概率统计复习专题.doc

合集下载

概率统计试卷复习资料

概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。

4、评价估计量优劣的三条标准是无偏性,一致性和 性。

5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。

概率论与统计原理复习资料

概率论与统计原理复习资料

一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。

参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。

参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。

参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。

参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。

参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。

用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。

参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= ,P(B)= ,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。

参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为;至少有一人中靶的概率为。

参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。

概率与统计专题复习

概率与统计专题复习
3 )概率 统计 试题 主要考 查基 本概念 和基本 公式 ,
4 二 项式 定理 与相 关 知识 的交 汇考 查
■, ,
例 5 已知 数列 { ( a } 为 正 整数 ) 首 项 为 a , 是
公 比为 q的等 比数列 .
() 1 求和 : 1 2 2 3 ; a C 一n C +n C ,
a C 一n C + n C -a C ; 1 2 3 i 4 i
( ) 1 的结 果 归纳 概 括 出关 于 正 整数 n的 一 2 由( ) 个 结 论 , 加 以证 明. 并
( )口 C 一口 C +口 c _ 1 z 。2 O 1
对 等可 能性 事 件 的 概 率 、 斥 事件 的概 率 、 立 事件 互 独 的概率 、 事件 在 次独 立重 复试 验 中恰 发 生 k次 的概 率 、 散型 随机变 量分 布列 和数 学 期 望 、 离 方差 、 样 方 抽 法 等 内容都进 行 了考查 .
用 的全 过程 . 率统计 内容 中蕴涵 着 丰 富 的数 学思 想 概
方法 , 函数 与 方 程 思 想 、 如 分类 讨 论 、 化 思 想 等. 转 概
率统计 为人 们 处 理 现 实 数 据 信 息 , 析 、 握 随机 事 分 把
越 是 接 近 真 理 , 愈 加 发 现 真理 的 迷人 . 便
q c + … + ( 1 ” :1 1 1 q . 。 ~ )q C - 一n ( - )
森主 项定知与 识 二式理识 均
( 者单位 : 作 河北省 滦 平县 第一 中学)
数学思 想方 法作 为数 学 的精 髓 , 来是 高 考数 学 历 考查 的重 中之 重 . 蕴涵 在 数 学 知 识 发 生 、 展 和 应 它 发

专题六 概率统计专题复习

专题六  概率统计专题复习

专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。

概率统计 复习题

概率统计 复习题

概率统计习题1.设 A 、B 为随机事件,P (A)=0.5,P(B)=0.6,P(B A)=0.8.则P(B )A .2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是= .3. 设随机变量2(,)X μσN ,XY e =,则Y 的分布密度函数为 .4. 设随机变量2(,)X μσN ,且二次方程240y y X ++=无实根的概率等于0.5, 则μ= .5. 设()16,()25D X D Y ==,0.3X Y ρ=,则()D X Y += .6. 掷硬币n 次,正面出现次数的数学期望为 .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为 (答案用标准正态分布函数表示).8. 设125,,X X X 是来自总体(0,1)X N的简单随机样本,统计量12()/~()C X X t n +,则常数C = ,自由度n = .1.(10分)设袋中有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),从袋中任取一只硬币,将它投掷r 次,已知每次都得到国徽.问这只硬币是正品的概率是多少?2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X 服从指数分布,其概率密度函数为/5(1/5)0()0x e x f x -⎧>=⎨⎩其它某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律,并求{1}P Y ≥.3.(10分)设二维随机变量(,)X Y 在边长为a 的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X ,Y 的边缘概率密度; (2) 求条件概率密度|(|)X Y f x y . .4.(10分)某型号电子管寿命(以小时计)近似地服从2(160,20)N 分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示).5.(10分)某车间生产的圆盘其直径在区间(,)a b 服从均匀分布, 试求圆盘面积的数学期望.三. (10分)设12,,n X X X 是取自双参数指数分布总体的一组样本,密度函数为1,(;,)0,x ex f x μθμθμθ--⎧>⎪=⎨⎪⎩其它其中,0μθ>是未知参数,12,,,n x x x 是一组样本值,求: (1),μθ的矩法估计; (2),μθ的极大似然估计.四. (8分)假设ˆθ是θ的无偏估计,且有ˆ()0D θ>试证2ˆθ2ˆ()θ=不是2θ的无偏估计.五. (8分)设112,,,n X X X 是来自总体211~(,)X N μσ的一组样本,212,,,n Y Y Y 是来自总体222~(,)Y N μσ的一组样本,两组样本独立.其样本方差分别为2212,S S ,且设221212,,,μμσσ均为未知. 欲检验假设22012:H σσ=,22112:H σσ<,显著性水平α事先给定. 试构造适当检验统计量并给出拒绝域(临界点由分位点给出).1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 .3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为 .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 .5. 设随机变量22~()n χχ,则2()E χ ,2()D χ .6. 设()3D X =,31Y X =+,则,||X Y ρ= .7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两.则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示).8. 设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-则当C = 时,CY ~2(2)χ.1.将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为 。

