分式总复习(优质课)解析

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

《分式方程及应用》(复习课)教学设计

《分式方程及应用》(复习课)教学设计

的值。

3、若关于x 的方程11122-+=---x xx m x x无实数解,则m 的值为________. 4、如果25452310A B x x x x x -+=-+--,则 A=____ B=________. 5、(注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.)甲乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时.问二人每小时各走几千米?(1)设乙每小时走x 千米,根据题意,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解. 6、列方程,解应用题: 某车间要加工170个零件,在加工完90个以后改进了操作方法,每天多加工10个,一共用 5天完成了任务.求改进操作方法后每天加工的零件个数.2、教师参与小组讨论,尤其是难点题目。

3、教师组织展示、点评,并做好小组评价。

2、小组内交流题目解法并制定展示策略。

3、分小组进行展示。

其他小组可补充和点评。

帮助学生探究本章知识点的综合应用和难点题型的解题方法。

达到知识应用的升华。

通过小组探究、展示、教师引导突破重点和难点。

锻炼学生合作学习的能力。

4、课堂练习:(第四题选作)1、若关于x 的方程m x m =---211无实数根,求m 的取值范围。

2、当m 为何值时,关于x 的方程21212m x x x x x x -=---+-的解是正值? 3、某施工队挖掘一条长96米的隧道,开工后每天比原计划多挖2米,结果提前4天完成任务,原计划每天挖多少米?4、甲、乙两地相距200千米,一艘轮船从甲地逆流航行至乙地,然后又从乙地返回甲地,已知水流的速度为4千米/时,回来时所用的时、1、教师出示练习题目。

、2、针对性的个别辅导。

《分式总复习》课件

《分式总复习》课件
也较为复杂,学生容易出错。
经典例题解析
例题一
计算 $frac{x}{x + y} + frac{y}{x - y} frac{2xy}{x^2 - y^2}$。
解析
首先将所有项的分母统一 为 $(x + y)(x - y)$,然后 进行约分和加减运算。
解析
根据已知条件,通过等式 的性质和分式的加减法进 行证明。
特点
通常形式为 ax/b = c (其中 a、b、c 是已知数,b ≠ 0)。
复杂分式方程
定义
复杂分式方程是含有多个分式的 方程。
特点
通常形式为 f(x)/g(x) = h(x)/i(x) ( 其中 f(x)、g(x)、h(x)、i(x) 是多项 式函数)。
解法
通过消去分母,将方程转化为整式 方程或使用其他数学方法求解。
约分和通分是分式中的重要概念 ,但学生常常难以理解和掌握。 约分是将分子和分母中的公因式 约去,通分则是将两个或多个分
式化为同分母。
分式的加法与减法
在进行分式的加法和减法时,需 要寻找分母的公倍数,将分母统 一后再进行计算。这一过程对学
生来说较为复杂,容易出错。
分式的乘法与除法
在进行分式的乘法和除法时,需 要寻找分子和分母的公因式,进 行约分后再进行计算。这一过程
分式的性质
总结词
分式具有一些重要的性质,这些性质包括基本性质、等价变换性质和运算性质。
详细描述
分式的基本性质是分式的分子和分母可以同时乘以或除以同一个非零整式;等价 变换性质是分式的等价变换不改变分式的值;运算性质是分式的加、减、乘、除 等运算应先进行括号内的运算,再进行乘除运算,最后进行加减运算。
分式的约分与通分

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

分式复习优质课市公开课一等奖省优质课获奖课件

分式复习优质课市公开课一等奖省优质课获奖课件

1 x2 2x 1
3
x 2x2
2 1
2 x2 1 4x 4
x2
4 (π
x)2
第4页
2.分式基本性质:
分式分子和分母都乘以(或除以)同一个不等 于0整式,分式值不变.
A AM A AM
,
(其中M是不等于0整式)
B BM B BM
第5页
1.以下式子
(1) a x a (1 2)
b x b1
n ;na ,a 0
b ; a 1
ab
(3) x y x; y(4)
xy xy
ba ab ca ac
中正确是
()
A 、1个 B 、2 个 C、 3 个 D、 4 个
第9页
4b、值若分将别分扩式大为a原ab来b (2a倍、,b均则为分正式数值)为中(字)母a、
A.扩大为原来2倍 B.缩小为原来 1
C.不变
D.缩小为原来 2
x2 y2
B、 x y2
y2 x2 C、 x y
x2 y2 D、 x 2 y xy 2
第13页
1.计算:
第14页
第15页
5. a2 b2 (1 a2 b2 )
a2b ab2
2ab
6. x 3 (x 2 5 )
x2
x2
第16页
3.化简并求值:
x2
x2
2x
x2
x 1 4x 4
x y z
4.分式
,
,
5b2c 10a 2b 2ac
最简公分母是

