结构方程模型简介共30页文档
结构方程模型原理及其应用
一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
一、结构方程模型简介
结构方程模型是基于变量的协方差矩阵来分析变量之间关系的 一种统计方法,是路径分析和因素分析的有机结合。
对于那些不能准确、直接测量的潜变量( latent variable , 如家庭的社会经济地位、学业成就等),可以用一些外显指标 ( observed variable ,如学生父母的教育程度和父母职业及 收入作为家庭社会经济地位的指标,以学生的语文、数学英语 三科成绩作为学业成就的指标 )去间接测量。结构方程模型 可以同时处理潜变量及指标。
结构方程模型
结构方程模型结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于验证数理模型,分析变量之间的因果关系以及预测未知变量。
它可以将多个观测变量和潜在变量之间的关系进行建模和评估。
在本文中,我们将详细介绍结构方程模型的基本概念、应用领域和常见的建模过程。
一、基本概念1. 指标变量(Indicator Variables):在结构方程模型中,我们通常使用指标变量来测量潜在变量。
指标变量是实际可观测到的变量,通过测量值来间接反映潜在变量的状态。
2. 潜在变量(Latent Variables):潜在变量是无法直接观测到的变量,它们通常是一些理论概念或假设的表达。
潜在变量通过指标变量的测量反映出来。
二、应用领域1.社会科学研究:结构方程模型常常被用于心理学、教育学、管理学等领域的研究中,用于探索变量之间的关系,验证理论构建和进行实证研究。
2.经济学研究:结构方程模型在经济学研究中被广泛应用,用于分析经济变量之间的关系,评估政策效果和预测未知变量。
3.市场研究:结构方程模型可以用于分析市场调查数据,探索消费者行为、产品需求和品牌忠诚度等因素之间的关系。
4.医学研究:结构方程模型可用于医学研究中,例如研究药物治疗效果、疾病发展模式和预测相关变量。
三、建模过程建立一个结构方程模型通常需要以下几个步骤:1.模型设定:在设定模型时,我们需要明确研究的目的、理论依据以及构建潜在变量和测量指标的关系。
2.指标开发:选择适当的指标来测量潜在变量。
指标应具有良好的信度和效度,并与潜在变量相关。
3.模型估计:估计结构方程模型的参数,包括路径系数和误差方差。
常用的估计方法有最小二乘法、极大似然法和广义最小二乘法等。
4.模型拟合度检验:通过拟合指标(如χ²检验、RMSEA、CFI等)来评估模型的拟合度。
如果模型拟合度较好,则可以认为模型能较好地解释数据。
5.模型修正:根据模型拟合度检验的结果对模型进行修正。
结构方程模型
02 基本原理
3.模型拟合——主要拟合度指标 (3)整体模型拟合度 整体模型拟合度是用来评价模型与数据的拟合程度。 主要包括: ① 绝对拟合度,用来确定模型可以预测协方差阵和相关矩阵的程度; ② 简约拟合度,用来评价模型的ห้องสมุดไป่ตู้约程度; ③ 增值拟合度,理论模型与虚无模型的比较。
02 基本原理
3.模型拟合——主要拟合度指标 (3)整体模型拟合度
02 基本原理
1.模型构建——路径图 路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直 接的和间接的关系。 (1)常用记号: ① 矩形框表示观测变量; ② 圆或椭圆表示潜在变量; ③ 小的圆或椭圆,或无任何框,表示方程或测量的误差: 单向箭头指向指标或观测变量,表示测量误差; 单向箭头指向因子或潜在变量,表示内生变量未能被外生潜在变量解释的部分, 是方程的误差; ④ 单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指向结 果(内生)变量; ⑤ 两个变量之间连线的两端都有箭头,表示它们之间互为因果; ⑥ 弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系; ⑦ 变量之间没有任何连接线,表示假定它们之间没有直接联系。
02 基本原理
1.模型构建——变量 ① 观测变量:能够观测到的变量(路径图中以长方形表示)。 ② 潜在变量:难以直接观测到的抽象概念,由测量变量推估出来的变量(路径图中以 椭圆形表示)。 ③ 内生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受到任 何一个其他变量以单箭头指涉的变量。 ④ 外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路径图
⑩ 中介潜变量:潜变量作为中介变量。
11 中介观测变量:中介潜在变量的观测变量。
结构方程模型入门(纯干货!)
