组合图形阴影部分面积计算的解题思路2

合集下载

九年级数学求阴影部分的面积

九年级数学求阴影部分的面积
分割法应用举例
在处理不规则多边形或复杂组合图形 时,可以通过分割法将其划分为几个 三角形、矩形等简单图形,然后利用 基本图形的面积公式进行计算。
添补法简化计算过程
添补法原理
在组合图形中添加一些辅助线或基本图形,使得阴影部分形成一个规则的、易于 计算面积的基本图形,然后减去添加部分的面积,得到阴影部分的面积。
提高综合运用能力,培养创新思维
综合运用多种方法
在实际问题中,可能需要综合运用多种方法来求解阴影部分面积。因此,要熟练掌握各种方法,并能够根据问题 的特点选择合适的方法。
培养创新思维
在求解阴影部分面积时,要敢于尝试新的方法和思路。通过不断地尝试和创新,可以锻炼自己的思维能力和创新 能力。
06 练习题与答案解析
添补法应用举例
在处理一些具有对称性或旋转性的组合图形时,可以通过添补法将其转化为一个 完整的、规则的图形,然后利用基本图形的面积公式进行计算。
等积变换思想在解题中体现
等积变换原理
通过图形的平移、旋转、对称等变换, 使得阴影部分与某个已知面积的基本 图形重合或相等,从而直接得到阴影 部分的面积。
等积变换应用举例
1 2
圆的定义及性质
圆是平面上所有与给定点(中心)距离相等的点 的集合。
扇形的定义
由两个半径和它们所夹的弧围成的图形叫做扇形。
3
圆心角、弧长与半径的关系
圆心角的度数等于它所对弧长与半径的比值乘以 180。
弧长、圆心角及扇形面积计算
弧长公式
应用举例
弧长 = (圆心角/360°) × 2πr,其中r 为半径。
分。
02
三角形中的阴影部分
当三角形中有一部分被其他图形遮挡时,被遮挡的部分即为阴影部分。

求阴影部分面积的几种常用方法

求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规蒈则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:蒇一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面袁例如,下图中,要求整个图形的面积,只要先求出上面积,然后相加求出整个图形的面积..半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了薀衿羅二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积袄.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可差.蚀羆蚇蚃三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右螀的三角形,其面积直42、高是上图,欲求阴影部分的面积,通过分析发现它就是一个底是1?2?4?4。

:接可求为|2莇莂四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组袀例如,欲求下图中阴影部分面积,可以.合成一个新的图形,设法求出这个新图形面积即可. 把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了螈蒅袆袀五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图膈如下图,求两个正方形中转化成若干个基本规则图形,然后再采用相加、相减法解决即可..此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便阴影部分的面积.芄膃羀六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本蕿例如,如下图,欲求阴影部分的面积,只需把右边弓形切.规则图形,从而使问题得到解决.割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半肆羂七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成肀例如,如下图,欲求阴影部分面积,可先沿中间切.一个新的基本规则图形,便于求出面积开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

常见组合图形面积计算实例二

常见组合图形面积计算实例二

求阴影部分面积实例二求左面阴影部分的面积。

(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。

1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

答案:1、半圆面积:44÷2=22米3.14×22×22=1519.76平方米2、2个1/2圆的面积:22÷2=11米3.14×11×11=379.94平方米求左面阴影部分的面积。

(单位:米)提示:割补后阴影面积刚好成为半圆的面积减去一个三角形的面积。

1、半圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

再求圆面积的1/2,就用圆的面积乘以1/2。

2、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。

3、求阴影面积=半圆面积-三角形面积答案:1、半圆面积:80÷2=40米3.14×40×40×1/2=2512平方米2、三角形面积:80×40÷2=1600平方米3、阴影面积:2512 - 1600=912平方米2、2个1/2圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

