最新STM32定时器解析

合集下载

STM32F103系列单片机中的定时器工作原理解析

STM32F103系列单片机中的定时器工作原理解析

STM32F103系列单片机中的定时器工作原理解析
STM32F103系列的单片机一共有11个定时器,其中:
2个高级定时器
4个普通定时器
2个基本定时器
2个看门狗定时器
1个系统嘀嗒定时器
出去看门狗定时器和系统滴答定时器的八个定时器列表;
8个定时器分成3个组;
TIM1和TIM8是高级定时器
TIM2-TIM5是通用定时器
TIM6和TIM7是基本的定时器
这8个定时器都是16位的,它们的计数器的类型除了基本定时器TIM6和TIM7都支持向上,向下,向上/向下这3种计数模式
计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。

(此种技术方法也可叫向上/向下计数)
基本定时器(TIM6,TIM7)的主要功能:
只有最基本的定时功能,。

基本定时器TIM6和TIM7各包含一个16位自动装载计数器,由各自的可编程预分频器驱动
通用定时器(TIM2~TIM5)的主要功能:
除了基本的定时器的功能外,还具有测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。

⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采⽤内部时钟。

TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。

这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。

{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。

⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。

如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。

stm32定时器原理

stm32定时器原理

stm32定时器原理STM32定时器是一种非常重要的硬件模块,能够实现精确的时间控制和周期性操作。

本文将介绍STM32定时器的原理,包括定时器的基本功能、定时器的分频器、定时器的计数器、定时器的中断、定时器的输出比较和定时器的输入捕获等。

首先介绍定时器的基本功能,STM32定时器可以产生一个特定的周期性信号,在一定的时间间隔内产生触发事件,例如控制LED闪烁、蜂鸣器发声等等。

此外,定时器还可以通过设定特定的计数值来实现定时功能,如延时、计时器等等。

其次介绍定时器的分频器,STM32定时器的分频器可以设置定时器的工作频率,通常是通过将系统时钟分频来实现。

分频器的设置可以通过修改寄存器的值来实现,通常是通过设置预分频器和分频器来实现。

接着介绍定时器的计数器,STM32定时器的计数器是用来记录分频器的计数值,通过相应的计数值来确定定时器的工作周期。

定时器的计数器可以在特定的条件下自动重置或停止,以实现特定的计时或延时功能。

然后介绍定时器的中断,STM32定时器的中断可以在定时器计数器达到特定的值时触发,然后执行中断服务程序。

在中断服务程序中可以实现特定的操作,例如控制IO口状态、改变定时器的工作频率等。

接下来介绍定时器的输出比较,STM32定时器的输出比较可以将定时器的输出信号与预设的比较值进行比较,以实现特定的操作。

例如可以控制LED的亮度、PWM信号、电机控制等等。

最后介绍定时器的输入捕获,STM32定时器的输入捕获可以在外部信号产生时捕获定时器的计数值,可以用于测量脉冲宽度、频率等等。

定时器的输入捕获通常需要设置定时器的捕获模式和捕获通道等参数。

综上所述,STM32定时器是一种非常重要的硬件模块,应用广泛,我们需要充分理解其原理和应用,以实现精确的时间控制和周期性操作。

STM32通用定时器原理及应用

STM32通用定时器原理及应用

一、通用定时器原理STM32系列的CPU,有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM 互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生。

其它6个为普通定时器,时钟由APB1的输出产生。

下图是STM32参考手册上时钟分配图中,有关定时器时钟部分的截图:实际上STM32的CPU文档给出的图与这个图略有区别。

但是我们还是想研究这个图。

原因是这个图对我们思路的理解比较有帮助。

从图中可以看出,定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器,图中的蓝色部分。

下面以通用定时器2的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。

可能有同学还是有点不理解,OK,我们举一个例子说明。

假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=36MHz。

有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。

再举个例子:当AHB=72MHz时,APB1的预分频系数必须大于2,因为APB1的最大频率只能为36MHz。

如果APB1的预分频系数=2,则因为这个倍频器,TIM2~7仍然能够得到72MHz 的时钟频率。

能够使用更高的时钟频率,无疑提高了定时器的分辨率,这也正是设计这个倍频器的初衷。

stm32 timer 用法

stm32 timer 用法

stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。

其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。

本文将详细介绍STM32定时器的用法。

2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。

其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。

3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。

计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。

当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。

4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。

5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。

(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。

STM32之TIM通用定时器

STM32之TIM通用定时器

STM32之TIM通⽤定时器本⽂介绍如何使⽤STM32标准外设库配置并使⽤定时器,定时器就是设置⼀个计时器,待计时时间到之后产⽣⼀个中断,程序接收到中断之后可以执⾏特定的程序,跟现实中的闹钟功能类似。