概率统计复习题答案

概率统计复习题答案

概率统计复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)。

答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。

2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望E(X)和方差Var(X)。

答案:E(X) = np = 10 × 0.3 = 3,Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。

3. 某工厂生产的零件寿命服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中λ > 0,求该零件寿命超过1000小时的概率。

答案:P(X > 1000) = ∫(1000, +∞) λe^(-λx) dx = e^(-λ×1000)。

4. 已知随机变量X和Y的联合概率密度函数为f(x, y),求X和Y的协方差Cov(X, Y)。

答案:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = ∫∫(x -E(X))(y - E(Y))f(x, y) dxdy。

5. 某地区连续三天的降雨量分别为X1, X2, X3,若X1, X2, X3相互独立且都服从正态分布N(μ, σ^2),求三天总降雨量X = X1 + X2 + X3的分布。

答案:X = X1 + X2 + X3,由于X1, X2, X3相互独立且都服从正态分布,根据正态分布的性质,X也服从正态分布,即X ~ N(3μ,3σ^2)。

6. 设随机变量X服从泊松分布,其参数为λ,求X的期望E(X)和方差Var(X)。

答案:对于泊松分布,其期望和方差都等于参数λ,即E(X) = λ,V ar(X) = λ。

7. 某工厂生产的零件合格率为0.95,求在100个零件中至少有90个合格的概率。

答案:设Y为100个零件中合格的零件数,则Y服从二项分布B(100, 0.95)。

概率统计复习题

概率统计复习题

概率统计复习题1. 设A,B,C为三个事件,试用A,B,C的运算关系式表示以下事件: (1)A 发生,B,C都不发生; (2) A与B发生,C不发生; (3)A,B,C都发生; (4) A,B,C至少有一个发生; (5)A,B,C都不发生; (6) A,B,C不都发生;(7)A,B,C至多有2个发生; (8) A,B,C至少有2个发生.2. 设A,B是两事件,且P〔A〕=0.6,P(B)=0.7,求:〔1〕在什么条件下P〔AB〕取到最大值?〔2〕在什么条件下P〔AB〕取到最小值?3. 设A,B,C为三事件,且P〔A〕=P〔B〕=1/4,P〔C〕=1/3且P〔AB〕=P 〔BC〕=0,P〔AC〕=1/12,求A,B,C至少有一事件发生的概率.4. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:〔1〕两粒都发芽的概率;〔2〕至少有一粒发芽的概率;〔3〕恰有一粒发芽的概率.15. 一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率〔小孩为男为女是等可能的〕6. 5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率〔假设男人和女人各占人数的一半〕7. 设P〔A〕=0.3,P(B)=0.4,P(AB)=0.5,求P〔B|A∪B〕8. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.9. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:〔1〕考试及格的学生有多大可能是不努力学习的人?〔2〕考试不及格的学生有多大可能是努力学习的人?210. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.11. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.12. 证明:假设P〔A|B〕=P(A|B),那么A,B相互独立.13. n个朋友随机地围绕圆桌而坐,求以下事件的概率:〔1〕甲、乙两人坐在一起,且乙坐在甲的左边的概率;〔2〕甲、乙、丙三人坐在一起的概率;〔3〕如果n个人并排坐在长桌的一边,求上述事件的概率.14. 设两两相互独立的三事件,A,B和C满足条件:3ABC=?,P(A)=P(B)=P(C)0,P(A|B)=1,试比拟P(A∪B)与P(A)的大小.16. 〔1〕设随机变量X的分布律为P?X?k??a?kk!,其中k=0,1,2,…,λ>0为常数,试确定常数a. 〔2〕设随机变量X的分布律为P{X=k}=a/N, k=1,2,…,N,试确定常数a.中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:〔1〕保险公司亏本的概率;〔2〕保险公司获利分别不少于10000元、20000元的概率.418. 随机变量X的密度函数为f(x)=Aexp{-|x|}, -∞。