3、求三角面积已知三角形形的底和高,求面积,用底乘以高除以2可以得到。

4、阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。

3、三角形面积:44×44÷2=968平方米4、阴影面积:1519.76 + 379.94 - 968=931.7平方米求左面阴影部分的面积。

(单位:米)提示:阴影面积=大圆面积+ 2个1/2圆的面积-三角形面积。

1、大圆面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

2、小圆的面积:已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

(完整版)求阴影部分面积的几种常用方法

(完整版)求阴影部分面积的几种常用方法

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

巧求阴影部分面积

巧求阴影部分面积

1、如下图:正方形边长为2厘米,求阴影部分面积。

思路引导:把“叶形”平均分成2份,然后拼成下面的图形。

即一个半圆减去一个三角形。

列式:2÷2=1(厘米)1/2×3.14×12-2×1÷2=1.57-1=0.57(平方厘米)2、如下图,已知正方形面积为18平方厘米,求阴影部分的面积。

思路引导:很容易看出,要求阴影部分的面积只要用正方形的面积-圆的面积,但求圆的面积比较困难,因为我们不知道圆的半径,看似可以求出正方形的边长,就可以知道圆的直径了,但小学没有学过开方。

因此,我们只能想别的办法,用设未知数的方法试一试。

设圆的半径为r,那么正方形的面积=2r×2r=18,于是得到下面的等式:2 r×2r=184r2=184r2=18÷4r2=4.5图中圆的面积:3.14×r2=3.14×4.5=14.13(平方厘米)阴影部分的面积:18-14.13=3.87(平方厘米)3、如下图正方形的面积是18平方厘米。

求图中阴影部分的面积。

思路引导:很容易看出图中阴影部分面积=正方形面积-四分之一圆的面积,然而我们发现圆的面积无法计算,因为我们不知道圆的半径或者直径,虽然说求出正方形的边长就能知道圆的直径,可是小学阶段没有学习开方,这条路子也行不通。

很容易联想到上面一题的做法,我们设圆的半径为r,那么正方形的面积=r×r=18,于是有下面的等式:r×r=18r2=18阴影部分面积:18-1/4×3.14×18=18-14.13=3.87(平方厘米)4、如右图:正方形的边长6分米,求图中阴影部分的面积。

怎么计算阴影部分的面积?思路引导:观察图形,如果把空白的四部分剪下,组合在一起,可以拼成一个半径是3分米的圆形,这样图中的四块阴影部分的面积就可以从正方形面积中减去这个圆的面积求出。

【小学五年级奥数讲义】组合图形的面积(二)

【小学五年级奥数讲义】组合图形的面积(二)

【小学五年级奥数讲义】组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。

二、精讲精练【例题 1】如图, ABCD是直角梯形,求阴影部分的面积和。

(单位:厘米)练习 1:1.求下图中阴影部分的面积。

2.求图中阴影部分的面积。

(单位:厘米)3. 下图的长方形是一块草坪,中间有两条宽 1 米的走道,求植草的面积。

【例题 2】下图中,边长为10 和 15 的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。

练习 2:1.下图中,三角形 ABC的面积是 36 平方厘米,三角形 ABE与三角形 AEC的面积相等,如果 AB=9厘米, FB=FE,求三角形 AFE的面积。

2. 图中两个正方形的边长分别是10 厘米和 6 厘米,求阴影部分的面积。

3.图中三角形 ABC的面积是 36 平方厘米, AC长 8 厘米, DE长 3 厘米,求阴影部分的面积( ADFC不是正方形)。

【例题 3】两条对角线把梯形 ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)练习 3:1.如下图,图中 BO=2DO,阴影部分的面积是 4 平方厘米,求梯形 ABCD的面积是多少平方厘米?2.下图的梯形 ABCD中,下底是上底的 2 倍, E 是 AB的中点。

那么梯形 ABCD的面积是三角形 BDE面积的多少倍?3.下图梯形 ABCD中, AD=7厘米, BC=12厘米,梯形高 8 厘米,求三角形 BOC 的面积比三角形 AOD的面积大多少平方厘米?【例题 4】在三角形 ABC中,DC=2BD,CE=3AE,阴影部分的面积是 20 平方厘米,求三角形 ABC的面积。

练习 4:1.把下图三角形的底边 BC四等分,在下面括号里填上“>”、“<”或“ =”。

专题10 面积计算(组合图形的面积)(原卷)

专题10 面积计算(组合图形的面积)(原卷)

2022-2023学年小学六年级思维拓展举一反三精编讲义专题10 面积计算(组合图形的面积)对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。

有些图形可以根据“容斥问题“的原理来解答。

在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

【典例分析01】如图20-1所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图20-2),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米【3.14×102×14-10×(10÷2)】×2=107(平方厘米)答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。

把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×12-(20÷2)2×12=107(平方厘米)知识精讲典例分析【典例分析02】如图20-6所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a )的面积,再用大扇形的面积减去空白部分(a )的面积。

