D.22214413ee+=4.双曲线2222:1x yEa b-=的左、右顶点分别为A、B,M是E上一点,ABM为等腰三角形,且外接圆面积为23aπ,那么双曲线E的离心率为〔〕115.P为双曲线()2222:1,0x yC a ba b-=>上一点,12,F F分别为C的左、右焦点,212PF F F⊥,假设12PF F∆的外接圆半径是其内切圆半径的2.5倍,那么C的离心率为〔〕B.2D.2或36.点F 1、F 2分别是双曲线x 2−y 23=1的左、右焦点,点P 在双曲线上,那么ΔPF 1F 2的内切圆半径r 的取值范围是〔 〕A .(0,√3)B .(0,2)C .(0,√2)D .(0,1)7.在等腰梯形ABCD 中, //AB CD ,且2,1,2AB AD CD x ===,其中()0,1x ∈,以,A B 为焦点且过点D 的双曲线的离心率为1e ,以,C D 为焦点且过点A 的椭圆的离心率为2e ,假设对任意()0,1x ∈,不等式12t e e <+恒成立,那么t 的最大值是〔 〕A B C .2 D 8.双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别为其左、右焦点,过1F 的直线l 与双曲线C 的左、右两支分别交于,A B 两点,假设22::3:4:5AB BF AF =,那么双曲线C 的离心率为〔 〕A .2B .4C D 9.0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的2C 的渐近线方程为 〕A .0x =B 0y ±=C .20x y ±=D .20x y ±=10.如下图,直线l 为双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线,1F ,2F 是双曲线C 的左、右焦点,1F 关于直线l 的对称点为1F ',且1F '是以2F 为圆心,以半焦距c 为半径的圆上的一点,那么双曲线C 的离心率为〔 〕A.2B.3C.2D.311.以椭圆22195x y+=的顶点为焦点,焦点为顶点的双曲线C,其左右焦点分别是12,F F,点M的坐标为(2,1),双曲线C上的点00(,)P x y00(0,0)x y>>,满足11211121PF MF F F MFPF F F⋅⋅=,那么12PMF PMFS S∆∆-=〔〕A.2B.4C.1D.1-12.双曲线()222210,0x ya ba b-=>>的左、右焦点分别为12,F F,点P在双曲线的右支上,且12||4||PF PF=,那么此双曲线的离心率e的最大值为〔〕A.43B.53D.7313.椭圆()222210x ya ba b+=>>,与双曲线()222210,0x ym nm n-=>>具有相同焦点F1、F2,且在第一象限交于点P,椭圆与双曲线的离心率分别为e1、e2,假设∠F1PF2=3π,那么2212e e+的最小值是A B.2C D14.12F F,是双曲线22221(00)x ya ba b-=>>,的左,右焦点,P是双曲线上一点,且12PF PF⊥,假设∠12PF F的内切圆半径为2a,那么该双曲线的离心率为1115.过双曲线22221(0,0)x y a b a b-=>>的右焦点F 且平行于其一条渐近线的直线l 与另一条渐近线交于点A ,直线l 与双曲线交于点B ,且2BF AB =,那么双曲线的离心率为〔 〕A .3B C D .216.12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,假设双曲线右支上存在点A ,使1230F AF ∠=,且线段1AF 的中点在y 轴上,那么双曲线的离心率是〔 〕C.2D.17.双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与圆222x y a +=相切,与C 的左、右两支分别交于点,A B ,假设2AB BF =,那么C 的离心率为A B .5+C D 18.在平面直角坐标系xOy 中,过双曲线2221(0)4x y a a -=>上的一点C 作两条渐近线的平行线,与两条渐近线的交点分别为A ,B ,假设平行四边形OACB 的面积为3,那么该双曲线的离心率为〔 〕A .3BC D 19.1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,假设122r r =,那么直线l 的斜率为〔 〕A.1C.2D.20.F 1,F 2是双曲线2222C :1(00)x y a b a b-=>>,的左右焦点,假设直线y =与双曲线C 交于P,Q 两点,且四边形F 1PF 2Q 是矩形,那么双曲线的离心率为〔 〕A1B 1C .5-D .5+21.双曲线2221(0)4x y b b-=>的左、右焦点分别为1F ,2F ,P 为双曲线右支上一点且直线2PF 与x 轴垂直,假设12F PF ∠的角平分线恰好过点()1,0,那么12PF F △的面积为 A .12 B .24 C .36 D .4822.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F 、,过1F 作倾斜角为60︒直线与y 轴和双曲线的右支交于A 、B 两点,假设点A 平分线段1F B ,那么该双曲线的离心率是( )B.2+C.2123.设A ,B 为双曲线()22220x y a bλλ-=≠同一条渐近线上的两个不同的点,假设向量()0,2n =,3AB =且1AB n n⋅=-,那么双曲线的离心率为〔 〕A.2或4B.3或4C.3D.324.点P 为双曲线()222210,0x y a b a b-=>>右支上一点,12,F F 分别为双曲线的左、右焦点,I 为12PF F ∆的内心〔三角形12PF F 内切圆的圆心〕,假设121212IPF IPF IF F S S S ∆∆∆-≥〔1212,,IPF IPF IF F S S S ∆∆∆分别表示1212,,IPF IPF IF F ∆∆∆的面积〕恒成立,那么双曲线的离心率的取值范围为〔 〕 A.(]1,2B.()1,2C.()2,3D.(]2,325.设分别为双曲线的左、右焦点,双曲线上存在一点使得那么该双曲线的离心率为A .B .C .D .326.图∠∠∠中的多边形均为正多边形,M ,N 分别是所在边的中点,双曲线均以图中1F ,2F 为焦点.