概率统计 期末复习-经管(1)

概率统计 期末复习-经管(1)

第一章 随机事件及其概率一、基本概念1. 事件的关系与运算、运算规律因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间的关系和运算来处理。

事件间的关系及运算与集合的关系及运算是一致的表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,对偶律:A B A B = ,A B A B =2、概率的定义频率:A n n f (A )n=,其中n 为试验次数, A n 为事件A 发生的次数概率的统计定义:在相同条件下重复进行n 次试验,若事件A 发生的频率A n n f (A )n=随着试验次数n 的增大而稳定地在某个常数p ()10≤≤p 附近摆动,则称p 为事件的概率,记为)(A P古典概型:具有下列两个特征的随机试验模型: 1. 随机试验只有有限个可能的结果; 2. 每一个结果发生的可能性大小相同.概率的古典定义:在古典概型的假设下,设事件A包含其样本空间S中k个基本事件, 即},{}{}{21ki i i e e e A =则事件A发生的概率.)()()(11中基本事件的总数包含的基本事件数S A n k e P e P A P kj i k j i jj====∑== 概率的公理化定义:设E 是随机试验, S 是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件: 1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:1)(=S P ;3. 可列可加性:设,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i A P A P 则称)(A P 为事件A 的概率.概率的基本性质:○1()0P ;∅=○2设12n A ,A ,,A 是两两互不相容的事件,则有11nni i i i P(A )P(A ).===∑○3()()1P A P A ;=-○4()()()P A B P A P AB ;-=-特别地,若B A ⊂,则()()()P A B P A P B ;-=-()()P A P B ;≥○5对任一事件A 有()1P A ≤○6对于任意两个事件A ,B 有()()()()P A B P A P B P AB =+-3、条件概率与独立性条件概率:)()()|(A P AB P A B P =(0)(>A P ),在事件A 发生的条件下,事件B 的条件概率.事件的独立性:A ,B 相互独立P(AB )P(A)P(B )⇔=n A A A ,,,21 相互独立()111j jk ki i j j k,k n,P A P A ==⎛⎫⇔∀≤≤= ⎪⎝⎭∏事件独立的性质: ○1当0)(>A P ,0)(>B P 时, A ,B 相互独立与A ,B 互不相容不能同时成立. 但∅与S 既相互独立又互不相容(自证). ○2 设A ,B 是两事件, 且0)(>A P ,若A ,B 相互独立, 则)()|(A P B A P =. 反之亦然.伯努利概型(试验的独立性)设随机试验只有两种可能的结果:事件A 发生(记为A )或事件A 不发生(记为A ),则称这样的试验为伯努利(Bermourlli)试验。

