平面向量基本定理PPT课件
合集下载
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT
设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
4-2第二节 平面向量基本定理及其坐标运算(52张PPT)
T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3
人教版高中数学必修4(A版) 平面向量基本定理 PPT课件
2.3.1 平面向量基本定理
问题提出
1. 向量加法与减法有哪几种几何运算 法则? 2.怎样理解向量的数乘运算λa?
(1)|λ a|=|λ ||a|; (2)λ >0时,λa与a方向相同;
λ<0时,λa与a方向相反;
λ=0时,λa=0.
3.平面向量共线定理是什么?
非零向量a与向量b共线 存在唯 一实数λ ,使b=λa. 4.如图,光滑斜面上一个木块受到的重 力为G,下滑力为F1,木块对斜面的压 力为F2,这三个力的方向分别如何? 三者有何相互关系?
理论迁移
例1 如图,已知向量e1、e2,求作向 量-2.5e1+3e2.
C e1 e2 3e2 A -2.5e 1 O B
例2 如图,在平行四边形ABCD中, AB =a, AD =b,E、M分别是AD、DC的中 点,点F在BC上,且BC=3BF,以a,b为 基底分别表示向量 AM 和 EF .
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
思考8:上述定理称为平面向量基本定理, 不共线向量e1,e2叫做表示这一平面内所 有向量的一组基底. 那么同一平面内可 以作基底的向量有多少组?不同基底对 应向量a的表示式是否相同?
a
e2 a
a=λ1e1+0e2
a =0 e1 + λ 2 e2
思考7:根据上述分析,平面内任一向 量a都可以由这个平面内两个不共线的 向量e1,e2表示出来,从而可形成一个 定理.你能完整地描述这个定理的内容 吗?
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
问题提出
1. 向量加法与减法有哪几种几何运算 法则? 2.怎样理解向量的数乘运算λa?
(1)|λ a|=|λ ||a|; (2)λ >0时,λa与a方向相同;
λ<0时,λa与a方向相反;
λ=0时,λa=0.
3.平面向量共线定理是什么?
非零向量a与向量b共线 存在唯 一实数λ ,使b=λa. 4.如图,光滑斜面上一个木块受到的重 力为G,下滑力为F1,木块对斜面的压 力为F2,这三个力的方向分别如何? 三者有何相互关系?
理论迁移
例1 如图,已知向量e1、e2,求作向 量-2.5e1+3e2.
C e1 e2 3e2 A -2.5e 1 O B
例2 如图,在平行四边形ABCD中, AB =a, AD =b,E、M分别是AD、DC的中 点,点F在BC上,且BC=3BF,以a,b为 基底分别表示向量 AM 和 EF .
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
思考8:上述定理称为平面向量基本定理, 不共线向量e1,e2叫做表示这一平面内所 有向量的一组基底. 那么同一平面内可 以作基底的向量有多少组?不同基底对 应向量a的表示式是否相同?
a
e2 a
a=λ1e1+0e2
a =0 e1 + λ 2 e2
思考7:根据上述分析,平面内任一向 量a都可以由这个平面内两个不共线的 向量e1,e2表示出来,从而可形成一个 定理.你能完整地描述这个定理的内容 吗?
若e1、e2是同一平面内的两个不共线向量, 则对于这一平面内的任意向量a,有且只有 一对实数λ1,λ 2,使a=λ1e1+λ2e2.
人教A版高中数学必修四课件:第二章2.3.1平面向量基本定理 (共16张PPT)
x
e2
O
a 3e1 2e2
3 a x 4y 2
yn
A
a 3m 2n
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线).
若1与2中只有一个为零 , 情况会是怎样?
若2 0, 则a 1 e1 ,即a与e1共线, 若1 0, 则a 2 e2 ,即a与e2共线,
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
课堂总结 1.平面向量基本定理可以联系物理 学中的力的分解模型来理解,它说明在
同一平面内任一向量都可以表示为不共
线向量的线性组合,该定理是平面向量
D
A
N M B
C
例2.用向量的方法证明: 1 平行四边形OACB中, BD BC , OD与BA 3 1 相交于E , 求证 : BE BA. 4 D B C E
O
A
例3.证明: 向量OA, OB, OC的终点A, B, C共线 的等价条件是存在实数 、 且 1, 使得 OC OA OB.
问题 3 : 设 e1 , e2 是同一平面内两个不共 线的向量, a是这一平面内的任一向 量, 我们来通过作图研 究a与e1 , e2 之间的关系?
平面向量基本定理: 如果e1 , e2 是同一平面内两个不共 线的向量, 那 么对于平面内的任一向 量a , 有且只有一对实数
1 , 2 , 使得a 1 e1 2 e2 .
坐标表示的基础,其本质是一个向量在
其他两个向量上的分解。
2. 在实际问题中的指导意义在于
高中数学必修四《平面向量的基本定理》PPT
栏目 导引
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
平面向量基本定理-完整版课件
中不能作为基底的是
()
A.{e1,e2}
B.{e1+e2,3e1+3e2}
C.{e1,5e2}
D.{e1,e1+e2}
[名师点津]
1.平面向量基本定理包括两个方面的内容:一是存在性,即 存在实数λ1,λ2,使a =λ1e1+λ2e2;二是唯一性,即对任意 向量a ,存在唯一实数对λ1,λ2,使a =λ1e1+λ2e2.