如图20-7所示。

3.14×62×14 -(6×4-3.14×42×14 )=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。

把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

3.14×42×14 +3.14×62×14 -4×6=16.28(平方厘米) 答:阴影部分的面积是16.82平方厘米。

《六年级组合图形阴影部分的面积》教学设计

《六年级组合图形阴影部分的面积》教学设计

圆的面积—阴影部分的面积教学内容:人教版六年级上册数学第69—70页的内容。

教学目标:1、让学生初步感知组合图形的特征,会正确的将一个组合图形分解成已学过的简单图形。

2、熟悉简单图形的面积的计算公式,能正确的计算出组合图形的面积。

通过合作探究、观察、讨论等方式,培养学生独立思考,解决问题的能力。

3、让学生在解决问题的过程中,进一步体验图形和生活的联系,感受平面图形的美感、体会组合图形在生活中的应用和学习价值,提高数学学习的兴趣和学好数学的自信心。

教学重点:对组合图形的正确分解,并运用公式进行正确的面积计算。

教学难点:对组合图形的正确分解,能通过画辅助线的方式对组合图形的分解有正确的认知;会正确的进行面积计算。

教学过程:一、复习导入1、用自己的话说一说计算下图阴影部分面积的过程。

102、下面各图中正方形的边长都相等,哪个阴影部分的面积大一些?说说你的想法?小结:在日常生活中,像这种的图形有很多,它们都不是我们已学过的简单图形,但和简单的图形有密切联系。

在计算它们的面积或周长时,可以对这类的图形进行分解,分解成我们所过学的简单图形,然后再计算。

二、探究组合图形的面积和周长。

(一)、欣赏外圆内方、外方内圆建筑图师:谁能说说这些设计有什么联系和区别?小结:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

预设2:都是由圆和正方形这两个图形组成的。

师:也就是我们以前学过的什么图形?(组合图形)师:看到这样的图案有什么感受?中国建筑中经常能见到“外方内圆”和“外圆内方”的设计,这样的图形给人一种很美的感觉。

师:今天我们就借助这两个美丽的图案解决问题。

(二)、解决问题(出示例题)如果圆的半径都是1米,你能求出正方形和圆之间部分的面积吗?1、阅读与理解(1)想一想:“求出正方形和圆之间部分的面积”这句话是什么意思?(2)怎样计算正方形和圆之间部分的面积?先独立思考,再小组交流。

预设:正方形的面积减去圆的面积;圆的面积减去正方形的面积。

常见组合图形面积计算实例

常见组合图形面积计算实例

1、求左面阴影部分的面积。

(单位:米)提示:环形面积=外圆面积-内圆面积1.已知圆的半径,求面积,用圆周率乘以半径的平方可以得到。

2.已知圆的半径,求面积,用圆周率乘以半径的平方可以得到。

3.最后用外圆的面积-内圆面积得到阴影部分的面积。

答案:3.14×10×10=314平方米3.14×6×6=113.04平方米314 - 113.04=200.96平方米求左面阴影部分的面积。

(单位:米)提示:阴影面积=外半圆面积-内半圆面积1、已知圆的半径,求圆的面积,用圆周率乘以半径的平方可以得到。

再求圆面积的1/2,就用圆的面积乘以1/2。

2、已知圆的半径,求圆的面积,用圆周率乘以半径的平方可以得到。

再求圆面积的1/2,就用圆的面积乘以1/2。

3、最后用外半圆的面积-内半圆面积得到阴影部分的面积。

答案:3.14×72×72×1/2=8138.88平方米3.14×43×43×1/2=2902.93平方米8138.88 - 2902.93=5235.95平方米求左面阴影部分的面积。

(单位:米)提示:阴影部分面积可以用正方形的面积减去圆形的面积。

1、求正方形面积已知正方形的边长,求面积,用边长乘以边长可以得到。

2、求圆面积已知圆的直径,求面积,先用直径除以2得到半径,再用圆周率乘以半径的平方可以得到。

3、求阴影面积,用正方形面积减去圆的面积答案:1、正方形面积32×32=1024平方米2、圆面积32÷2=16米3.14×16×16=803.84平方米3、阴影面积1024- 803.84=220.16平方米求左面阴影部分的面积。