3
y
x 2 y y 3 , xy x 2
最简公分母是
.
第11页
4.什么是最简分式? 一个分式分子和分母没有公因式时叫做最

(完整版)分式复习课教案

(完整版)分式复习课教案

分式复习课学案教学目标1. 理解分式定义,掌握分式有意义的条件。

2. 掌握分式的加减乘除运算及混合运算。

3. 掌握分式方程的解法,会列分式方程解决实际问题。

教学重点: 分式加减乘除混合运算及分式方程 教学难点:列分式方程解决实际问题 、预习作业1. 分式的概念:2. 分式的基本性质:(1) 分式的分子分母同乘(或除以)一个 _________________________ ,分式的值 _________ (2) 分子,分母的公因式,系数的 __________ 与各 ______ 因式的 __________ 的积(3) ___________________________________________ 各分式的最简公分母,各分母系数的_____________________________________________________ 与 _______ 因式 ____________ 的积 3•分式的运算法则:(1) 乘法法则 ____________________________________________ (2) 除法法则 ____________________________________________ (3) 分式的乘方 _____________________________________ (4) 加减法则同分母分式相加减 ____________________________________________ 异分母分式相加减 ____________________________________________(5) 分式加、减、乘、除、乘方的混合运算法则 __________________________________________mn“m 、n“・、nm n“a 、n(6) a a ________ (a )____ (ab) _________ a a _________ (_) ____b(7) 当n 是正整数时 a -n = ______________ ( __________ ) 4.解分式方程的步骤(1) ___________________________________________ 去分母,方程两边同乘 化成整式方程(1) 分式的定义:一般地 (2) 分式有意义的条件是 (3) 分式无意义的条件是 (4) 分式为零的条件是 A , B 是两个 ________ ,且 ___________ 不等于0 ___________ 等于0 ______ 不等于0,且 _____A中含有字母,那么-叫分式B等于0(2)解出整式方程的解(3) _____________________________________ 将整式方程的解代入进行检验,若不为零,则整式方程的解就是_______________________ ,若等于零,则这个解 ___________ 原方程的解(3)二、预习交流三、展示探究例1.填空1.下列代数式中:2x2xx 1-,2X1-------- 2 2va b x y a 1曰八卡砧若y, , ,, 是分式的有、a b x y x m yx 12 .当x满足时,分式(x 1)(x 2)有意义。

最新初中数学—分式的知识点总复习附解析(2)

最新初中数学—分式的知识点总复习附解析(2)

一、选择题1.已知为整数,且分式的值为整数,则可取的值有( ) A .1个B .2个C .3个D .4个 2.计算1÷11m m +-(m 2-1)的结果是( ) A .-m 2-2m -1 B .-m 2+2m -1C .m 2-2m -1D .m 2-1 3.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个4.若分式12+-x x 的值为0,则x 的值为( ) A .2或-1 B .0 C .-1 D . 2 5.已知,则的值是( ) A . B .﹣ C .2 D .﹣26.计算4-(-4)0的结果是( )A .3B .0C .8D .4 7.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥38.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 9.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 11.把分式2n m n +中的m 与n 都扩大3倍,那么这个代数式的值 A .不变B .扩大3倍C .扩大6倍D .缩小到原来的1312.计算23x 11x +--的结果是 A .1x 1- B .11x - C .5x 1- D .51x- 13.将分式3ab a b -中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变 B .扩大3倍 C .扩大9倍 D .扩大6倍14.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣515.无论a 取何值,下列分式总有意义的是( )A .21a a +B .211aa -+ C .211a - D .11a +16.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<117.若分式的值为0,则x 的值是( )A .3B -3C .4D .-418.化简﹣的结果是( )m+3 B .m-3 C . D .19.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c +++-+-+-的值是( )A .为正B .为负C .为0D .与a ,b ,c 的取值有关20.下列分式中是最简分式的是( )A .B .C .D .21.下列运算错误的是A .B .C .D .22.若已知分式22169x x x ---+的值为0,则x ﹣2的值为( ). A .19或﹣1 B .19或1 C .﹣1 D .1 23.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个24.若a >-1,则下列各式中错误..的是( )A .6a >-6B .2a>-12 C .a +1>0 D .-5a <-525.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】==,由题意可知x-1=1,-1,-2,2为整数,且x≠±1,解得:x=2,0,3故选:C.2.B解析:B【解析】1÷11mm +-·(m 2-1)=1×11mm -+(m +1)·(m -1)=-(m -1)2=-m 2+2m -1.3.A解析:A【解析】试题分析:根据分式的定义进行解答即可.试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.4.D解析:D【解析】试题分析:当分式的分子为零,分母不为零时,则分式的值为零,根据题意可得:x-2=0,解得:x=2.考点:分式的意义5.D解析:D【解析】试题分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.解:∵,∴﹣=,∴,∴=﹣2.故选D.6.A解析:A【解析】试题分析:根据零指数幂的性质和有理数的加减法,可求解为:4-(-4)0=4-1=3.故选A.7.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3.故选:C.8.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a、b、c、d的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b,故选B.9.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A . 【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B【解析】试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值 11.A解析:A【解析】试题解析:分式2n m n+中的m 与n 都扩大3倍,得 6233n n m n m n=++, 故选A .12.B解析:B【解析】试题分析:先通分,再根据同分母的分式相加减的法则进行计算伯出判断:2323231x 11x 1x 1x 1x 1x-++=-+==------.故选B . 13.B解析:B【解析】将分式3ab a b -中的a 、b 都扩大到3倍,则为3333333a b ab a b a b⨯⨯=⨯--, 所以分式的值扩大3倍.故选B . 14.A解析:A【解析】由科学记数法知0.0000025=2.5×10−6, 故选A.解析:B【解析】分式有意义的条件是:“分母的值不为0”,在A 中,当0a =时,分式无意义;在C 中当1a =±时,分式无意义;在D 中当1a =-时分式无意义;只有B 中,无论a 为何值,分式都有意义;故选B.16.B解析:B【解析】 试题解析:分式212x x m-+不论x 取何值总有意义,则其分母必不等于0, 即把分母整理成(a+b )2+k (k >0)的形式为 (x 2-2x+1)+m-1=(x-1)2+(m-1),因为论x 取何值(x 2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m >1.故选B . 17.A解析:A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A .考点:分式的值为0的条件. 18.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m m m m m m m -+--===+----,所以选:A . 考点:分式的减法.19.C解析:C .【解析】试题解析:∵a +b +c=0,∴a=-(b +c ),∴a 2=(b +c )2, 同理b 2=(a +c )2,c 2=(a +b )2. ∴原式=11111()022a b c bc ac ab abc++-++=-⨯=, 故选C . 考点:分式的运算.20.A【解析】选项A ,的分子、分母都不能再分解,且不能约分,是最简分式;选项B ,原式=2x;选项C ,原式=11x + ;选项D ,原式=-1.故选A . 21.D解析:D【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确; C 、,故本选项正确; D 、,故本选项错误;故选D . 22.D解析:D .【解析】试题分析:根据分式值为零的条件可得:|x ﹣2|﹣1=0,且269x x -+≠0,再解即可.由题意得:|x ﹣2|﹣1=0,且269x x -+≠0,解得:x=1.故选:D .考点:分式的值为零的条件;负整数指数幂.23.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式; ④是最简分式;最简分式有①④,共2个;故选:B.解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12, 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.25.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8. 故选B .。