结构方程模型入门(纯干货!)一、结构方程模型的概念结构方程模型(Structural Equation Model,简称SEM)是基于变量的协方差矩阵来分析变量之间关系的一种统计方法,因此也称为协方差结构分析。
结构方程模型属于多变量统计分析,整合了因素分析与路径分析两种统计方法,同时可检验模型中的显变量(测量题目)、潜变量(测量题目表示的含义)和误差变量直接按的关系,从而活动自变量对因变量影响的直接效果、间接效果和总效果。
结构方程模型基本上是一种验证性的分析方法,因此通常需要有理论或者经验法则的支持,根据理论才能构建假设的模型图。
在构建模型图之后,检验模型的拟合度,观察模型是否可用,同时还需要检验各个路径是否达到显著,以确定自变量对因变量的影响是否显著。
目前,结构方程模型的分析软件较多,如Lisrel、EQS、Amos、Mplus、Smartpls等等,其中AMOS的使用率甚高,因此我们重点了解一下使用AMOS软件进行结构方程模型分析的过程。
二、结构方程模型的相关概念在构建模型假设图,我们首先需要了解一些有关的基本概念1、显变量显变量有多种称呼,如“观察变量”、“测量变量”、“显性变量”、“观测变量”等等。
从这些称呼中可以看到,显变量的主要含义就是:变量是实际测量的内容,也就是我们问卷上面的题目。
在Amos中,显变量使用长方形表示。
2、潜变量潜变量也叫潜在变量,是无法直接测量,但是可以通过多个题目进行表示的变量。
在Amos中,潜变量使用椭圆表示。
在使用的过程中,我们可以通过这样的方式区分显变量和潜变量:在数据文件中有具体值的变量就是显变量,没有具体值但可通过多个题目表示的则是潜变量。
3、误差变量误差变量是不具有实际测量的变量,但必不可少。
在调查中,显变量不可能百分之百的解释潜变量,总会存在误差,这反映在结构方程模型中就是误差变量,每一个显变量都会有误差变量。
在Amos中,误差变量使用圆形进行表示(与潜变量类似)。
结构方程模型
2. 应用结构方程模型的注意事项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性关 系则应当设法对变量作变换 ,以便可以用线 性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数目 的 5~20 倍;
• proc calis语句是必须的,且此语句还可添 加一些选项,这些选项主要包括:
• (1)数据集选项,如DATA= 使用的数据集 的名字;INRAM= 使用已存在的并被分析 过的模型;OUTRAM= 将模型的说明存入 输出数据集,备以后INRAM调用。
• (2)数据处理选项,如EDF= 在没有使用 原始数据且未指定样本数N时为模型指定自 由度;NOBS= 指定样本数N。
模型修正
• 模型的修正主要包括: • (1) 依据理论或有关假设 ,提出一个或数个合理的
先验模型; • (2) 检查潜变量与指标间的关系 ,建立测量方程模
型; • (3) 若模型含多个因子 ,可以循序渐进地 ,每次只检
验含两个因子的模型 ,确立测量模型部分合理后 , 最后再将所有因子合并成预设的先验模型 ,作总体 检验; • (4) 对每一模型 ,检查标准误、标准化残差、修正 指数、参数期望改变值、χ 2 及各种拟合指数 ,据此 修改模型。
一、结构方程模型简介 1、什么是结构方程模型 2、为什么使用结构方程模型 3、结构方程模型的结构 4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型 结构方程模型( Structural Equation Model)是基于变量
的协方差矩阵来分析变量之间关系的一种统计方法。所以,有 时候也叫协方差结构分析。
第十二章 结构方程模型简介
δ4
x4
λ4
Φ1
γ2
y3
ε3
β1
λ10 ε4
y4
δ5
x5
λ5
自信 γ3
课外 表现
λ11
y5
λ12
ε5
δ6
x6
λ6 ζ2
y6
ε6
第一节 结构方程模型基本原理