与延时功能不同,定时器计时过程中程序可以执⾏其他程序。

最简单直观的应⽤为定时翻转指定IO引脚。

本例程使⽤通⽤定时器TIM3,每100ms翻转GPIOB的Pin5输出,如果该引脚外接有LED灯,可以看到LED灯周期性的闪烁。

STM32F103VE系列共有8个定时器,分为基本定时器、通⽤定时器和⾼级定时器,其中通⽤定时器包括TIM2/3/4/5共4个,如果⼀个定时器不够⽤,可以启动其他⼏个定时器。

本⽂适合对单⽚机及C语⾔有⼀定基础的开发⼈员阅读,MCU使⽤STM32F103VE系列。

TIM通⽤定时器分为两部分,初始化和控制。

1. 初始化分两步:通⽤中断、TIM。

1.1. 通⽤中断:优先级分组、中断源、优先级、使能优先级分组:设定合适的优先级分组中断源:选择指定的TIM中断源:TIM3_IRQn优先级:设定合适的优先级使能:调⽤库函数即可1.2. TIM:时钟、预分频器、定时器周期、分频因⼦、计数模式、初始化定时器、开启定时器中断、使能计数器。

结构体:typedef struct{uint16_t TIM_Prescaler;uint16_t TIM_CounterMode;uint16_t TIM_Period;uint16_t TIM_ClockDivision;uint8_t TIM_RepetitionCounter;} TIM_TimeBaseInitTypeDef;时钟:需要使能定时器时钟//开启定时器时钟,即内部时钟CK_INT=72MRCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);预分频器:默认定时器时钟频率为72M,那么预分频器设置为71,那么⼀次计数为1us//时钟预分频数为71,则计数器计数⼀次时间为1usTIM_TimeBaseStructure.TIM_Prescaler = 71;定时器周期:设置为999,那么产⽣⼀次定时器中断的时间为1ms//⾃动重装载寄存器为999,则产⽣⼀次中断时间为1msTIM_TimeBaseStructure.TIM_Period = 1000 - 1;计数模式:⼀般选择向上计数模式// 计数器计数模式,选择向上计数模式TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;时钟分频因⼦:⼀般选择1分频// 时钟分频因⼦,选择1分频TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;重复计数器的值:仅对⾼级定时器有效,⽆需设置初始化定时器:调⽤库函数即可//初始化定时器TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);开启定时器中断//开启计数器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);使能计数器//使能计数器TIM_Cmd(TIM3, ENABLE);2. 处理2.1. 中断服务函数定时器TIM3的中断服务函数名称为TIM3_IRQHandler ()。

stm32定时器

stm32定时器

STM32定时器定时器功能简介区别于SysTick一般只用于系统时钟的计时,STM32的定时器外设功能非常强大。

STM32一共有8个都为16位的定时器。

其中TIM6、TIM7是基本定时器;TIM 2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。

这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身定做的。

定时器工作分析基本定时器基本定时器TIM6和TIM7只具备最基本的定时功能,就是累加的时钟脉冲数超过预定值时,能触发中断或触发DMA请求。

这两个基本定时器使用的时钟源都是TIMxCLK,时钟源经过PSC预分频器输入至脉冲计数器TIMx_CNT,基本定时器只能工作在向上计数模式,在重载寄存器TIMx_ARR中保存的是定时器的溢出值。

工作时,脉冲计数器TIMx_CNT由时钟触发进行计数,当TIMx_CNT的计数值X等于重载寄存器TIMx_ARR中保存的数值N时,产生溢出事件,可触发中断或DMA请求。

然后TIMx_CNT的值重新被置为0,重新向上计数。

通用定时器相比之下,通用定时器TIM2~TIM5就比基本定时器复杂得多了。

除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。

通用定时器的基本计时功能与基本定时器的工作方式是一样的,同样把时钟源经过预分频器输出到脉冲计数器TIMx_CNT累加,溢出时就产生中断或DMA请求。

而通用定时器比基本定时器多出的强大功能,就是因为通用定时器多出了一种寄存器----捕获/比较寄存器TIMx_CRR(capture/compareregister)它在输入时被用于捕获(存储)输入脉冲在电平发生翻转时脉冲计数器TI Mx_CNT的当前计数值,从而实现脉冲的频率测量;在输出时被用来存储一个脉冲数值,把这个数值用于与脉冲计数器TIMx_CNT的当前计数值进行比较,根据比较结果进行不同的电平输出定时器的时钟源从时钟源方面来说,通用定时器比基本定时器多了一个选择,它可以使用外部脉冲作为定时器的时钟源。