分式中考经典总复习课件

分式中考经典总复习课件

状元备课
)
--
=-1
+
-
-
D.
=
+
+
B.
解析:应用分式的基本性质时,要注意“都”与“同”这两个字的含义,
-
-(-) -
,
=
=- .
避免犯只乘分子或只乘分母的错误.D项中 +
+
+
答案:D
规律方法探究
命题点1
命题点2
命题点3
命题点 3
【例 3】
命题点4
分式的约分与通分
0.
考点二
分式的基本性质
分式的分子与分母同乘(或除以)一个不等于零的整式,分式的

×
÷
值不变.用式子表示是: = × , = ÷(其中 M 是不等于 0 的整
式).
基础自主导学
考点梳理
状元备课
自主测试
考点三 分式的约分与通分
1.约分
分式约分:利用分式的基本性质,约去分式的分子、分母中的
答案:C
状元备课
规律方法探究
命题点1
命题点2
命题点3
命题点4
3+5
5
1
无意义,则当

=0
-1
3-2 2-
变式训练若分式
3+5
解析:由
无意义,可得 x=1,
-1
5
1
5
1


=0,得

=0,
3-2 2-
3-2 2-1
5
1

=
,
3-2
2-1
所以 5(2m-1)=3m-2.

分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)

分式计算复习专题课教案(提高版)第一章:分式的概念与基本性质1.1 分式的定义解释分式的含义:分子与分母都为整式,分母不为零的代数表达式。

强调分式中的各个元素:分子、分母、分界线。

1.2 分式的基本性质复习分式的基本性质,如:分式的值不随分子、分母的符号变化而变化。

演示分子与分母乘以(或除以)同一个非零整式,分式的值不变。

第二章:分式的运算2.1 分式的加减法讲解分式加减法的运算规则:通分后分子相加(减),分母保持不变。

举例说明如何进行分式的加减运算,并强调通分的重要性。

2.2 分式的乘除法解释分式乘除法的运算规则:分子与分子相乘,分母与分母相乘。

演示如何进行分式的乘除运算,并提示约分的技巧。

第三章:分式的化简与求值3.1 分式的化简介绍分式化简的常见方法:约分、因式分解。

举例说明如何化简分式,并强调化简的目的:简化表达式,便于计算。

3.2 分式的求值讲解如何求解分式的值:将变量代入分式中,进行计算。

强调求值时需要注意的问题:确保代入的变量值使分母不为零。

第四章:分式的应用4.1 分式在实际问题中的应用介绍分式在实际问题中的应用场景,如:比例计算、分段函数等。

演示如何将实际问题转化为分式问题,并解决。

4.2 分式的综合应用案例分析提供一些综合性的案例,让学生练习分式的应用。

引导学生运用分式的知识解决实际问题,培养其应用能力。

第五章:分式的复习与拓展5.1 分式的复习要点总结分式的概念、运算规则、化简与求值等关键知识点。

强调学生需要掌握的分式计算的基本技能。

5.2 分式的拓展与提高介绍一些分式的拓展知识,如:分式的极限、分式函数等。

提供一些提高性的练习题,激发学生对分式计算的兴趣与深入学习。

第六章:分式的综合题型6.1 分式的混合运算讲解分式的混合运算,包括加减乘除以及括号的运用。

提供混合运算的例题,引导学生逐步解决复杂分式问题。

6.2 分式的复合运算介绍分式的复合运算,如:先乘除后加减、先化简后求值等。

分式中考总复习原创课件

分式中考总复习原创课件
2.下列分式中不是最简分式的是( )
C
全体实数
x≠2
x≠±2
4.计算:(1) (2)
3.计算:
x-2
a4b4
解:原式
解:原式
解:原式
(3)
5.已知 ,当x=________时,A=0; 当x=________时,A无意义.
解:(1) (2)由已知,得x=1或2, 但x不能取1,所以x=2. 当x=2时, .
8.已知 求 的值.
解:由已知,得y-x=4xy,x-y=-4xy.原式=另解:原式=
第一章 数与式第3课 分式
1.分式的有关概念: (1)如果A,B分别是整式,并且B中含有________, 那么式子 叫做分式. (2)当B________时,分式 (A,B分别是整式)有意义.
2.分式的基本性质: 分式的分子与分母乘(或除以)同一个________的整式, 分式的值__________.用式子表示为 或 (C≠____),其中A,B,C均为整式.
【变式2】计算:
解:原式
【考点3】分式的化简求值
【例3】先化简,再求值:在0,1,2,这三个数中选一个合适的代入求值.
解:
根据分式的意义,x≠0,x≠2,所以x取1,当x=1时,原式= .
【变式3】已知 ( ),求 的值
-2
2
提示:先化简原式= ,当A=0时,分子x+2=0.解得x=-2.当A无意义时,分母x-2=0,解得x=2.
6.计算:(1)
解:原式
解:原式
(2)
7.已知(1)化简A;(2)当x满足不等式1≤x<3,且x为整数时,求A的值.
字母,B≠ 0
3.分式的运算: (1)加、减 同分母; (2)乘、除 化简.

初中数学方程与不等式之分式方程知识点总复习附解析(1)

初中数学方程与不等式之分式方程知识点总复习附解析(1)

初中数学方程与不等式之分式方程知识点总复习附解析(1)一、选择题1.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .2.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且B . 2 B 3m m >≠C .m<2m 3≠且D .m>2 【答案】B【解析】【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠.【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.3.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】 解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3,将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2, ∴m ≠﹣1,∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.6.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.7.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=- B .120100x x 10=+ C .120100x 10x =- D .120100x 10x=+ 【答案】A【解析】【分析】【详解】 甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A.8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( )A .3000200015001x x +=+ B .2000300015001x x +=+ C .3000200015001x x +=- D .2000300015001x x +=- 【答案】C【解析】【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可.【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】 首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 【答案】D【解析】【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解.【详解】方程两边同乘以3x (x+5)得,x+5=6x ,解得x=1,经检验,x=1是原分式方程的解.故选D.【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.13.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.14.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .15.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【详解】 解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∴0≤﹣3k <1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∴﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.16.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15 C .﹣6 D .﹣4【答案】D【解析】【分析】先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的a的值,求出之和即可.【详解】解:分式方程去分母得:2+ax﹣2x+6=﹣4,整理得:(a﹣2)x=﹣12(a﹣2≠0),解得:x12a2 =--,由分式方程有正整数解,得到a=1,0,﹣1,﹣2,﹣4,﹣10,当a=﹣2时,x=3,原分式方程无解,所以a=1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9 y a-⎧⎨≥⎩,由不等式组无解,即a≥﹣9,∴符合条件的所有整数a有1,0,﹣1,﹣4,∴a=1,0,﹣1,﹣4,之和为﹣4,故选:D.【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x+-=+,即:202412x x-=+.故选B.考点:分式方程的应用.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知关于x 的分式方程22124x mx x x --=+-无解,则m 的值为( ) A .0B .0或-8C .-8或-4D .0或-8或-4 【答案】D【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2),整理得:(4+m )x =8,当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8;当x =2时原方程分母为0,此时m =0,故选:D .【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.。

新湘教版八年级数学上第1章分式小结与复习ppt公开课优质教学课件

新湘教版八年级数学上第1章分式小结与复习ppt公开课优质教学课件
能多铺设20米,且甲工程
队铺设350米所用的天数与乙工程队铺设250米所用的天数相 同.问甲、乙两个工程队每天各能铺设多少米?
解:设乙工程队每天能铺设x米;
则甲工程队每天能铺设(x+20)米, 依题意,得 350 250 , 解得x=50,
x 20 x
经检验,x=50是原方程的解,且符合题意.