(完整word版)《概率论与数理统计》复习题答案

(完整word版)《概率论与数理统计》复习题答案

上海第二工业大学《概率论与数理统计》复习题一、填空题1. 已知()()P A B P A =,则A B 与的关系是 独立 。

2.已知,A B 互相对立,则A B 与的关系是 互相对立 。

3.B A ,为随机事件,4.0)(=A P ,3.0)(=B P ,()0.6P A B =,则()P AB = 0.3 。

4. 已知()0.4P A =,()0.4P B =,5.0)(=B A P ,则()P A B ⋃= 0.7 。

5.B A ,为随机事件,3.0)(=A P ,4.0)(=B P ,()0.5P A B =,则()P B A =__23__。

6.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为 0.75 。

7. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___2633____。

8. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出后不放回,则第2次抽出的是次品的概率为___61___。

9. 3人独立破译一密码,他们能单独译出的概率为41,31,51,则此密码被译出的概率为___35___。

10.随机变量X 能取1,0,1-,取这些值的概率为35,,248c c c ,则常数c =_815_。

11.随机变量X 分布律为5,4,3,2,1,15)(===k kk X P ,则(35)P X X ><=_0.4_。

12.02,()0.420,10x F x x x <-⎧⎪=-≤<⎨⎪≥⎩是X 的分布函数,则X 分布律为__200.40.6i X p -⎛⎫⎪⎝⎭__。

13.随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则()3P X π<=。

14. 随机变量)1,04.1(~N X ,975.0)3(=≤X P ,=-≤)92.0(X P __0.025 。

概率统计考试总复习一

概率统计考试总复习一

总复习 一.填空题1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则(1) 若B A ,互斥,则=)B -A (p 0.5 ; (2) 若B A ,独立,则=)B A (p 0.65 ; (3) 若2.0)(=⋅B A p ,则=)B A (p 3/7 .2、 A 、B 是两个随机事件,已知0.125P(AB)0.5,)B (p ,52.0)A (p ===,则=)B -A (p 0.125 ;=)B A (p 0.875 ;=)B A (p 0.25 .3、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .4、袋子中有大小相同的5只白球, 4只红球, 3只黑球, 在其中任取2只。

(1)4只中恰有2只白球1只红球1只黑球的概率为:412131425C C C C . (2) 4只中至少有2只红球的概率为:4124814381C C C C +-. (3 4只中没有白球的概率为:41247C C5、10把钥匙中有板有3把能打开门,今任取2把,能将门打开的概率为:112237372210108(1)15C C C C C C +=-或 6、设离散型随机变量X 的概率分布P{X=0}=0.2,P{X=1}=0.3,P{X=2}=0.5, 则P{X ≤1.5}= 0.5 . 7.设随机变量X~U(0,1),则2-3X的概率密度函数为:112()(3Y y f y ⎧-<<⎪=⎨⎪⎩参考教材P61例2)其他8、设随机变量X 的分布函数为01(1)(),{1}00xx x e F x P X x -≥⎧-+=≤=⎨<⎩则1(1)12F e -=-.9、设X~N(1,2),Y~N(0,3),Z~N(2,1),且X,Y ,Z 独立,则 P{0≤2X+3Y-Z ≤6}=0.3413(提示:2X+3Y-Z~N(0,36))10、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=XE 811、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

概率论与数理统计复习

概率论与数理统计复习

概率统计综合复习一一、填空:1.已知()0.3,()0.5,(/)0.2P A P B P A B ===,则()P A B ⋃= _ ___。

2.设某批产品有4%是废品,而合格品中的75%是一等品,则任取一件产品是一等品的概率是 。

3.设1231()()()3P A P A P A ===,且三事件123,,A A A 相互独立,则三事件中至少发生一个的概率为 ,三事件中恰好发生一个的概率为 。