STM32的定时器定时时间计算(计数时间和中断定时时间)

STM32的定时器定时时间计算(计数时间和中断定时时间)

STM32的定时器定时时间计算(计数时间和中断定时时间)时基单元可编程⾼级控制定时器的主要部分是⼀个16位计数器和与其相关的⾃动装载寄存器。

这个计数器可以向上计数、向下计数或者向上向下双向计数。

此计数器时钟由预分频器分频得到。

计数器、⾃动装载寄存器和预分频器寄存器可以由软件读写,即使计数器还在运⾏读写仍然有效。

时基单元包含:●计数器寄存器(TIMx_CNT)●预分频器寄存器 (TIMx_PSC)●⾃动装载寄存器 (TIMx_ARR)●重复次数寄存器 (TIMx_RCR)⾃动装载寄存器是预先装载的,写或读⾃动重装载寄存器将访问预装载寄存器。

根据在TIMx_CR1寄存器中的⾃动装载预装载使能位(ARPE)的设置,预装载寄存器的内容被⽴即或在每次的更新事件UEV时传送到影⼦寄存器。

当计数器达到溢出条件(向下计数时的下溢条件)并当TIMx_CR1寄存器中的UDIS位等于0时,产⽣更新事件。

更新事件也可以由软件产⽣。

随后会详细描述每⼀种配置下更新事件的产⽣。

计数器由预分频器的时钟输出CK_CNT驱动,仅当设置了计数器TIMx_CR1寄存器中的计数器使能位(CEN)时,CK_CNT才有效。

(更多有关使能计数器的细节,请参见控制器的从模式描述)。

注意,在设置了TIMx_CR寄存器的CEN位的⼀个时钟周期后,计数器开始计数。

预分频器描述预分频器可以将计数器的时钟频率按1到65536之间的任意值分频。

它是基于⼀个(在TIMx_PSC寄存器中的)16位寄存器控制的16位计数器。

因为这个控制寄存器带有缓冲器,它能够在运⾏时被改变。

新的预分频器的参数在下⼀次更新事件到来时被采⽤。

尤其注意的是当发⽣⼀个更新事件时,所有的寄存器都被更新,硬件同时(依据URS位)设置更新标志位(TIMx_SR寄存器中的UIF位)。

●重复计数器被重新加载为TIMx_RCR寄存器的内容。

●⾃动装载影⼦寄存器被重新置⼊预装载寄存器的值(TIMx_ARR)。

STM32通用定时器

STM32通用定时器

STM32通用定时器一、定时器的基础知识三种STM32定时器区别通用定时器功能特点描述:STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括:位于低速的APB1总线上(APB1)16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。

16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。

4 个独立通道(TIMx_CH1~4),这些通道可以用来作为:①输入捕获②输出比较③ PWM 生成(边缘或中间对齐模式)④单脉冲模式输出可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。

如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器):①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)③输入捕获④输出比较⑤支持针对定位的增量(正交)编码器和霍尔传感器电路⑥触发输入作为外部时钟或者按周期的电流管理STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。

使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。

STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。

定时器框图:倍频得到),外部时钟引脚,可以通过查看数据手册。

也可以是TIMx_CHn,此时主要是实现捕获功能;框图中间的时基单元框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

二、定时器相关的寄存器和寄存器操作库函数时钟选择, 计数器时钟可以由下列时钟源提供:时钟选择①内部时钟(CK_INT)②外部时钟模式1:外部输入脚(TIx)③外部时钟模式2:外部触发输入(ETR)④内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。

stm32高级定时器 多通道控制步进电机 标准函数

stm32高级定时器 多通道控制步进电机 标准函数

标题:STM32高级定时器多通道控制步进电机标准函数一、STM32高级定时器简介1.1 STM32高级定时器的概念STM32系列微控制器中的高级定时器是一种功能强大的定时器,可以实现多通道控制、高精度定时等功能。

1.2 高级定时器的特点高级定时器具有多通道控制、PWM波形发生、编码器接口、定时周期计数等特点,非常适合用于控制步进电机。

二、多通道控制步进电机2.1 步进电机控制原理步进电机是一种将电能转化为机械能的设备,通过对电流的控制来驱动电机旋转。

多通道控制可以实现单步控制、微步控制等功能。

2.2 高级定时器在步进电机控制中的应用高级定时器的多通道控制功能可以实现对步进电机的精确控制,通过定时器的定时周期和占空比设置,可以实现步进电机的旋转角度控制。