分式的运算及化简求值
分式方程的定义 分 式
分式方程
分式方程的解法 及增根求值问题 步 骤
分式方程 的 应 用 类 型
一审二设三列四 解五检六写,尤 其不要忘了验根
行程问题、工程问 题、销售问题等
课后作业
见本章小结与复习
2 2 2
解: 由
x 2 ,得 x 2 y , y 3 3
把x2y 3
x2 y 2 xy y 2 2 2 2 x 2 xy y 2 x 2 xy ( x y )( x y ) 2 x( x y ) 2 ( x y) y( x y) 2x . 4 y y
分式值为 0 的条件:
f=0且 g ≠0
3.分式的基本性质
分式的分子与分母都乘同一个非零整式,所得分式与原分 式相等.
f f f ·h 即对于分式 ,有 g g ·h g
( h 0 ).
分式的符号法则:
f f f f f , . g g g g g
二、分式的运算 1.分式的乘除法法则 分式的乘法
1 1 2 2 又因为 x 4 ( x 2 ) 2 x x 1 2 [( x ) 2]2 2 x (25 2) 2 2 527.
考点三 分式方程的解法
例3 解下列分式方程:

北师大版分式培优班知识点经典例题拓展练习附详细复习资料

北师大版分式培优班知识点经典例题拓展练习附详细复习资料

13、分式总复习【知识精要】分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。

如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =⨯⨯≠=÷÷≠⎧⎨⎪⎪⎩⎪⎪-=+⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪()()005113【分类解析】1. 分式有意义的应用例1. 若ab a b +--=10,试判断1111a b -+,是否有意义。

分析:要判断1111a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。

解: ab a b +--=10∴+-+=a b b ()()110即()()b a +-=110∴+=b 10或a -=10∴-+1111a b ,中至少有一个无意义。

2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。

例2. 计算:a a a a a a 2211313+-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。

解:原式=+-+--+-a a a a a a ()()111313 =-+-+-=-+--=--+++-=--+-a a a a a a a a a a a a a 1113111331132213()()()()()()()例3. 解方程:11765556222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。

人教版八年级数学上册《分式复习课》教学设计

人教版八年级数学上册《分式复习课》教学设计

人教版八年级上册第十五章分式方程复习课教学设计一、内容和内容解析1.内容分式的概念、分式的运算、分式方程及其应用。

2.内容解析分式蕴含着双重身份:既是除法的表达式又表示除法的结果。

从这个观点出发,《分式》这章是继整式乘除之后对代数式进一步的研究。

数学里的数与式,其生命力在于运算,只有与运算联系起来,才能深化对数与式的认识,分式的运算的基础是分数、整式的四则运算、正整数指数幂的运算、多项式的因式分解、。

同时它是今后进一步学习反比例函数、分式变形,也是在以后学习物理、化学中经常遇到的问题。

基于以上分析,确定本节课的教学重点为分式的运算、分式方程及其应用。

二、目标和目标解析1.教学目标(1)了解分式的概念、基本性质。

(2)熟练的进行简单的分式的运算。

(3)准确求出分式方程的解并运用分式方程解决实际问题。

2.目标解析通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对《分式》的知识梳理,通过对知识的梳理、典型例题的分析、综合解决问题。

体会“转化”、“方程”的数学思想解决问题。

(1)分式、分式方程概念的理解。

通过微视频展示,从分式到分式方程逐一展开,促进理解。

(2)计算。

利用希沃教学软件,展示学生的错因,达到举一反三。

三、教学问题诊断分析分式的四则混合运算是整式运算、因式分解和分式运算的综合运用;列分式方程解决实际问题——与列整式方程相比,尽管涉及的基本数量关系相同,但是由于含有未知数的式子可以是整式或分式,所以更具灵活性,学生会感到困难。

本节课的教学难点为:分式运算及应用。

四、教学过程设计1、视频导入,温故知新。

问题:分式这章的内容包括哪些?建立本章知识框架图,形成本章知识体系:(插入微视频)师生活动:老师提问学生,以框架图的形式梳理本节课知识点,并重点性的板书,提问主要针对成绩中等及偏下学生,让他们都积极参与课堂。

设计意图:使学生对本节课的知识有个整体的认识,形成清晰的思路,以便更好地完成学习目标。

最新初中数学分式知识点总复习有答案解析(3)

最新初中数学分式知识点总复习有答案解析(3)