(单位:米)提示:阴影部分面积可以三角形面积减去右空白面积。

三角形面积是长方形面积的一半,右空白面积是长方形面积与半圆面积差的一半。

长方形的长就是圆的直径,宽是圆的半径。

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。

基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。

解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。

例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。

在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。

从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。

小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。

再变化角度思考,通过相加或相减求出所求图形的面积。

例题1:求下图中阴影部分的面积(最后结果保留一位小数)。

(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。

小学数学组合图形中的阴影部分面积的计算教学研究

小学数学组合图形中的阴影部分面积的计算教学研究

250小学数学组合图形中的阴影部分面积的计算教学研究卢婵娟…(江西省宜春市上高县翰堂中心小学,江西宜春…336405)摘要:组合图形的阴影面积计算是小学数学的重点教学内容,也是以后进行复杂几何计算的入门内容,能充分培养学生的分析几何问题的思维能力,通过运用简单图形基础面积计算知识和数学方法,解决稍微复杂的几何问题。

组合图形的阴影面积的计算对于小学生而言有一定的难度,教师在教学中应该谨记将教材与现实生活联系,提前巩固学生对基础图形面积的计算公式的掌握程度,细化数学计算方法。

关键词:小学数学;组合图形;阴影面积在小学的数学学习阶段,学生对于很多基础图形如圆形、长方形、正方形等都进行了系统的学习,但一些学生仍旧没有充分掌握基础图形面积计算的知识。

而在小学六年级的教学,更加注重图形综合知识的学习,甚至涉及到一些立体几何如圆柱、圆锥的简单计算,这部分学生的学习进度便会难以跟上。

基于此,将从实际教学中遇到的问题,对组合图形的阴影部分面积计算展开教学研究。

1 巩固基础图形面积计算知识,提高学生计算效率人教版小学数学教材,依据学生的成长特性、学习能力等,将图形的学习进行循序渐进的分布在数学学习中,随着年级越高学习的图形知识越复杂,数学图形知识综合性运用也跟着层层递进。

所以学生充分掌握简单图形计算知识的基础,对于组合图形的面积计算尤为重要。

但是学生往往因为简单图形面积学习公式多且杂,出现将计算公式记混的状况,进而影响到后面的组合图形的计算学习。

数学教师在进行图形组合的相关面积计算教学中,可以带领学生进行提问及学生互动等方式,将基础的图形的面积计算知识进行回顾,提高学生的学习效率。

人教版六年级上册中关于《圆的面积》一课的学习中,教师利用多媒体电脑展示将圆形逐步分4等份、8等份直到128等份时,拼接的近乎一个长方形,教师先要带领学生回顾长方形的计算面积为长乘以宽,进而引导学生利用长方形的面积公式推导出圆的面积公式为S=πr2。

阴影部分面积的求解方法

阴影部分面积的求解方法

阴影部分面积的求解方法
班级:六()班姓名:
一、直接利用公式求解:
这一类题目的难点是在复杂的图形中找到平常的图形,如三角形,正方形,长方形等。

1、下图,求阴影部分的面积(单位:cm)。

二、“加减”法
这方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

2、求下图中阴影部分图形的面积。

三、割补法(重点)
割补法是指:把一个图形的某一部分割下来,填补在图形的另一部分,在原来面积不变的情况下,使其转化为熟悉的图形。

使用割补法时要注意两点:一是割补后能使解题简单的才割补;二是割补前后图形的面积不能变。

3、求下图中阴影部分的面积。

四、重新组合法
这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。

4、下图,已知大正方形的边长是4cm,求阴影部分的面积。

.
五、整体法
整体法一般是把组合图形看成规则图形,算出面积后减去空却部分的面积。

5、已知三角形ABC是直角三角形,AC=4厘米,BC=2厘米,求阴影部分的面积.
六、重叠法:
这种方法是将所求的图形看成是两个或两个以上图形的重叠部分。

七、对称添补法:
这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形. 原来图形面积就是这个新图形面积的一半。

八、等积法:
即将不规则图形面积转化为与它等积的规则图形的面积来计算.
8、如图,半圆的直径AB=10cm,P为AB上一点,点C,D为半圆的三等分点,则阴影部分的面积等于()。

六年级奥数第四讲-组合图形和阴影面积常用方法

六年级奥数第四讲-组合图形和阴影面积常用方法

求阴影面积的常用方法计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。

不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。

现介绍几种常用的方法。

一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。

例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和CD ⌒围成的阴影部分图形的面积为_________。