三、结构方程模型的优点 1、同时处理多个因变量 2、允许自变量和因变量存在测量误差 3、同时估计因子结构和因子关系 4、估计整个模型的拟合程度
第一节 结构方程模型基本原理
四、建立结构方程模型的步骤 1、模型建构:提出一个假设模型 2、模型拟合与评价:根据计算出的拟合指数 评价模型的优劣 3、模型修正:修正后要进一步评价模型,直
到模型比较理想为止
第一节 结构方程模型基本原理
五、结构方程模型的应用 1、验证性因素分析 在探索性因素分析基础上,考察所得因素结 构能否很好拟合数据,进而确定因素的结构。 2、路径分析 路径分析将变量之间因果关系分解为直接效 应和间接效应,给变量加上一些中介变量,从 而形成复杂的因果关系结构。
二、结构方程模型的结构 1、测量方程与结构方程 测量方程描述潜变量与观测指标之间的关系, 结构方程描述潜变量之间的关系。见下图: 2、潜变量的种类 (1)外源潜变量:不受其他变量影响的潜变 量,也叫独立潜变量 (2)内生潜变量:受其他变量影响的潜变量
第一节 结构方程模型基本原理
δ1
x1
x2 x3
λ1
ζ1
λ7
y1
ε1
δ2
λ2
ξ1
λ3
γ1
η1
λ8
y2
λ9
ε2
δ3
δ4
结构方程模型
2. 应用结构方程模型的注意事 项
• (1)通径图中 ,内源变量与外源变量间的 关系都是线性的。实际工作中的非线性偏 离被认为是可以忽略的 ,若有强的非线性 关系则应当设法对变量作变换 ,以便可以 用线性作近似;
• (2)结构方程不支持小样本。一般要求样 本容量在 200 以上 ,或是要估计的参数数 目的 5~20 倍;
精品课件
• (6)当模型与数据拟合时 ,说明数据并不排斥模 式 ,不能说数据可以确认模式 ,也不能证明某一 理论基础;
• (7) 用同一样本数据 ,以相同数目的待估参数 和不同的组合形式可以产生许多不同模型 ,这些 等同模型哪一个更适合于研究问题 ,应按照模式 表达的意义从专业角度来鉴别;
• (8)) SEM 不能验证变量间的因果关系。同其他 统计方法一样 ,当模型与样本拟合时 ,只能说该 模型是可供考虑的模型 ,是目前为止尚未被否定 的模型。只有经严格的实验设计控制其他变量的 影响 ,才能探讨主要变量的因果效应。绝不能因 为使用了 SEM 便说证明模型正确。严格地说 ,尽 管 SEM 不能证明因果关系 ,但它的生命力在于能 寻找变量间最可能的因果关系。
approximation ,近似误差均方根) 、SRMR ( standardized
root mean square residual , 标准化残差均方根) 、
GFI (goodness of fit index ,拟合优度指数) 、A GFI
(adjusted goodness of fit index ,调整拟合优度指数) ,
传统的统计方法不能有效处理这些潜变量,而结构方程模型则能同时处理 潜变量及其指标。传统的线性回归分析容许因变量存在测量误差,但是要假设自变量 是没有误差的。如:
结构方程模型原理及其应用
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
5. 模型修正 (model modification) :如果模型不能很好地拟合 数据 ,就需要对模型进行修正和再次设定。
二、结构方程模型的可以直接测量获得的 ? 如:研究“摄入热量与体重之间的关系”
? 潜变量(构想变量) ? 现实生活中无法直接测量获得的,必须通过一些观察变量间接 获得。 ? 如:“社会地位” “自尊” “生活满意度”
一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
结构方程模型原理 及其在认知心理学中的应用
一、结构方程模型简介
结构方程模型
§1 模型的设定
§1 模型的设定
§1 模型的设定
§1 模型的设定
AMOS软件中可以很方便的按照表1.1的图例 绘制出结构方程模型,并且可以快速的设定隐 变量之间的影响关系以及隐变量与显变量之间 的对应关系,这些模型的绘制和设定影响关系 我们只需要点击软件左边的工具栏对应的图标, 然后在右边的空白处直接绘图即可.