设图∠∠∠中双曲线的离心率分别为1e ,2e ,3e ,那么〔 〕A.123e e e >>B.321e e e >>C.213e e e >=D.132e e e =>27.,,A B P 为双曲线2214y x -=上不同三点,且满足2PA PB PO +=〔O 为坐标原点〕,直线,PA PB 的斜率记为,m n ,那么224n m +的最小值为〔 〕A .8B .4C .2D .128.双曲线22x a-22y b =1 (a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.假设|OA |,|AB |,|OB |成等差数列,且AF 与FB 反向,那么该双曲线的离心率为( )A.2C.22115y x -= D.5 229.过双曲线的右支上一点P ,分别向圆()221:44C x y ++=和圆()222:41C x y -+=作切线,切点分别为,M N ,那么22PM PN -的最小值为〔 〕 A .10B .13C .16D .1930.椭圆C 1:=1〔a >b >0〕与双曲线C 2:x 2﹣=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.假设C 1恰好将线段AB 三等分,那么〔 〕 A .a 2=B .a 2=3C .b 2=D .b 2=231.12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,那么椭圆和双曲线的离心率的倒数之和的最大值为〔 〕A.3B.3C.D.32.双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,假设双曲线上存在点P ,使1221sin sin PF F aPF F c∠=∠,那么该双曲线的离心率e 范围为( )A.〔1,1B.〔1,1C.〔1,1D.〔1,133.12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =,那么该双曲线的离心率为D.234.椭圆与双曲线共焦点1F 、2F ,它们的交点P 对两公共焦点1F 、2F 的张角为122F PF θ∠=,椭圆与双曲线的离心率分别为1e 、2e ,那么〔 〕A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+= C .2212221cos sin e e θθ+= D .2212221sin cos e e θθ+= 35.双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,以OF 为直径的圆与双曲线C 的渐近线交于不同原点O 的A B ,两点,假设四边形AOBF 的面积为()2212a b +,那么双曲线C 的渐近线方程为〔 〕A.2y x =±B.y =C .y x =±D .2y x =±36.双曲线C :22221(0,0)x y a b a b -=>>,过左焦点1F 的直线l 的倾斜角θ满足tan 13θ=,假设直线l 分别与双曲线的两条渐近线相交于A ,B 两点,且线段AB 的垂直平分线恰好经过双曲线的右焦点2F ,那么该双曲线的离心率为( )37.双曲线22221(0,0)x y a b a b-=>>的右焦点为2F ,左、右顶点分别为1A ,2A ,假设以线段12A A 为直径的圆与该双曲线的渐近线在第一象限内的交点为P ,O 为坐标原点,230PF O ︒∠=,那么双曲线的离心率为〔 〕AB .2CD38.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,那么双曲线C 的离心率是〔 〕A.2或3B.22D.3239.过双曲线()222210,0x y a b a b-=>>的右焦点F 作一条直线,当直线斜率为1时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,那么双曲线离心率的取值范围为〔 〕A.(B.(C.D.40.双曲线方程为22221(0,0)x y a b a b-=>>,12,F F 为双曲线的左右焦点,P 为渐近线上一点且在第一象限,且满足120PF PF ⋅=,假设01230PF F ∠=,那么双曲线的离心率为〔 〕B.2C. D.341.设双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,两条渐近线分别为l 1、l 2,过F 作平行于l 1的直线依次交双曲线C 和直线l 2于点A 、B ,假设FB ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,λ∈(2,3),那么双曲线离心率的取值范围是 A.(1,√2) B.(√62,√2)C.(√2,√3)D.(√62,√3)二、填空题42.点12,F F 分别是双曲线C :22221(0,0)x y a b a b-=>>的左右两焦点,过点1F 的直线与双曲线的左右两支分别交于,P Q 两点,假设2PQF ∆是以2PQF ∠为顶角的等腰三角形,其中2[,)3PQF ππ∠∈,那么双曲线离心率e 的取值范围为______.43.1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,那么椭圆和双曲线的离心率的倒数之和的最大值为___.44.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点, AB 为过1F 的弦(,A B 在双曲线的同一支上),假设11||3||BF AF =,223||||||AB AF BF =+,那么此双曲线的离心率为______.45.设F 为双曲线2222:1x y C a b-=〔0a >,0b >〕的右焦点,过F 且斜率为a b 的直线l 与双曲线C 的两条渐近线分别交于A ,B 两点,且||2||AF BF =,那么双曲线C 的离心率____.46.点在曲线上,点在曲线上,线段的中点为,是坐标原点,那么线段长的最小值是__________.47.过双曲线x 2a2−y 2b 2=1 (a >0,b >0)的左焦点F(−c,0) (c >0),作倾斜角为π6的直线FE 交该双曲线右支于点P ,假设OE ⃗⃗⃗⃗⃗ =12(OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ),且OE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ =0,那么双曲线的离心率为______.48.设P 为双曲线2213625x y -=右支上的任意一点, O 为坐标原点,过点P 作双曲线两渐近线的平行线,分别与两渐近线交于A , B 两点,那么平行四边形PAOB 的面积为__________.49.以下关于圆锥曲线的命题:其中真命题的序号___________.〔写出所有真命题的序号〕。