分析:连结CD 、OC 、OD ,如图2。

易证AB//CD ,则∆∆ACD OCD 和的面积相等,所以图中阴影部分的面积就等于扇形OCD 的面积。

易得∠=︒COD 60,故S S OCD阴影扇形==⋅=60636062ππ。

二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。

例2. 如图3是一个商标的设计图案,AB=2BC=8,ADE ⌒为14圆,求阴影部分面积。

分析:经观察图3可以分解出以下规则图形:矩形ABCD 、扇形ADE 、Rt EBC ∆。

所以,S S S S ADE ABCD Rt EBC阴影扇形矩形=+-=⋅+⨯-⨯⨯=+∆9043604812412482ππ。

三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。

这类题阴影一般是由几个图形叠加而成。

要准确认清其结构,理顺图形间的大小关系。

例3. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。

解:因为4个半圆覆盖了正方形,而且阴影部分重叠了两次,所以阴影部分的面积等于4个半圆的面积和与正方形面积的差。

故S a a a 阴影=⋅-=-2221222ππ()()。

巧求阴影部分的面积

巧求阴影部分的面积

巧求阴影部分的面积
礼县江口中心小学赵小军
对于一些基本图形的面积,我们可以利用其面积的计算方法轻而易举地求得。

而对于一些复杂的组合图形,尤其是与圆有关的组合图形,用一般的方法做很困难甚至求不出来,如果仔细分析图形各部分之间的关系,问题便容易解决。

在此我介绍几种常用方法,以供参考。

一、加减法
这种方法是将不规则的图形分解转化成几个基本图形,分别计算它们的面积,然后根据各部分之间的关系再把它们相加或相减或加减混合。

如下图(1)只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。

如下图(2)先求出正方形的面积,再求出圆的面积,用正方形的面积减去圆的面积就是阴影部分的面积。

二、辅助线法
这种方法就是根据据具体情况在原图形中的适当位置添一条或几条辅助线,使不规则的图形转化成若干个基本图形,然后再求面积。

如下图(1)就是在图中做了一条辅助线,那么阴影部分的面积就是扇形面积减去等腰直角三角形面积差的2倍。

如下图(2)我们在图中做了两条辅助线,则阴影部分的面积就是半圆面积减去三角形面积差的2倍。

三、割补法
这种方法就是把原图形的一部分或几部分切割下来补在图形的另一适当位置,使之成为基本的规则图形从而使问题得到解决。

如下图(1)我们把左边的阴影部分切割下来补到右边的空白部分,这样阴影部分的面积恰好是一个正方形的面积。

如下图(2)可以把右边的阴影部分切割下来补到左边,很容易看出阴影部分的面积就是正方形面积的一半。

以下的这些图形,我们都可以运用以上介绍过的方法求出其阴影部分的面积。

大家不防试试。

(单位:㎝)。

组合图形阴影面积计算

组合图形阴影面积计算

计算图形面积(一)。

学法指导.简单的面积计算是小学数学的一项重要内容。

要计算面积,首先识别正方形、长方形、三角形、平行四边形、梯形的特征,了解它们的周长和面积公式的由来,并熟记这些公式,能灵活运用。

但一个图形,往往是几个基本图形组成的,称为组合图形。

组合的形式分为两种:一是重叠组合,二是拼合组合。

在计算组合图形面积时,应注意以下几点:1.切实掌握有关概念、公式,建立初步的空间观念。

2.仔细观察、分析,要看组合图形是由哪些基本图形组成的,它们之间有什么关系,有没有公共部分。

3.采用割、补、分解、等量代换等方法,使问题化难为易。

图形分补例1.下图是一个平行四边形和一个长方形所组成的图形,求阴影部分的面积。

(单位:厘米)试一试1下图是正方形和平行四边形组成的图形,求阴影部分的面积。

(单位:分米)转化例2.如下左图的长方形是一块草坪,中间有两条宽2米的走道,求植草部分(阴影部分)的面积。

【分析和解答】试一试2一块长方形草地,长15米,宽10米,中间有两条宽l米的道路,一条是长方形,另一条是平行四边形,求有草部分(阴影部分)的面积。