§1 模型的设定
内生变量:受系统的影响且具有测量误差的变 量,既包括隐变量也包括显变量,如在经济发 展过程中,人们收入的变动往往受到经济增长 和收入分配政策的影响,则收入变动即为内生 变量;
外生变量:影响系统且不具有测量误差的变量, 既包括隐变量也包括显变量,如上述的经济发 展三变量模型中,收入分配政策变量可记为外 生变量。
三、 模型估计
AMOS 中可供使用的LISREL 方法主要有五种,即:最 大似然法(ML, Maximum Likelihood),广义最小二 乘法(GLS,General Least Squares),非加权最小二 乘法(ULS,Unweighted Least Squares),自由度量 最小二乘法(SLS, Scale-free Least Squares)和渐进 任意分布法(AD,Asymptotically Distribution-free)。 LISREL 方法通过拟合模型估计协方差与样本协方差S 来 估计模型参数,也称为协方差建模方法。具体来说,就 是构造模型估计协方差与样本协方差的拟合函数,然后 通过迭代,得到使拟合函数值最优的参数估计。
§1 模型的设定
§1 模型的设定
§1 模型的设定
在图1.1中,文科和理科用椭圆表示,为隐变 量;文科和理科成绩之间的相关关系用双向箭 头表示;从隐变量指向显变量的单向箭头表示 隐变量与显变量的反映(Reflective)关系, 如文科隐变量可以用语文、英语、历史三门课 程的成绩来测量;从误差指向变量的单向箭头 表示该变量的误差或残差。因为误差或残差本 身也是无法进行观测的特殊隐变量,所以也用 圆来表示。
结构方程模型简介
2024/6/27
26
模型修正
改变测量模型,增加新的结构参数 设定某些误差项相关 限制某些结构参数
2024/6/27
27
实际使用
恰好识别——当一个模型中的参数都是识别
的并且没有一个是过度识别的,那么这个模型 就是恰好识别的
不可识别——模型中至少有一个不可识别的
参数
2024/6/27
12
模型识别:不可识别的 原因
模型能否识别并不是样本的问题 原因: 1、自由度少 2、因子之间的相互作用,即双向作用
2024/6/27
13
内生变量和外生变量
内生变量——由模型内其他变量作用所影响的变量 外生变量——变量的影响因素在模型之外
2024/6/27
6
模型设定:2个模型
测量模型 ——表示潜在变量和观测变量之间的关系
结构模型(潜在变量模型 )
——表示潜在变量之间的关系
2024/6/27
7
样本容量
一般而言,最保守的是一个变量要5个样 本来衡量,此时样本服从多元正态分布, 而且没有奇异值。也有人认为一个变量 由15个样本来衡量比较好。最低的样本 要求是50。一般样本量在100~200之间 比较合适。
正态分布。 即使是在大样本的情况下,观测变量的
偏态性,尤其是在很高的峰度下,会导 致很差的估计以及不正确的标准误和偏 高的卡方值。
2024/6/27
16
模型估计:方法选择2
对偏态分布的变量进行转换; 去除奇异值; 采用加权最小二乘法
结构方程模型
(3)结果输出 PD-----路径系图的输出。 SC-----列出完全标准化的参数估计。 ALL-----列出所有可能的输出。 ND-----输出结果的小数位数(可选0—8,缺省为ND=2) EP-----收敛标准,缺省EP=0.000001,越小表示收敛的标准越 高。 IT-----迭代次数上限,缺省IT=5倍自由估计参数。 MI-----输出修正指数。 SS-----输出参数的标准化解。 AD-----容许性检查时的迭代次数,缺省AD=20,AD=OFF表示 遏止此检查
2
ζ2
52
ห้องสมุดไป่ตู้
62
72
