基于MATLAB的汽车牌照自动识别系统设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1引言

随着我国交通迅速发展,人工管理方式已经逐渐不能满足实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。汽车牌照的自动识别技术已经得到了广泛应用。通过对车辆牌照的正确认识,不仅可以实现交通流量的统计和查询,道路负荷的测定和管理,而且可以对肇事车辆、走私车辆、丢失车辆进行辨识和追查。传统的方法是在设定的路口派专人进行观察和笔录,因此工作强度大、统计繁杂、效率低、准确性差。因而对车辆牌照自动识别技术的研究和应用系统开始具有重要的意义。

汽车牌照自动识别整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。

MATLAB是一种强大的数值计算功能的编程工具,在图像处理、信号处理、神经网络中都有着广泛的应用。其数据类型最大的特点是每一种类型都以数组为基础,从数组中派生出来。其所提供的强大的矩阵运算功能。如特征值和特征向量的计算、矩阵求逆灯都可以直接通过MATLAB提供的函数求出。MATLAB还提供了小波分析、图像处理、信号处理、虚拟现实、神经网络等的工具包。其中,图像处理工具包提供了许多可用于图像处理的相关函数。按功能可以分为图像显示;图像文件输入与输出;几何操作;像素值和统计;图像分析与增强;图像铝箔;线性二维滤波器设计;图像变换;领域和块操作;二值图像操作;颜色映射和颜色空间转换;图像类型和类型转换;工具包参数获取和设置等。

基于此,用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照,有很大的优势。在研究的同时对其中出现的问题进行了具体分析,处理。

2车牌定位

2.1预处理及边缘提取

图2 预处理及边缘提取流程图

2.1.1图象的采集与转换

考虑到现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色 B 通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。因为蓝色(255,0,0)与白色(255,255,255)在B 通道中并无区分,而在G、R 通道或是灰度图象中并无此便利。同理对白底黑字的牌照可用R 通道,绿底白字的牌照可以用G 通道就可以明显呈现出牌照区域的位置,便于后续处理。原图、灰度图及其直方图见图2与图3。对于将彩色图象转换成灰度图象时,图象灰度值可由下面的公式计算:

G=0.110B+0.588G+0.302R (1)

G=

3R

G

B+

+

(2)

图3 图4

2.1.2边缘提取

边缘是指图像局部亮度变化显著的部分,是图像风、纹理特征提取和形状特征提取等图像分析的重要基础。所以在此我们要对图像进行边缘检测。图象增强处理对图象牌照的可辩认度的改善和简化后续的牌照字符定位和分割的难度都是很有必要的。增强图象对比度度的方法有:灰度线性变换、图象平滑处理等。(1)灰度校正

由于牌照图象在拍摄时受到种种条件的限制和干扰,图象的灰度值往往与实际景物不完全匹配,这将直接影响到图象的后续处理。如果造成这种影响的原因主要是由于被摄物体的远近不同,使得图象中央区域和边缘区域的灰度失衡,或是由于摄像头在扫描时各点的灵敏度有较大的差异而产生图象灰度失真,或是由于曝光不足而使得图像的灰度变化范围很窄。这时就可以采用灰度校正的方法来处理,增强灰度的变化范围、丰富灰度层次,以达到增强图象的对比度和分辨率。我们发现车辆牌照图象的灰度取值范围大多局限在r=(50,200)之间,而且总体上灰度偏低,图象较暗。根据图象处理系统的条件,最好将灰度范围展开到s=(0,255)之间,为此我们对灰度值作如下的变换:

s = T(r) r=[r min,,r max]

使得S∈[S min, S max],其中,T为线性变换,

图5 灰度

线性变换

min r -max r min r Smax -max r Smin r min r -max r Smin -Smax ⨯⨯+=

S (3) 若 r(50,200)、s(0,255)

则:85r 7.1150

50255-r 150255-≈⨯=S (4)

图6 灰度增强后的图像

(2)平滑处理

对于受噪声干扰严重的图象,由于噪声点多在频域中映射为高频分量,因此可以在通过低通滤波器来滤除噪声,但实际中为了简化算法,也可以直接在空域中用求领域平均值的方法来削弱噪声的影响,这种方法称为图像平滑处理。 例如,某一象素点的邻域S 有两种表示方法:8邻域和4邻域分别对应的邻域平均

值为,

∑∈=s j i j i f M j i g ),(),(1),((5)

图7 8 -邻域 4 -邻域模板

其中,M 为邻域中除中心象素点f(i,j) 之外包括的其它象素总数,对于4邻域M=4,8 邻域M=8。然而,邻域平均值的平滑处理会使得图象灰度急剧变化的地方,尤其是物体边缘区域和字符轮廓等部分产生模糊作用。为了克服这种平均化引起的图象模糊现象,我们给中心点象素值与其邻域平均值的差值设置一固定的阈值,只有大于该阈值的点才能替换为邻域平均值,而差值不大于阈值时,仍保留原来的值,从而减少由于平均化引起的图象模糊。

4 3 2

5 i,j 1

6

7

8 2 3 i,j 1 4

相关文档
最新文档