图形分割例3.已知大正方形ABCD的边长是12厘米,小正方形GCEF的边长是8厘米,求阴影部分面积。

等量代换例4.由两个完全相同的直角梯形重叠在一起,求图中阴影部分的面积。

(单位:厘米)试一试4用两个完全一样的直角三角形重叠在一起,求阴影部分的面积。

(单位:厘米)例5.一个大长方形被两条平行于它的两条边的线分成a、b、c、d四个长方形。

已知a 的面积是10平方厘米,b的面积是14平方厘米,c的面积是35平方厘米。

求d的面积。

试一试5下图一个大长方形被分成四个小长方形,其中三个长方形的面积如图所示(单位:平方厘米),求阴影部分的面积。

加上一个等面积例6如图,平行四边形ABC口中,CD =12厘米,直角三角形中,EC =8厘米,阴影部分面积比三角形EFH的面积大24平方厘米。

求EH的长。

求图形面积的几种解法

求图形面积的几种解法

求图形面积的几种解法求组合图形的面积是小学数学教材中的重要内容,是学生学习的难点。

针对这一情况,本人在多年的教学中总结出如下几种解法,颇有成效。

一、直接法这是根据已知条件,直接运用公式求出图形的一种方法,这类题有个鲜明的特点,就是所求的必须是一个已学过面积计算有在规则的图形。

那么,所求的面积可以直接利用有关面积公式来计算。

例如:求阴影部分面积。

(单位:米)如上两图,所求的面积都是有规则的图形,图(一)阴影部分是一个三角形,图(二)阴影部分是一个梯形,故可采用相应的面积公式进行计算。

但上两图学生往往不易找出阴影图形相应的条件,因此,教师要着重引导学生观察,找出相应的条件,这是解决这类图形的关键所在。

如图(一),学生容易理解阴影部分是一个三角形,但不易看出三角形的高是15米,往往在此出现错误。

二、挖空法这是解答组合图形的一种常用方法,其特点是:(1)所求面积不能直接求出;(2)它可能是有规则的,亦可能是不规则的;(3)整体图形由阴影部分和空白部分组成。

因此,我们可以启发学生分析如下:把阴影部分看作某个整体图形(有规则的)剪去某个空白图形(有规则)的结果。

解题思路是:规则图形——规则图形=阴影图形↓↓可求面积——可求面积=所求面积↓↓组合面积——空白面积=所求面积例如:图(三)、图(四)求阴影部分面积。

(单位:米)(五年级数学期末试题)(6+9)×5÷2-9×5÷2=75÷2-45÷2=37.5-22.5=15(平方米)(图四) 7×10-7×(10-4)÷2=70-21=49(平方米)在上两图中,图(三)的阴影部分是一个无规则的图形,学生难以直接计算,但与空白的三角形正好组成一个梯形,且梯形的面积可以计算,因此,阴影部分的面积可用梯形面积-空白的三角形面积。

图(四)的阴影部分是一个梯形,但由于条件不足,不能直接求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形阴影部分面积计算的解题思路
组合图形阴影部分面积计算是小学平面几何知识的综合运用,在小学数学中是一个重点,由于小学生只学习过三角形、正方形、长方形、平行四边形、梯形、圆、扇形面积的计算,但没有具体地学习线、面、图形相互关系方面的知识联系,因此,这些几何知识对于小学生来是零碎的;再说,小学生的空间思维发展滞后,于是组合图形阴影部分面积的计算在小学教育教学中成为了难点。

我总结了一点经验,概括了几种求组合图形阴影部分面积的解题思路,从思维上帮助学生清晰了解题思路,引导小学生走上正确地解决组合图形阴影部分面积的解题思路。

方法一:移拼、割补的思路
移拼、割补的思路是把不规则的阴影面积通过学习割补,使之变为一个面积大小不变且能实施计算成面积相同的规则图形。

方法二:重叠、分层的思路
重叠、分层思路是图形中不规则的阴影部分看作几个规则图形用不同的方法重叠的结果,利用分层把重叠部分分出来,组成重叠图形各项个规则图形的面积总和减去分掉的那面积,就是剩下所求那部分面积。

方法三:加法、分割的思路
加法分割思路是把所求阴影部分面积分割成几块能用公式计算的规则图形(三角形、正方形、长方形、平行四边形、梯形、圆、扇形),分别计算出面积,并相加得出阴影部分的面积。

方法四:减法、拓展的思路
减法拓展思路是把不规则图形阴影部分面积拓展到包含阴影部分的规则图形中进行分析,通过计算这个规则图形的面积和规则图形中除阴影部分面积之外多余的面积,运用“总的”减去“部分的”方法解得答案。

相关文档
最新文档