三、标准函数的应用3.1 标准函数库的介绍STM32标准函数库是由ST公司提供的一套功能丰富的软件库,其中包含了丰富的功能函数和驱动程序,可以大大简化开发者的开发流程。

3.2 标准函数在高级定时器中的应用开发者可以通过调用标准函数库中提供的函数来实现对高级定时器的初始化、配置和控制,从而实现对步进电机的精确控制。

结语:通过本文对STM32高级定时器多通道控制步进电机标准函数的介绍,可以看出高级定时器在步进电机控制中具有重要的应用价值。

通过合理的设置定时器参数和调用标准函数库中的函数,开发者可以实现对步进电机的精确控制,为实际应用提供了便利。

希望本文能够帮助读者更深入地了解高级定时器多通道控制步进电机标准函数的应用,并且在实际开发中加以应用。

很抱歉,我似乎在给出的回复中存在了重复。

以下是补充的新内容:四、高级定时器的多通道控制方式4.1 多通道控制原理STM32的高级定时器可以实现多通道控制,将一个定时器的计时和控制功能分配给多个通道,实现多个功能的控制。

4.2 多通道控制的优势通过多通道控制,可以实现对多个外设设备的并行控制,减少了对多个定时器的占用,提高了系统资源的利用效率。

STM32高级定时器详解

STM32高级定时器详解

STM32高级定时器详解高级定时器(TIM1和TIM8)由一个16位的自动装载计数器组成,它由一个可编程的预分频器驱。

它适合多种用途,包含测量输入信号的脉冲宽度(输入捕获),或者产生输出波形(输出比较、PWM、嵌入死区时间的互补PWM 等)。

使用定时器预分频器和RCC时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。

高级控制定时器和通用定时器是完全独立的,它们不共享任何资源。

它们可以同步操作。

Table 457. TIM寄存器寄存器描述CR1 控制寄存器1CR2 控制寄存器2SMCR 从模式控制寄存器DIER DMA/中断使能寄存器SR 状态寄存器EGR 事件产生寄存器CCMR1 捕获/比较模式寄存器1CCMR2 捕获/比较模式寄存器2CCER 捕获/比较使能寄存器CNT 计数器寄存器PSC 预分频寄存器APR 自动重装载寄存器CCR1 捕获/比较寄存器1CCR2 捕获/比较寄存器2CCR3 捕获/比较寄存器3CCR4 捕获/比较寄存器4DCR DMA控制寄存器DMAR 连续模式的DMA地址寄存器Table 458. 例举了TIM的库函数Table 458. TIM库函数函数名描述TIM_DeInit 将外设TIMx寄存器重设为缺省值TIM_TimeBaseInit根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位TIM_OCInit 根据TIM_OCInitStruct 中指定的参数初始化外设TIMxTIM_ICInit 根据TIM_ICInitStruct 中指定的参数初始化外设TIMx TIM_TimeBaseStructInit 把TIM_TimeBaseInitStruct 中的每一个参数按缺省值填入TIM_OCStructInit 把TIM_OCInitStruct 中的每一个参数按缺省值填入TIM_ICStructInit 把TIM_ICInitStruct 中的每一个参数按缺省值填入TIM_Cmd 使能或者失能TIMx 外设TIM _ITConfig 使能或者失能指定的TIM 中断TIM_DMAConfig 设置TIMx的DMA接口TIM_DMACmd 使能或者失能指定的TIMx 的DMA请求TIM_InternalClockConfig 设置TIMx 内部时钟TIM_ITRxExternalClockConfig 设置TIMx 内部触发为外部时钟模式TIM_TIxExternalClockConfig 设置TIMx 触发为外部时钟TIM_ETRClockMode1Config 配置TIMx 外部时钟模式1TIM_ETRClockMode2Config 配置TIMx 外部时钟模式2TIM_ETRConfig 配置TIMx 外部触发TIM_SelectInputTrigger 选择TIMx 输入触发源TIM_PrescalerConfig 设置TIMx 预分频TIM_CounterModeConfig 设置TIMx 计数器模式TIM_ForcedOC1Config 置TIMx 输出1 为活动或者非活动电平TIM_ForcedOC2Config 置TIMx 输出2 为活动或者非活动电平TIM_ForcedOC3Config 置TIMx 输出3 为活动或者非活动电平TIM_ForcedOC4Config 置TIMx 输出4 为活动或者非活动电平TIM_ARRPreloadConfig 使能或者失能TIMx在ARR 上的预装载寄存器TIM_SelectCCDMA 选择TIMx 外设的捕获比较DMA源TIM_OC1PreloadConfig 使能或者失能TIMx在CCR1 上的预装载寄存器TIM_OC2PreloadConfig 使能或者失能TIMx在CCR2 上的预装载寄存器TIM_OC3PreloadConfig 使能或者失能TIMx在CCR3 上的预装载寄存器TIM_OC4PreloadConfig 使能或者失能TIMx在CCR4 上的预装载寄存器TIM_OC1FastConfig 设置TIMx 捕获比较1 快速特征。