82
y5
5
y6
6
y7
7
y8
8
4、结构方程模型的优点
Bollen和Long(1993)指出SEM有以下优点 :
(1)可同时考虑及处理多个依变项(endogenous / dependent variable); (2)容许自变及依变(exogenous / endogenous)项含测量误差;
! E-Service STRUCTURAL EQUATION MODEL 数据输入 DA NI=28 NO=204 MA=CM RA=TEST1.TXT MO NY=12 NE=3 NX=16 NK=3 LY=FU,FI LX=FU,FI GA=FU,FR BE=FU,FR C PS=DI,FR PH=SY,FR LK UserInter Responsi Reliablity 模型建构 LE Trust Repurchase Recommend FR LY 2 1 LY 3 1 LY 4 1 LY 6 2 LY 7 2 LY 8 2 LY 10 3 LY 11 3 LY 12 3 FR LX 2 1 LX 3 1 LX 4 1 LX 5 1 LX 6 1 LX 8 2 LX 9 2 LX 10 2 LX 11 2 C LX 13 3 LX 14 3 LX 15 3 LX 16 3 VA 1.0 LY 1 1 LY 5 2 LY 9 3 VA 1.0 LX 1 1 LX 7 2 LX 12 3 FI GA 2 1 GA 2 2 GA 2 3 GA 3 1 GA 3 2 GA 3 3 FI BE 1 1 BE 1 2 BE 1 3 BE 2 3 BE 2 2 BE 3 3 PD OU SS AD=OFF 结果输出
结构方程模型
一、结构方程模型简介 二、结构方程模型程序介绍 三、验证性因子分析和二阶因子分析 四、全模型分析
一、结构方程模型简介 1、什么是结构方程模型 2、为什么使用结构方程模型 3、结构方程模型的结构 4、结构方程模型的优点 5、结构方程模型中的变量 6、结构方程模型常用图标
1、什么是结构方程模型 结构方程模型( Structural Equation Model)是基于变量
1
2
X1
X2
11 21
3
4
X3
X4
31 41
1
11
21
1
2
3
4
y1
y2
y3
y4
11 21
31 41
ζ1
1
21
ζ2
2
52
62
y5
y6
5
6
72 82
y7
y8
7
8
4、结构方程模型的优点 Bollen和Long(1993)指出SEM有以下优点 :
3、模型修正 模型自由度=协方差矩阵中不重复的元素个数-要估计的参数个数。
要估计的参数越少,自由度越多,模型就越简单;要估计的参数越多,自由 度越少,模型就越复杂。 模型修正原则: (1)增加自由参数(模型变复杂),模型的卡方会减少;减少自由参数(模 型变简单),模型的卡方会增加。如果增加参数后,卡方没有明显的减少, 说明增加只有参数是值得的;如果减少自由参数后,卡方没有显著的增加, 说明减少参数是值得的。 (2)模型必须符合逻辑,不能盲目跟着数据走而只追求统计上的好模型。 (3)模型越简单越好
90 Percent Confidence Interval for NCP = (758.79 ; 969.33) Minimum Fit Function Value = 2.05
结构方程模型完整版本
内生潜在变量被外生潜在变量解释之回归矩阵(回归系数) 测量模型矩阵
x 外生观测变量被外生潜在变量解释之回归矩阵(因素载荷) y 内生观测变量被内生潜在变量解释之回归矩阵(因素载荷)
外生潜在变量之协方差矩阵(因素共变)
残差矩阵
内生潜在变量被外生潜在变量解释之误差项协方差矩阵(解释残差)