最新初中数学分式知识点总复习有答案解析(3)一、选择题1.下列各式中,正确的是( )A .1a b b ab b++= B .()222x y x y x y x y --=++ C .23193x x x -=-- D .22x y x y -++=- 【答案】B【解析】【分析】根据分式的基本性质分别进行化简即可.【详解】解:A 、1b a+ab =b ab+ ,错误; B 、222x y x y =x y (x y )--++ ,正确; C 、2x 31=x 3x 9-+- ,错误; D 、x y x y =22-+-- ,错误. 故选:B .【点睛】本题主要考察了分式的基本性质,分式运算时要同时乘除和熟练应用约分是解题的关键.2.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=,∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.3.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.4.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠-B .0x ≠C .1x ≠D .2x ≠ 【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】 要使分式81x -有意义, 则x-1≠0,解得:x≠1.故选:C .【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.5.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.6.数字0.00000005m ,用科学记数法表示为( )m .A .70.510-⨯B .60.510-⨯C .7510-⨯D .8510-⨯ 【答案】D【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将0.00000005用科学记数法表示为8510-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( ) A .0.715×104B .0.715×10﹣4C .7.15×105D .7.15×10﹣5【答案】D【解析】8.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.9.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.10.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y 【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式;B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.11.下列分式中,最简分式是( )A .22115xy y B .22x y x y -+ C .222x xy y x y -+- D .22x y x y+- 【答案】D【解析】【分析】 根据最简分式的定义即可求出答案.【详解】解:(A )原式=75x y,故A 不是最简分式; (B )原式=()()x y x y x y +-+=x-y ,故B 不是最简分式;(C )原式=2)x y x y--(=x-y ,故C 不是最简分式; (D) 22x y x y+-的分子分母都不能再进行因式分解、也没有公因式. 故选:D .【点睛】本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.12.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.【点睛】 本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.13.式子2a +有意义,则实数a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.计算2111x x x x -+-+的结果为( ) A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.15.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

中考复习——分式的有关概念(解析版)

中考复习——分式的有关概念(解析版)

中考复习——分式的有关概念一、选择题 1、分式13x -可变形为( ).A. 13x +B. -13x+C.13x - D. -13x - 答案:D 解答:分式13x -可变形为:-13x -.选D.2、当x =1时,下列分式没有意义的是( ).A.1x x+ B.1x x - C.1x x- D.1x x + 答案:B解答:当x =1时,x -1=0, 故分式1xx -没有意义, 其余分式都有意义. 选B. 3、若分式12x -有意义,则x 的取值范围是( ).A. x >2B. x ≠2C. x ≠0D. x ≠-2答案:B解答:分式分母不为0, 所以x -2≠0,即x ≠2. 选B.4、下列式子中正确的是( ). A. a 2-a 3=a 5 B. (-a )-1=aC. (-3a )2=3a 2D. a 3+2a 3=3a 3答案:D解答:A 选项:a 2和a 3不是同类项,不能合并,选项错误; B 选项:(-a )-1=-1a,选项错误; C 选项:(-3a )2=9a 2,选项错误;D选项:a3+2a3=3a3,选项正确.