STM32定时器定时时间配置总结

STM32定时器定时时间配置总结

STM32定时器定时时间配置总结STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时功能,如延时、周期性触发、脉冲计数等。

在使用STM32定时器之前,我们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、定时器计数器重载值以及定时器中断配置等内容。

首先,我们需要选择定时器的工作模式。

STM32定时器支持多种工作模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较模式等。

基本定时器模式适用于简单的定时和延时操作,输入捕获模式适用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。

根据具体的应用需求,选择合适的工作模式。

其次,我们需要选择定时器的时钟源。

STM32定时器的时钟源可以选择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。

内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定性较好,适用于要求较高的定时操作。

然后,我们需要选择定时器的时钟分频系数。

定时器的时钟分频系数决定了定时器的时钟频率,从而影响了定时器的计数速度。

我们可以通过改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。

时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。

接着,我们需要配置定时器的计数器重载值。

定时器的计数器从0开始计数,当计数器达到重载值时,定时器将重新开始计数。

通过改变计数器重载值,可以实现不同的定时时间。

计数器重载值的选择需要考虑定时器的时钟频率和所需的定时时间。

最后,我们需要配置定时器的中断。

定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。

在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。

通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。

需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。

(26条消息)STM32定时器相关介绍(主要是有UEV更新事件介绍)

(26条消息)STM32定时器相关介绍(主要是有UEV更新事件介绍)

(26条消息)STM32定时器相关介绍(主要是有UEV更新事件介绍)可以看到uint8_t TIM_RepetitionCounter将暂存RCR寄存器的值,从后面注释可以得知;RCR寄存器中的值会递减到0,在允许更新事件UEV发生的情况下,则TIM的更新事件UEV就会产生;如果设置RCR的值为N,那么PWM模式下,更新事件将会在弟N+1个周期发生;下面根据PWM模式加以区分;•边沿模式edge-aligned mode,延迟PWM周期数量和N相同;•中央对齐模式center-aligned mode,延迟PWM周期数量等于N2\cfrac{N}{2}2N单片机的定时器的确很强大,参考说明书中就占了一百多页,占参考手册1/4有多了。

STM32的定时器分了好几个类别,各个类别针对功能作用都不大相同。

分有:一、高级定时器二、通用定时器三、基本定时器四、看门狗定时器五、SysTick定时器其中看门狗定时器和SysTick定时器本篇笔记阐述,这里主要记下对平时使用定时器作用的计时计数器的一些自己的理解。

按照参考手册中的定义高级定时器通用定时器基本定时器,这三个定时器成上下级的关系,即基本定时器有的功能通用定时器都有,而且还增加了向下、向上/向下计数器、PWM生成、输出比较、输入捕获等等功能;而高级定时器又包含了通用定时器的所有功能,另外还增加了死区互补输出、刹车信号、加入重复计数器等等。

(这里等等功能请参考《STM32参考手册》)所以学习STM32 定时器实际就是学习一下高级定时器,然后适当的删减后就是后面的两种定时器了。

假若不涉及输出输入,定时器的最基本用法就是计数定时作用了本篇笔记主要针对这部分的理解所写下的。

高级定时器中一共有20个寄存器:TIMx_CR1、TIMx_CR2、TIMx_SMCR、TIMx_DIER、TIMx_SR、TIMx_EGR、TIMx_CCMR1、TIMx_CCMR2、TIMx_CCER、TIMx_CNT、TIMx_PSC、TIMx_ARR、TIMx_RCR、TIMx_CCR1、TIMx_CCR2、TIMx_CCR3、TIMx_CCR4、TIMx_BDTR、TIMx_DCR、TIMx_DMAR好吧一堆寄存器光看都看到眼花缭乱了,当然不是所有寄存器都涉及到才能让定时器工作的,例如最基本的定时功能所涉及的只有几个与时基功能相关的寄存器,TIMx_CNT(计数器寄存器)、TIMx_PSC(预分频器寄存器)、TIMx_ARR(自动装载寄存器)、TIMx_RCR(重复次数寄存器)。