高二数学双曲线试题答案及解析
高二数学双曲线试题答案及解析1.若方程+=1所表示的曲线为C,则下面四个命题①若C为椭圆,则1<t<4 ;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C为椭圆,且长轴在x轴上,则1<t<其中真命题的序号是_________.【答案】②【解析】据椭圆方程的特点列出不等式求出t的范围判断出①错,据双曲线方程的特点列出不等式求出t的范围,判断出②对;据圆方程的特点列出方程求出t的值,判断出③错;据椭圆方程的特点列出不等式求出t的范围,判断出④错.解:若C为椭圆应该满足(4-t)(t-1)>0,4-t≠t-1即1<t<4且t≠故①错,若C为双曲线应该满足(4-t)(t-1)<0即t>4或t<1故②对,当4-t=t-1即t=表示圆,故③错,若C表示椭圆,且长轴在x轴上应该满足4-t>t-1>0则1<t<,因此④错,故填写②【考点】圆锥曲线的共同特征。
点评:主要是考查了椭圆方程于双曲线方程的标准形式的运用,属于中档题。
2.已知双曲线的一个焦点与抛物线的焦点相同,则双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】根据题意,由于双曲线的一个焦点与抛物线的焦点相同(),那么可知,则可知双曲线的渐近线方程是,故选C.【考点】双曲线的性质,抛物线点评:解决的关键是对于双曲线和抛物线性质的熟练表示,属于基础题。
3.若双曲线(b>0)的离心率为2,则实数b等于()A.1B.2C.D.3【答案】C【解析】由双曲线方程可知【考点】双曲线的性质离心率点评:本题涉及到的性质:4.过双曲线的左焦点作圆的切线,切点为E,延长FE交抛物线于点P,若E为线段FP的中点,则双曲线的离心率为( )A.B.C.D.【答案】D【解析】画图。
抛物线的焦点,准线。
连接和EO,则,即有,所以点P到准线的距离等于2a,所以点P的横坐标为,由点P在抛物线上,得点。
又OP=OF=c,所以,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学双曲线同步练习
一、选择题(本大题共10小题,每小题5分,共50分)
1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )
A .椭圆
B .线段
C .双曲线
D .两条射线
2.方程11122=-++k
y k x 表示双曲线,则k 的取值范围是 ( )
A .11<<-k
B .0>k
C .0≥k
D .1>k 或1-<k
3. 双曲线14122
2
22=--+m y m x 的焦距是 ( )
A .4
B .22
C .8
D .与m 有关
4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可
(
) A B C D
5. 双曲线的两条准线将实轴三等分,则它的离心率为
( )
A .23
B .3
C .34
D . 3
6.焦点为()6,0,且与双曲线12
22
=-y x 有相同的渐近线的双曲线方程( ) A .1241222=-y x B .1241222=-x y C .1122422=-x y D .112
242
2=-y x 7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线122
22=-b
y a x 有 ( )
A .相同的虚轴
B .相同的实轴
C .相同的渐近线
D . 相同的焦点
8.过双曲线19
162
2=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )
A .28
B .22
C .14
D .12 9.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L
的条数共
有
( )
A .4条
B .3条
C .2条
D .1条
10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2
=3; ③1222=+y x ④12
22=-y x ,其中与直线 y=-2x -3有交点的所有曲线是
( )
A .①③
B .②④
C .①②③
D .②③④
二、填空题(本题共4小题,每小题6分,共24分)
11.双曲线17
92
2=-y x 的右焦点到右准线的距离为__________________________. 12.与椭圆125
162
2=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.
13.直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =__________________. 4.过点)1,3(-M 且被点M 平分的双曲线14
22
=-y x 的弦所在直线方程为 . 三、解答题(本大题共6题,共76分)
15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)
16.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2
的最小值为-13
. (1)求动点P 的轨迹方程;
(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.(12分)
17.已知不论b 取何实数,直线y=k x +b 与双曲线122
2=-y x 总有公共点,试求实数k
的取值范围.(12分)
18.设双曲线C 1的方程为)0,0(122
22>>=-b a b
y a x ,A 、B 为其左、右两个顶点,P 是双曲线C 1上的任意一点,引QB ⊥PB ,QA ⊥PA ,AQ 与BQ 交于点Q.
(1)求Q 点的轨迹方程;
(2)设(1)中所求轨迹为C 2,C 1、C 2
的离心率分别为e 1、e 2,当21≥
e 时,e 2的取值范围(14分)。