选D.5、下列运算中正确的是().A. (a2)3=a5B. (12)-1=-2C. (0=1D. a3·a3=2a6答案:C解答:A选项:(a2)3=a6,故A错误;B选项:(12)-1=2,故B错误;C选项:(0=1,正确;D选项:a3·a3=a6,故D错误.选C.6、如果分式11x+在实数范围内有意义,则x的取值范围().A. x≠-1B. x>-1C. 全体实数D. x=-1答案:A解答:由题意可知:x+1≠0,x≠-1.选A.7、函数y=1x-中自变量x的取值范围是().A. x≥-2且x≠1B. x≥-2C. x≠1D. -2≤x<1答案:A解答:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0,解得:x≥-2且x≠1.选A.8、下列运算正确的是().A. B. (12)-1=-2C. (-3a)3=-9a3D. a6÷a3=a3(a≠0)答案:D解答:A,故A错误;B选项:(12)-1=2,故B错误;C选项:(-3a)3=-27a3,故C错误;D选项:a6÷a3=a6-3=a3(a≠0),故D正确.选D.9、分式52xx+-的值是零,则x的值为().A. 2B. 5C. -2D. -5答案:D解答:52xx+-=0,即(x+5)(x-2)=0,x1=-5,x2=2,经检验x=2不是原方程的解,x=-5是原方程的解,故x=-5.选D.10有意义的x的取值范围是().A. x≥4B. x>4C. x≤4D. x<4答案:D解答:有意义,则:4-x>0,解得:x<4,即x的取值范围是:x<4.选D.11、分式211xx-+=0,则x的值是().A. 1B. -1C. ±1D. 0答案:A解答:∵分式211x x -+=0,∴x 2-1=0且x +1≠0, 解得:x =1. 选A.12在实数范围内有意义,则x 的取值范围是( ). A. x ≥1且x ≠2 B. x ≤1C. x >1且x ≠2D. x <1答案:A解答:依题意,得x -1≥0且x ≠2, 解得x ≥1且x ≠2, 选A.13、函数y =13x -的自变量x 的取值范围是( ). A. x ≥2,且x ≠3 B. x ≥2C. x ≠3D. x >2,且x ≠3答案:A解答:依题意可得x -3≠0,x -2≥0, 解得x ≥2,且x ≠3. 选A.14、函数y 的自变量x 的取值范围是( ). A. x ≠5 B. x >2且x ≠5C. x ≥2D. x ≥2且x ≠5答案:D解答:由题意得:2050x x -≥⎧⎨-≠⎩, 解得:x ≥2且x ≠5.故答案选D.15、若代数式13xx+-有意义,则实数x的取值范围是().A. x=-1B. x=3C. x≠-1D. x≠3答案:D解答:13xx+-有意义,分母不为0,x-3≠0,x≠3.选D.二、填空题16、若分式1xx-的值为0,则x的值等于______.答案:1解答:分式1xx-的值为0,即分子为0且x≠0,x-1=0,x=1.故x=1.17、要使51x+有意义,则x的取值范围是______.答案:x≠-1解答:分式有意义,则分母不为零,所以x+1≠0,x≠-1,故x的取值范围为x≠-1.18、若式子1-11x-在实数范围内有意义,则x的取值范围是______.答案:x≠1解答:分式有意义,则x-1≠0,解得x≠1.故答案为:x≠1.19、若代数式17x-有意义,则实数x的取值范围是______.答案:x≠7解答:若17x-有意义,x≠7,故实数x的取值范围为x≠7,故答案为:x≠7.20、函数y=16x-中,自变量x的取值范围是______.答案:x≠6解答:由题意得,x-6≠0,解得x≠6.故答案为:x≠6.21、计算:(14)-1=______.答案:4解答:(14)-1=114=4,故答案为:4.22、要使分式21xx+-有意义,则x应满足条件______.答案:x≠1解答:由分式有意义的条件,得x≠1.23、若分式22x xx-的值为0,则x的值是______.答案:2解答:∵分式22x xx-的值为0∴x2-2x=0,且x≠0,解得:x=2.故答案为:2.24、若分式11x+的值不存在,则x=______.答案:-1解答:∵分式11x+的值不存在,解得:x=-1,故答案为:-1.25在实数范围内有意义,则x的取值范围是______.答案:x>3解答:由题意得:2x-6>0,解得:x>3,故答案为:x>3.26、函数y的自变量x取值范围是______.答案:x≥1且x≠3解答:根据题意得:1030xx-≥⎧⎨-≠⎩.,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.27、若分式121x-有意义,则x的取值范围是______.答案:x≠1 2解答:根据题意得,2x-1≠0,解得x≠12.28有意义,则x的取值范围是______.答案:x>2解答:由题意得,x-2>0,解得x>2.故答案为:x>2.29、函数y______.答案:x>3解答:得x ≥3, 由分母不为0得x -3≠0,x ≠3, 综上x >3. 30、分式22xx -与282x x-的最简公分母是______,方程22822x x x x ---=1的解是______.答案:x (x -2);x =-4 解答:∵x 2-2x =x (x -2),∴分式22xx -与282x x -的最简公分母是x (x -2), 方程22822x x x x---=1, 去分母得:2x 2-8=x (x -2), 去括号得:2x 2-8=x 2-2x ,移项合并得:x 2+2x -8=0,变形得:(x -2)(x +4)=0, 解得:x =2或-4,检验:∵当x =2时,x (x -2)=0,当x =-4时,x (x -2)≠0, ∴x =2是增根,x =-4是方程的根, ∴方程的解为:x =-4. 故答案为:x (x -2);x =-4.。