STM32定时器基本计数原理解析

STM32定时器基本计数原理解析

STM32定时器基本计数原理解析
概述
STM32的TIM定时器分为三类:基本定时器、通用定时器和高级定时器。

从分类来看就知道STM32的定时器功能是非常强大的,但是,功能强大了,软件配置定时器就相对复杂多了。

很多初学者甚至工作了一段时间的人都不知道STM32最基本的计数原理。

虽然STM32定时器功能强大,也分了三类,但他们最基本的计数部分原理都是一样的,也就是我们常常使用的延时(或定时)多少us、ms等。

接下来我会讲述关于STM32最基本的计数原理,详细讲述如何做到(配置)计数1us的延时,并提供实例代码供大家参考学习。

TIM计数原理描述
定时器可以简单的理解为:由计数时钟(系统时钟或外部时钟)一个一个计数,直到计数至我们设定的值,这个时候产生一个事件,告诉我们计数到了。

上面简单的描述懂了之后就是需要理解它们每一步骤的细节,比如:提供的时钟频率是多少、分频是多少等。

基本TIM框图:
通用TIM框图:
上面两图截取“STM32F4x5、x7参考手册”建议下载手册参看。

从上面两个TIM框图可以看得出来,通用TIM是包含了基本TIM的功能。

也可以说基本定时器是定时器最基本的计数部分,我们该文主要就是围绕这部分来讲述,后续会其他更通用、高级的功能给大家讲述。

重要的几个参数(信息):
1.CK_INT时钟:一般由RCC提供(注意:其频率大部分都是系统时钟的一半,在程序中有一个除2的部分,详情请见RCC部分)。

第八章 STM32定时器

第八章 STM32定时器
/*对C端口初始化,即0,1,2,3管脚输出0*/
GPIO_ResetBits(GPIOC,GPIO_Pin_0); GPIO_ResetBits(GPIOC,GPIO_Pin_1); GPIO_ResetBits(GPIOC,GPIO_Pin_2); GPIO_ResetBits(GPIOC,GPIO_Pin_3); }
TIM_Perscaler:用户设定的预分频系数, 其值范围从0~65535,为1999
8.7 TIM2应用实例概述
void Timer_Configuration(void) { /*定义TIM结构体变量*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_DeInit(TIM2); TIM_TimeBaseStructure.TIM_Period=35999; TIM_TimeBaseStructure.TIM_Prescaler=1999; TIM_TimeBaseStructure.TIM_ClockDivision =TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_Cmd(TIM2,ENABLE);
8.7 TIM2应用实例概述
4.定时器的初始化
定时时间T的计算公式: T=(TIM_Period+1)*(TIM_Prescaler+1)/TIMxCLK =(35999+1)*(1999+1)/72MHz=1s

STM32通用定时器

STM32通用定时器

STM32的定时器功能很强大,学习起来也很费劲儿.其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER做个剖析。

实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用……TIMER主要是由三部分组成:1、时基单元。

2、输入捕获。

3、输出比较。

还有两种模式控制功能:从模式控制和主模式控制。

一、框图让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了…为了方便的看图,我对里面出现的名词和符号做个注解:TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入ITRx:内部触发x(由另外的定时器触发)TI1F_ED:TI1的边沿检测器。

TI1FP1/2:滤波后定时器1/2的输入TRGI:触发输入 TRGO:触发输出CK_PSC:应该叫分频器时钟输入CK_CNT:定时器时钟。

(定时周期的计算就靠它)TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号xICx:输入比较x ICxPS:分频后的ICxOCx:输出捕获x OCxREF:输出参考信号关于框图还有以下几点要注意:1、影子寄存器。

有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);(详细请参考版主博客/STM32/401461/message.aspx)2、输入滤波机制在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率Fdts来采样N次进行滤波的。

STM32-主从定时器-输出固定数量脉冲

STM32-主从定时器-输出固定数量脉冲

在仪器仪表计量、步进电机驱动等领域,有时需要控制电路输出固定数量的PWM ,常规方法一般为中断计数法,即将单片机定时器配置成PWM 输出模式,然以在PWM 中断中对脉冲进行计数,当脉冲数量达到设定值时即关断PWM 输出,这种方法程序上比较简单,但是当输出频率较高时,计数中断会频繁打断系统的正常运行,对系统运行效率会产生一定影响。

另一种输出方式是利用主从定时器的原理,本文就介绍下该种方式。

1输出原理介绍STM32单片机具有定时器同步功能,可以配置多个定时器在内部相连,当一个定时器配置为主模式时,可以对另一个配置成从模式的定时器进行复位、启动、停止或提供时钟的操作。