4.袋中装有1个黑球和2个白球,从中任取2个,则取得的黑球数X 的分布函数()F x = ,()E X = 。

5.设X (4,0.5),b Y 在区间[0,2] 上服从均匀分布,已知X 与Y 相互独立,则(3)D X Y -= _ _。

6.设2(2,)X N σ ,且{0}0.2P X ≤=,那么{24}P X <<= _ ___。

7.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计:{24}P X -≥≤ 。

8.设一批产品的某一指标2(,)X N μσ ,从中随机抽取容量为25的样本,测得样本方差的观测值2100s =,则总体方差2σ的95%的置信区间为 。

二、单项选择:1.甲、乙二人射击,A 、B 分别表示甲、乙击中目标,则AB 表示( )。

A.两人都没击中B.至少一人没击中C.两人都击中D.至少一人击中2.设,A B 为两个随机事件,且,则下列式子正确的是( )A.()()P A B P A ⋃=B.()()P AB P A =C.(/)()P B A P B =D.()()()P B A P B P A -=- 3.设123,(,4)X X X N μμ,是来自总体的样本,未知参数的下列无偏估计量中最有效的是 ( ).A.123111424X X X ++ B. 131122X X + C. 123122555X X X ++ D. 123111333X X X ++ 4.设某种电子管的寿命X ,方差为()D X a =,则10个电子管的平均寿命X 的方差()D X 是( ) A .a B. 10a C. 0.1a D. 0.2a5.在假设检验问题中,犯第一类错误是指( )A .原假设0H 成立,经检验接受0HB .原假设0H 成立,经检验拒绝0HC .原假设0H 不成立,经检验接受0HD .原假设0H 不成立,经检验拒绝0H 三、设一批混合麦种中一、二、三、四等品分别占60%、20%、15%、5%,,四个等级的发芽率依次为,0.98,0.95,0.9,0.85 求:1.这批麦种的发芽率;2.若取一粒能发芽,它是二等品的概率是多少?四、已知随机变量X 的概率密度函数为,01()0,cx x f x ⎧≤<=⎨⎩其它,求:1.常数c ; 2.{0.40.7}P X <≤; 3.方差()D X五、设二维随机变量(,)X Y 的联合密度函数(2)2,0,0(,)0x y e x y f x y -+⎧>>=⎨⎩,其它 ,1.求,X Y 的边缘密度函数;2.判断,X Y 是否相互独立、是否不相关;3.求概率{1}P X Y +≤六、设总体X 的密度函数为(1),01()0,x x f x θθ⎧+<<=⎨⎩其它,其中0θ>是未知参数,12,,,n X X X 是从该总体中抽取的一个样本,12,,,n x x x 是其样本观测值,试求参数θ 的最大似然估计量。

概率统计期末复习题

概率统计期末复习题

概率统计期末复习一、填空题1、完成一件事情有n 种方法,第一种有m 1种方法,第二种有m 2种方法,…,第n 种有m n 种方法,则完成这件事有: 方法,这种方法则称为 法则。

2、概率的公理化定义: 、 、 。

3、掷两枚骰子,出现点数之和大于9的概率为: 。

4、若事件A 、B 相互独立,且P(A)=0.3,P(B)=0.2,则P(A+B)= 。

5、设随机变量X 的数学期望E(X)=μ,方差D(X)=σ2,由切比雪夫不等式有P{|X -μ|≥36}≤ 。

6、随机变量X 的K 阶原点矩为 。

7、随机变量X 服从指数分布,则X 的期望是: ,方差是 。

8、(x 1,x 2,…,x n )是取自总体的一个样本,称 为样本均值。

9、已知随机变量T~t(n),则t 0.01(12)= ,已知t 0.99(12)=2.681010、已知X 服从正态分布N(1,4),则Y=3x+5,Y 服从 。

11、随机变量(x,y)不相关的等价条件是: 。

12、D(x+y)= 。

13、随机变量x ,期望E(x)=μ,方差D(x)=σ2,中心化随机变量是: ,标准化随机变量是: 。

二、解答题1、某年级有甲、乙、丙三个班级,各班人数分别占年纪总人数的14 ,13 ,512。

已知甲、乙、丙三个班级中集邮人数分别占该班总人数的12 ,14 ,15,试求: (1) 从该年级中随机地选取一个人,此人为集邮者的概率;(2) 从该年级中随机的选取一个人,发现此人为集邮者,此人属于乙班的概率。