② Joreskog与其合作者进一步发展矩阵模型的分析技术来处理共变 结构的分析问题,提出测量模型与结构模型的概念,促成SEM的 发展。
③ Ullman(1996)定义结构方程为“一种验证一个或多个自变量与 一个或多个因变量之间一组相关关系的多元分析程式,其中自变 量和因变量既可以是连续的,也可以是离散的”,突出其验证多 个自变量与多个因变量之间关系的特点。
潜在变量只以两个测量变量来估计,残差无相关,每一个测量变 量只用以估计单一一个潜在变量且没有任何一个潜在变量的共变 或方差为0 3 结构模型的识别性
虚无B矩阵法则
递归法则 每一个方程式至少要有(q-1)个变量不属于非递归模型
用以计算标准误的讯息矩阵必须可以被完全估计,并可以求出倒 置信息矩阵
(三)参数估计
3 SEM与几种多元方法的比较
①SEM与传统多元统计方法(多元统计) 传统多元统计方法:检验自变量和因变量的单一关系(多元方差分
析可以处理多个,但是关系也是单一的) SEM:综合多种方法,验证性分析,允许测量误差的存在 ②SEM与典型相关分析(多个自变量与多个因变量之间关系) 典型相关分析:两组随机变量(定性或定量)之间线性密切程度;
③ V ar(aXbY)C ov(aXbY,aXbY)a2C ov(X,X)b2C ov(Y,Y)2bcC ov(X,Y)
④ V ar(aXbY)a2C ov(X,X)b2C ov(Y,Y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内生变量——由模型内其他变量作用所影响的变量 外生变量——变量的影响因素在模型之外
16.05.2020
5
模型设定:2个模型
测量模型 ——表示潜在变量和观测变量之间的关系
结构模型(潜在变量模型 )
——表示潜在变量之间的关系
16.05.2020
6
样本容量
一般而言,最保守的是一个变量要5个样 本来衡量,此时样本服从多元正态分布, 而且没有奇异值。也有人认为一个变量 由15个样本来衡量比较好。最低的样本 要求是50。一般样本量在100~200之间 比较合适。
实际使用
AMOS Graphic ——图形:所见即所得 AMOS Basic ——编程
16.05.2020 27
欢迎提问!
谢谢!
16.05.2020 28
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
16.05.2020 13
模型识别:预防措施
预防不可识别的模型主要是有关参数的 设定,尽量减少自由参数的数目,让模 型简约。当模型中的变量之间有循环或 是双向关系,那么这个模型就是非递归 的,一般是不可识别的。
16.05.2020 14
模型估计:方法选择1
最大似然估计和最小二乘估计 假定:观测变量是连续变量,具有多元
16.05.2020
7
变量数量
选择多个指标表示潜在因子具有统计上 和概念上的优势
一般以3~4个指标表示1个因子比较合适 当因子互相关联的时候,可以减至2个
16.05.2020
8
可信度检验
——SPSS中完成
效度检验
缺省值处理
——SPSS中完成
16.05.2020
9
前期工作
模型识别:概念1
当一个未知参数至少可以由观测变量的 方差协方差矩阵中的一个或者多个元素 的代表函数来表达,就称这个参数可识 别的。如果模型中的参数都是识别参数, 那么这个模型就是可识别的。
16.05.2020 10
模型识别:概念2
过度识别——当一个模型中的参数都是识别
的并且至少有一个是过度识别的,那么这个模 型就是过度识别的
16.05.2020 21
模型评价:简约性
阿凯克信指数 AIC 模型的比较
16.05.2020 22