而主从定时器输出固定脉冲就是利用了一个定时器充当另一个定时器的预分频的原理实现的。

1.1使用一个定时器作为另一个定时器的预分频器上图为基本框图,将定时器1配置成定时器2的预分频后,定时器1负责输出PWM ,每个输出脉冲的边沿在内部作为定时器2的输入时钟,通过配置定时器2的溢出值即可实现对定时器1脉冲输出个数的检测。

1.1.1配置思路:1)配置定时器1为主模式,它可以在每一个更新事件UEV 时输出一个周期性的触发信号。

在TIM1_CR2寄存器的MMS=’010’时,每当产生一个更新事件时在TRGO1上输出一个上升沿信号。

STM32-主从定时器-输出固定数量脉冲2)连接定时器1的TRGO1输出至定时器2,设置TIM2_SMCR 寄存器的TS=’000’,配置定时器2为使用ITR1作为内部触发的从模式。

3)把从模式控制器置于外部时钟模式1(TIM2_SMCR 寄存器的SMS=111),这样定时器2即可由定时器1周期性的上升沿(即定时器1的计数器溢出)信号驱动。

4)设置相应(TIMx_CR1寄存器)的CEN 位分别启动两个定时器。

摘录自手册P278。

1.1.2寄存器配置流程1)配置定时器1为主模式,送出它的更新事件UEV 做为触发输出(TIM1_CR2寄存器的MMS=’010’)。

stm32定时器原理

stm32定时器原理

stm32定时器原理STM32定时器是一种用于计时和计数的重要功能模块,广泛应用于各种嵌入式系统中。

本文将介绍STM32定时器的原理及其应用。

一、STM32定时器的基本原理STM32定时器是基于计数器的工作原理,通过内部时钟源的驱动,实现对计数器的计数和定时功能。

STM32定时器主要有以下几个核心组件:1.1 时钟源:STM32定时器可以选择多种时钟源,如内部时钟、外部时钟或外部时钟源经过分频后的时钟。

时钟源的选择取决于应用的需要和系统的设计。

1.2 预分频器:预分频器用于将时钟源的频率进行分频,以获得更低的计数频率。

预分频器的分频系数可以通过配置来设置,从而满足不同的计数需求。

1.3 自动重装载寄存器(ARR):ARR用于设置定时器的计数周期,即定时器从0开始计数到ARR的值时就会触发中断或产生某种事件。

通过设置ARR的值,可以实现不同的定时功能。

1.4 计数器:计数器是STM32定时器的核心部件,用于进行实际的计数操作。

计数器的位数根据不同型号的STM32芯片而有所不同,常见的有16位和32位两种。

1.5 输出比较单元(OCU):OCU用于产生定时器的输出信号。

可以通过配置OCU的工作模式、比较值和输出极性等参数,实现各种不同的输出功能。

二、STM32定时器的应用STM32定时器广泛应用于各种嵌入式系统中,常见的应用场景包括:2.1 定时中断:通过设置定时器的ARR值和使能中断,可以实现定时中断功能,用于周期性地执行某些任务或操作。