2、已知事件A,B,P(A)=0.5,P(B)=0.7,P(A ∪B)=0.8,试求P(A-B),P(B-A)。

3、已知随机变量X 与Y 独立同分布,且都服从0-1分布,B(1,P),记随机变量:(1) 试求Z 的概率函数。

(2) 试求X 与Z 的联合概率函数。

4、设(X,Y )服从如图区域D 上的均匀分布,求关于X 的和关于Y 的边缘概率密度。

5、设(X,Y)服从区域D:0<X<1,0<Y<X上的均匀分布,求X与Y的相关系数。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

概率统计期末复习题

概率统计期末复习题

设二维随机变量),(Y X 的概率密度为101010, x ,y ,f (x,y ), <<<<⎧=⎨⎩其他(1)求 , EX EY ; (2)求协方差(,)Cov X Y ;(3)令2, 2U X Y V X Y =+=-,求协方差(,)Cov U V .解:(1) 11001(,),2EX xf x y dxdy xdxdy +∞+∞-∞-∞===⎰⎰⎰⎰11001(,),2EY yf x y dxdy ydxdy +∞+∞-∞-∞===⎰⎰⎰⎰(2) 11001(,),4EXY xyf x y dxdy xydxdy +∞+∞-∞-∞===⎰⎰⎰⎰(,)0Cov X Y EXY EXEY =-= (3) 11222001(,),3EX x f x y dxdy x dxdy +∞+∞-∞-∞===⎰⎰⎰⎰,11222001(,),3EY y f x y dxdy y dxdy +∞+∞-∞-∞===⎰⎰⎰⎰22(,) =4(2)(2)11311=433224Cov U V EUV EUEVEX EY EX EY EX EY =---+-⨯--⨯=1. 甲罐中有一个白球,二个黑球,乙罐中有一个白球,四个黑球,现掷一枚均匀的硬币,如果得正面就从甲罐中任取一球,如果得反面就从乙罐中任取一球,若已知取的球是白球,试求此球是甲罐中取出的概率。