分式总复习优质课

分式总复习优质课
X2 - 2x+3 x 为一切实数
X+1 A x2
X+1 B X2+1
X2 +1 C X-1
1 D X -1
4.当x <-2 时,分式 X2+1 的值是负数. X+2
5.当x ≥7
时,分式
X-7 X2+1
的值是非负数.
6当x
>-1 时,分式
X+1 X2-2x+3
的值为正.
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变
复习回顾二:
列分式方程解应用题的一般步骤 1.审:分析题意,找出研究对象,建立等量关系. 2.设:选择恰当的未知数,注意单位. 3.列:根据等量关系正确列出方程. 4.解:认真仔细. 5.验:不要忘记检验. 6.答:不要忘记写.
例1. 已知轮船在静水中每小时行20千米, 如 果 此 船 在 某 江 中 顺 流 航 行 72 千 米 所 用 的时间与逆流航行48千米所用的时间相 同,那么此江水每小时的流速是多少千 米?
1.分式的定义:
形如 A ,其中 A ,B 都是整式,
B
且 B 中含有字母.
2.分式有意义的条件: B≠0 分式无意义的条件: B = 0
3.分式值为 0 的条件: A=0且 B ≠0 A
4.分式 B > 0 的条件: A>0 ,B>0 或 A<0, B<0 分式 A < 0 的条件: A>0 ,B<0 或 A<0 ,B>0 B