例如,可以利用定时中断来定时采样、定时发送数据或定时更新显示等。

2.2 脉冲计数:通过配置STM32定时器的输入捕获单元(ICU),可以实现对外部脉冲信号的计数。

这在一些需要测量脉冲频率或脉冲宽度的应用中非常有用,如测速仪、计时器等。

2.3 PWM输出:通过配置STM32定时器的输出比较单元,可以实现PWM信号的输出。

PWM信号广泛应用于电机控制、LED调光、音量控制等场景,具有调节精度高、功耗低的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从模式控制寄存器(TIMX_SMCR)
SMS[2:0]:从模式选择 (Slave mode selection) 000:关闭从模式 ,如果CEN=1,则预分频器直接由 内部时钟驱动。
DMA/中断使能寄存器(TIMX_DIER)
位0 (UIE):允许更新中断 (Update interrupt enable) 。0:禁止更新中断; 1:允许更新中断。
更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/ 外部触发) ;
触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ; 输入捕获; 输出比较 ; 支持针对定位的增量(正交)编码器和霍尔传感器电路; 触发输入作为外部时钟或者按周期的电流管理。
6.2 通用定时器TIMX相关寄存器
控制寄存器1(TIMX_CR1)
CEN:使能计数器。 0:禁止计数器; 1:使能计数器。 DIR:方向 (Direction) 。0:计数器向上计数; 1:计数器向
下计数。 CMS[1:0]:选择中央对齐模式 (Center-aligned mode
selection) 参见“ STM32中文参考手册_V10.pdf ”
STM32定时器解析
实验六 定时器实验
实验目的:掌握定时器的工作原理与编程实现定时 的方法。
实验内容: 1)利用TIM2定时500ms,LED1、LED3同时亮灭一次; TIM3定时2 s,LED2、LED4亮灭一次。 2)利用SysTick实现定时1秒钟,LED切换一次亮灭状 态。
主要内容
定的参数初始化TIMx的时间基数单位。 TIM_TimeBaseStructInit :把TIM_TimeBaseInitStruct
中的每一个参数按缺省值填入。 TIM_Cmd :使能或者失能TIMx外设。 TIM _ITConfig :使能或者失能指定的TIM中断。 TIM_PrescalerConfig :设置TIMx预分频 TIM_GetFlagStatus :检查指定的TIM标志位设置与否 TIM_ClearFlag :清除TIMx的待处理标志位 TIM_ClearITPendingBit :清除TIMx的中断待处理位
定时器都是16位的。 通用定时器4个:TIM2、TIM3、TIM4和TIM5。它适用于多
种场合,包括测量输入信号的脉冲长度(输入捕获)或者产 生输出波形(输出比较和PWM)。 高级定时器2个:TIM1和TIM8。比通用定时器功能更强大, 适用于更多场合。
基本定时器2个:TIM6和TIM7。主要用于产生DAC触发信 号,也可当做通用的16位时基计数器。
状态寄存器(TIMX_SR)
位0 (UIF):更新中断标记 (Update interrupt flag) 当产生更新事件时该位由硬件置’1’。它由软件清’0’。 0:无更新事件产生; 1:更新中断等待响应。 当寄存器被更新时该位由硬件置’1’:
− 若TIMx_CR1寄存器的UDIS=0、URS=0,当TIMx_EGR寄存器的UG=1时产生更 新事件(软件对计数器CNT重新初始化);
了TIMx时间基数单位的配置信息。
TIM_TIMEBASEINITTYPEDEF STRUCTURE
typedef struct {
u16 TIM_Period; /*TIM_Period设置了在下一个更新事件装入活动的自动
重装载寄存器周期的值,0x0000和0xFFFF之间*/
6.1 6.2 6.3 6.4 6.5 6.6
STM32定时器概述 通用定时器TIMx相关寄存器 库函数 程序设计方法 系统时钟SysTick简介 SysTick应用实例
6.1 STM32定时器概述
名为TIMx的定时器有8个,其中TIM1和TIM8挂在APB2总线 上,而TIM2-TIM7则挂在APB1总线上。 APB2可以工作在 72MHz下,而APB1最大是36MHz。
CR1: 控制寄存器1 CR2: 控制寄存器2 SMCR:从模式控制寄存器 DIER: DMA/中断使能寄存器 SR: 状态寄存器 EGR: 事件产生寄存器 CCMR1:捕获/比较模式寄存器1 CCMR2:捕获/比较模式寄存器2 CCER: 捕获/比较使能寄存器
CNT : 计数器寄存器 PSC : 预分频寄存器 APR : 自动重装载寄存器 CCR1 :捕获/比较寄存器1 CCR2 :捕获/比较寄存器2 CCR3 :捕获/比较寄存器3 CCR4 :捕获/比较寄存器4 DCR : DMA控制寄存器 DMAR :连续模式的DMA地址寄存器
通用TIMX 定时器主要功能
(1)16位向上、向下、向上/向下自动装载计数器 (2)16位可编程(可以实时修改)预分频器,计数器时钟频率的分频
系数为1~65536之间的任意数值 (3) 4个独立通道: ①输入捕获;②输出比较;③PWM生成(边缘
或中间对齐模式);④单脉冲模式输出
(4)使用发生时产生中断/DMA:
− 若TIMx_CR1寄存器的UDIS=0、URS=0,当计数器CNT被触发事件重初始化时 产生更新事件。(参考同步控制寄存器的说明)
6.3 库函数
TIM_DeInit :将外设TIMx寄存器重设为缺省值。 TIM_TimeBaseInit :根据TIM_TimeBaseInitStruct 中指
函数TIM_TIMEBASEINIT
功能:根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基 数单位。
函数原形: void TIM_TimeBaseInit ( TIM_TypeDef* TIMx,
TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct) 其中,TIMx:x可以是2,3或者4,来选择TIM外设。 TIMTimeBase_InitStruct:指向结构TIM_TimeBaseInitTypeDef的指针,包含
相关文档
最新文档