解:令 {}B =摸出的球是白球,12{}, {}A A ==球取自甲罐球取自乙罐,则1212, =A A A A Ω 互不相容,且 ,由题意知 121()=()=2P A P A ,1211(|), (|)35P B A P B A ==, 利用Bayes 公式知1111122()(|)(|)()(|)()(|)P A P B A P A B P A P B A P A P B A =+11231111232558⨯=⨯+⨯=3. 设随机变量X 的密度函数为:||() ()x f x Ce x -=-∞<<+∞(1)试确定常数C ; (2)求()1P X <; (3)求2Y X =的密度函数. 解(1)()0221xx f x dx Ce dx C e dx C +∞+∞+∞---∞-∞====⎰⎰⎰)得:12C =()()12xf x e x -∴=-∞<<+∞(2)()111011112x x P X e dx e dx e---<===-⎰⎰(3)当0<y 时,()()20F y P X y =≤=;当0≥y 时,()()(20xx F y P X y P X dx dx --=≤=≤≤== ()()000,y f y F y ,y <⎧⎪'∴==≥4. 进行9次独立测试,测得零件加工时间的样本均值5.5x =(秒),样本标准差1.7s =(秒). 设零件加工时间服从正态分布),(2σμN ,求零件加工时间的均值μ及方差2σ置信度为的置信区间.¥5.食品厂用自动装罐机装罐头食品,每罐的标准重量为500(g ),每隔一定时间检查机器工作情况,现抽取16瓶,测得其重量,计算得平均重量502x g =,样本方差242.25s =,假设罐头重量X 服从正态分布),(2σμN ,问:机器工作是否正常(显著性水平02.0=α, 分布表见最后一页)解: 01:500, :500H H μμ=≠令 ()500n X T S-=, 则 (15)Tt查的临界值 t α=,拒绝域为: || 2.602T >(1) 将样本观测值代入T 可得4(502500)|| 1.231 2.6026.5t -==<从而接受原假设 0H , 即机器工作正常.6.设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数 的矩估计量与最大似然估计量.$解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰11121μθμ-⇒=-12ˆ1X X θ-⇒=- 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<<1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑设总体X 的概率密度为(1),01,(;)0,,x x f x θθθ⎧+<<=⎨⎩其它 ¥其中>1为未知参数,又设x 1,x 2,,x n 是X 的一组样本观测值,求参数的最大似然估计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计【重点知识回顾】概率(1)事件与基本事件::SSS⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例. 两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个. (5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积).两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同. (6)概率基本性质与公式①事件A 的概率()P A 的范围为:0()1P A ≤≤.②互斥事件A 与B 的概率加法公式:()()()P A B P A P B =+U . ③对立事件A 与B 的概率加法公式:()()1P A P B +=.(7) 如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率是p n (k) = Cp k (1―p)n ―k . 实际上,它就是二项式[(1―p)+p]n 的展开式的第k+1项. (8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k nP X k C p p k n -==-=L ,,,,,.此时称随机变量X 服从二项分布,记作~()X B n p ,,并称p 为成功概率.统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况. 系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k ,当Nn(N为总体中的个体数,n 为样本容量)是整数时,N k n =;当Nn不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n 整除,这时N k n'=;第三步,在第一段用简单随机抽样确定起始个体编号,再按事先确定的规则抽取样本.通常是将加上间隔k 得到第2个编号()l k +,将()l k +加上k ,得到第3个编号(2)l k +,这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为s =. 有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出211nni i i i i x y x y x ==∑∑,,,;第二步:计算回归系数的a ,b ,公式为1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑,;第三步:写出回归直线方程$y bx a =+. (4)独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表构造随机变量22()()()())n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)得到2K 的观察值k 常与以下几个临界值加以比较:如果 2.706k >,就有0090的把握因为两分类变量X 和Y 是有关系;如果 3.841k > 就有0095的把握因为两分类变量X 和Y 是有关系; 如果 6.635k > 就有0099的把握因为两分类变量X 和Y 是有关系; 如果低于 2.706k ≤,就认为没有充分的证据说明变量X 和Y 是有关系.常用的统计图表(1)频率分布直方图 ①小长方形的面积=组距×频率组距=频率;②各小长方形的面积之和等于1;③小长方形的高=频率组距,所有小长方形的高的和为1组距.(2)茎叶图 在样本数据较少时,用茎叶图表示数据的效果较好. 3. 用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数 数字特征 样本数据 频率分布直方图众数出现次数最多的数据 取最高的小长方形底边中点的横坐标 中位数将数据按大小依次排列,处在最中间位置的一个数据(或最中间两个数据的平均数)把频率分布直方图划分左右两个面积相等的分界线与x 轴交点的横坐标 平均数样本数据的算术平均数每个小矩形的面积乘以小矩形底边中点的横坐标之和(2)方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差: s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2].【典型例题】考点:概率【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。

掌握古典概型和几何概型的概率求法。

例1、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

例2某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后,(I )从每个停靠点出发后,乘客人数不超过24人的概率约是多少?(II )全线途经10个停靠点,若有2个以上(含2个)停靠点出发后,车上乘客人数超过18人的概率大于0.9,公交公司就要考虑在该线路增加一个班次,请问该线路需要增加班次吗?考点:统计 【内容解读】理解简单随机抽样、系统抽样、分层抽样的概念,了解它们各自的特点及步骤.会用三种抽样方法从总体中抽取样本.会用样本频率分布估计总体分布.会用样本数字特征估计总体数字特征.会利用散点图和线性回归方程,分析变量间的相关关系;掌握独立性检验的步骤与方法。

例3(1) 一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中每个个体被抽到的概率都为112,则总体中的个体数为 . (2)设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 A.甲批次的总体平均数与标准值更接近 B.乙批次的总体平均数与标准值更接近 C.两个批次总体平均数与标准值接近程度相同 D.两个批次总体平均数与标准值接近程度不能确定例4下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生 产能耗Y(吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,崩最小二乘法求出Y 关于x 的线性回归方程Y=bx+a ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?。

相关文档
最新文档