4.(2×10-3)2×(2×10-2)-3=

5.(an+1bm)-2÷anb=a-5b-3,则m= ,n=___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4= 2 2a+b a+b
3.填空:
-a-b a+b c-d = ( d-c )
-x +y x+y
x-y = ( -x-y)
x 4.如果把分式 x+y 中的x和y的值都扩大3倍, 则分式的值( B ) A 扩大3倍 B不变 C缩小1/3 D缩小1/6
xy 5.如果把分式 x+y 中的x和y的值都扩大3倍, 则分式的值( A ) A 扩大3倍 B不变 C缩小1/3 D缩小1/6
X2 - 2x+3 x 为一切实数
X+1 A x2
X+1 B X2+1
X2 +1 C X-1
1 D X -1
4.当x <-2 时,分式 X2+1 的值是负数. X+2
5.当x ≥7
时,分式
X-7 X2+1
的值是非负数.
6当x
>-1 时,分式
X+1 X2-2x+3
的值为正.
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。
关键是找最简公分母:各分母所有因式的最高次幂的积.
1.约分
(1)
-6x2y
27xy2
(3)
m2+4m+4 m2 - 4
(2) -2(a-b)2 -8(b-a)3
2.通分
(1) x 与 y
6a2b
x y x
y2
解: x x y x2 xy
( x y)( x y) x2
y2
x(x y) x(x y) x(x y)
x2 y2 x2 y2
x2 xy
0
(7)当 x = 200 时,求 x x 6 1
的值.
x 3 x2 3x x
解:
x
x
3
x6 x2 3x
1 x
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
约分与通分的依据都是: 分式的基本性质
1.已知
xy
Z
2=3 = 4
,试求
x+y-z
x+y+z
的值.
11
2x-3xy+2y
2.已知 x + y = 5 ,求
-x+2xy-y
的值.
3.已知 x +
1
x
=3 ,
求 x2 +
1
x2
的值.
变: 已知 x2 – 3x+1=0 ,求 x2+
a (5)( b ) n
Байду номын сангаас
an bn
(b≠0)
(6)当a≠0时,a0=1。
(7)n是正整数时, a-n属于分式。
并且
a
n
1 an
(a≠0)
1:下列等式是否正确?为什么?
(1)am÷an= am.a-n;
(2) ( a )n anbn b
2. 0.000000879用科学计数法表示为
.
3.如果(2x-1)-4有意义,则
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
a 用符号语言表达: c a d ad b d b c bc
用式子表示: A = A X M
B
(BXM )
A A÷M B = ( B÷M )
(其中M为 不为0 的整式)
2.分式的符号法则:
A
=
( -A
)
=
A
=
B
B
(-B )
-A ( -B )
-A A
=
=
-B ( B )
( -A ) =
B
-A (B )
1.写出下列等式中的未知的分子或分母.
(1)
a+b
(a2+ab )
1.下列各式(1) 3 (2) 2x (3) 2x2 (4) x
2x
3
x

是分式的有 3 个。
3 (5) 1- 2x
2.下列各式中x 取何值时,分式有意义.
X -1
(1) X + 2
1 (2) X -1
4x (3) X2 -1
x ≠-2
x≠±1
x ≠±1
3.下列分式一定有意义的是( B )
1 (4)
x2
x6 x3
x( x 3) x( x 3) x( x 3)
x2 9 ( x 3)( x 3) x 3
x( x 3) x( x 3)
x
200 3
当 x = 200 时,原式=
203
200 200
整数指数幂有以下运算性质:
(1)am·an=am+n (a≠0) (2)(am)n=amn (a≠0) (3)(ab)n=anbn (a,b≠0) (4)am÷an=am-n (a≠0)

4.(2×10-3)2×(2×10-2)-3=
1.分式的定义:
形如 A ,其中 A ,B 都是整式,
B
且 B 中含有字母.
2.分式有意义的条件: B≠0 分式无意义的条件: B = 0
3.分式值为 0 的条件: A=0且 B ≠0 A
4.分式 B > 0 的条件: A>0 ,B>0 或 A<0, B<0 分式 A < 0 的条件: A>0 ,B<0 或 A<0 ,B>0 B
ab = a2b
a2+b2-2ab
(3)
a -b a+b
(
)
= a2 –b2
(2) ab+b2 = a+b
ab2+b
( ab+1 )
(4)
a+b ab
=
2a2+2ab
(2a2b )
2.下列变形正确的是(
)
C
a
a2
A b = b2
a-b a2-b
B
a = a2
C 2-x = X-2 X-1 1-x
D
( x 4)( x 4) x 3 (2 x)(2 x)
( x 3)( x 2) ( x 4)( x 2)
x2 x 6 x2 2x 8
注意:
乘法和除法运算时,分子或分母能 分解的要分解,结果要化为最简分式 。
分式的加减
同分母相加
B C BC AA A
异分母相加
B C BD CA BD AC
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (2) 2c2 4cd
(3) a2 4a 4 a 1 a2 2a 1 a2 4
(4)
9 6x x2 x2 16
x3 4x
x2 4x 4 x2
4
解:
9 6x x2 x2 16
x 3 x2 4x 4
4 x
4 x2
(3 x)2 4 x ( x 2)2
A D AD AD
AD
通分
在分式有关的运算中,一般总是先把分子、 分母分解因式;
注意:过程中,分子、分母一般保持分解因 式的形式。
(1) 4 3 • aa
(2) x 1 2x 1 x 1 1 x
(4)
x 1 x2 1
2x 1 x 1
(5)x 2 2x 1 x 1
(6)计算:x y x y2 x x y x2 xy
相关文档
最新文档