嵌套模型的比较 非嵌套模型的比较模型比较Βιβλιοθήκη 16.05.2020 23
模型比较:嵌套模型
嵌套关系:在两个模型中,其中一个模 型是在另一个模型的基础上加一定的限 制得到的,一个模型的自由度是另外一 个模型的子集
似然比较检验:通过两个模型拟合优度 的卡方检验值的差值和自由度的差值得 到的新的卡方值和自由度
结果显著:模型中的变化并不是改善
16.05.2020 24
模型比较:非嵌套模型
阿凯克信指数 AIC 一致性阿凯克信指数CAIC 期望交叉证实指数 ECVI 这些值的数值越小,就说明模型简约并拟合的
2
模型设定 模型识别 模型估计 模型评价 模型修正
16.05.2020
3
步骤
模型设定:2个基本假设
理论依据是增加或者删除连线的依据, 用最少的因果路径或者相关关系来刻划 在理论上可行的模型
线性关系
16.05.2020
4
模型设定:2种变量
潜在变量和显示变量
潜在变量——不可直接衡量的 显示变量(测量变量)——问卷中直接测量的
从设定模型的拟合和独立模型拟合之间 的比较得出的
卡方值与自由度的比值:1~3之间 (p>0.05)
GFI:>0.9 AGFI:>0.9 RMSEA:<0.08
16.05.2020 20
模型评价:相对指标
设定模型和特定模型的比较 规范拟合指数(NFI):设定模型和独立
模型的卡方值的比较(不能控制自由度, 在小样本的时候低估) IFI:对NFI的修正 比较拟合指数CFI:设定模型和独立模型 的卡方值的比较,非中心的卡方分布
很好,但是这些指标都不是统计值,因此没有 统计检验来确认两个模型之间的差异是否显著。 在应用时,先估计每个模型,将它们按其中一 个指标进行比较,然后选择其中值最小的模型。
16.05.2020 25
模型修正
改变测量模型,增加新的结构参数 设定某些误差项相关 限制某些结构参数
16.05.2020 26
正态分布。 即使是在大样本的情况下,观测变量的
偏态性,尤其是在很高的峰度下,会导 致很差的估计以及不正确的标准误和偏 高的卡方值。
16.05.2020 15
模型估计:方法选择2
对偏态分布的变量进行转换; 去除奇异值; 采用加权最小二乘法
16.05.2020 16
模型评价:不适合的参 数估计
恰好识别——当一个模型中的参数都是识别
的并且没有一个是过度识别的,那么这个模型 就是恰好识别的
不可识别——模型中至少有一个不可识别的
参数
16.05.2020 11
模型识别:不可识别的 原因
模型能否识别并不是样本的问题 原因: 1、自由度少 2、因子之间的相互作用,即双向作用
16.05.2020 12
模型识别:判断方法
数据点的数目不能少于自由参数的数目。数据 点的数目就是观测变量的方差和协方差的数目。 自由参数的数目特指待定的因子载荷、通径系 数、潜在变量和误差项的方差、潜在变量之间 与误差项之间的协方差的总数
必须为模型中的每一个潜在变量建立一个测量 尺度。将潜在变量的方差设定为1;将潜在变量 的观测标识中任何的一个因子负载设定为一个 常数,通常为1
概念
结构方程模型是一种通用的线性统计建 模技术。它主要是利用联立方程组求解, 但是没有严格的假设限定条件,同时允 许自变量和因变量存在测量误差。
16.05.2020
1
假设
与其他分析方法相同的假设条件包括: (1) 观察变量是相互独立的; (2) 随机抽样; (3) 线性相关
16.05.2020
误差项有负方差 标准化的相关系数大于或者接近于1 某一相关系数有很大的标准差
16.05.2020 17
模型评价:解决办法
模型是否可以识别 将误差项固定在很小的正值 减少结构
16.05.2020 18
模型评价:3个方面
绝对指标 相对指标 简约性
16.05.2020 19
模型评价:绝对指标