[问题探究] 1.如图所示,OM∥AB,点P在由射线
OM、线段OB及AB的延长线围成的阴影 区域内(不含边界)运动,且―O→P =-12―O→A +m―O→B ,求实数m的取值范围.
[迁移应用] 如图所示,在边长为 2 的正六边形 ABCDEF 中,动圆 Q 的半径为 1,圆心在线段 CD(含 端点)上运动,P 是圆 Q 上及其内部的动点, 设向量―A→P =m―A→B +n―A→F (m,n∈R ),则
提示:都能. 2.基底是否是固定不变的?
提示:不是.
[做一做]
1.判断正误(正确的打“√”,错误的打“×”)
(1)平面内不共线的任意两个向量都可作为一组基底.( )
(2)基底中的向量可以是零向量.
()
(3)平面内的基底一旦确定,该平面内的向量关于基底的线
性分解形式也是唯一确定的.
()
2.设e1,e2是同一平面内的两个不共线向量,则以下各组向量
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否 共线.若共线,则不能作基底,反之,则可作基底; (2)一个平面的基底一旦确定,那么平面上任意一个向量都 可以由这组基底唯一线性表示出来.设向量a与b是平面内两个
不共线的向量,若x1a +y1b =x2a +y2b ,则x1=x2且y1=y2. [提醒] 一个平面的基底不是唯一的,同一个向量用不同
平面向量的基本定理PPT优秀课件
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
一向量 a 1e 1 + 2e 2
我们把不共线的向量 e 1 、e 2 叫做表示
这一平面内所有向量的一组基底。
特别的,若 a = 0 ,则有且只有 :
1= 2 = 0
?若 1与 2中只
有一个为零,情
可使 0 = 1e 1 + 2e 2 . 况会是怎样?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
线的向量,a 是这一平面内的任一向量,
我们研究 a 与 e 1、e 2之间的关系。
e1
a
研究
e2
OC = OM + ON= 1OA + 2OB
即 a = 1e 1 + 2e 2 .
e1 a e2
M
C
Aa
e1
O
N e2 B
一向量 a 1e 1 + 2e 2
我们把不共线的向量 e 1 、e 2 叫做表示
这一平面内所有向量的一组基底。
特别的,若 a = 0 ,则有且只有 :
1= 2 = 0
?若 1与 2中只
有一个为零,情
可使 0 = 1e 1 + 2e 2 . 况会是怎样?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
线的向量,a 是这一平面内的任一向量,
我们研究 a 与 e 1、e 2之间的关系。
e1
a
研究
e2
OC = OM + ON= 1OA + 2OB
即 a = 1e 1 + 2e 2 .
e1 a e2
M
C
Aa
e1
O
N e2 B
2022-2023学年人教A版必修第二册 6-3-1 平面向量基本定理 课件(70张)
课堂篇·重点难点研习突破
研习 1 基底概念的理解 [典例 1] (多选)如果 e1,e2 是平面 α 内两个不共线的向量,那么下列说法中不正确的 是( BC ) A.λe1+μe2(λ,μ∈R)可以表示平面 α 内的所有向量 B.对于平面 α 内任一向量 a,使 a=λe1+μe2 的实数对(λ,μ)有无穷多个 C.若向量 λ1e1+μ1e2 与 λ2e1+μ2e2 共线,则有且只有一个实数 λ,使得 λ1e1+μ1e2=λ(λ2e1 +μ2e2) D.若实数 λ,μ 使得 λe1+μe2=0,则 λ=μ=0 [思路点拨] 应用平面向量基本定理解题时,要抓住基底向量 e1 与 e2 不共线和平面内 向量 a 用基底 e1,e2 表示的唯一性求解.
第六章 平面向量及其应用
6.3 平面向量基本定理及坐标表示
6.3.1 平面向量基本定理
新课程标准
新学法解读
平面向量基本定理是本节的重点又是难点.为了
更好地理解平面向量基本定理,可以通过改变向 理解平面向量基
量的方向及模的大小作图观察 λ1,λ2 取不同值时 本定理及其意义.
的图形特征,得到平面上任意一个向量都可以由
[练习 1] 设 e1,e2 是不共线的两个向量,给出下列四组向量: ①e1 与 e1+e2;②e1-2e2 与 e2-2e1; ③e1-2e2 与 4e2-2e1;④e1+e2 与 e1-e2. 其中,不能作为平面内所有向量的一组基底的是___③_____.(写出所有满足条件的序 号)
解析:①设 e1+e2=λe1,无解, ∴e1+e2 与 e1 不共线,即 e1 与 e1+e2 可作为一组基底; ②设 e1-2e2=λ(e2-2e1),则(1+2λ)e1-(2+λ)e2=0, 则12+ +2λ=λ=00,, 无解, ∴e1-2e2 与 e2-2e1 不共线, 即 e1-2e2 与 e2-2e1 可作为一组基底; ③∵e1-2e2=-21(4e2-2e1),
第二节 平面向量基本定理及坐标运算 课件(共102张PPT)
( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN
=
1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.
6.3.1平面向量基本定理课件(人教版)
成立.
学习目标
新课讲授
课堂总结
知识点2:基底
若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内所有向量的
一个基底.
问题1:零向量可以作为基底吗?
零向量与任意向量共线,因此零向量不能作为基底.
问题2:一组平面向量的基底有多少对?
ห้องสมุดไป่ตู้
无数多对,只要是同一平面内的两个不共线向量都可以作为基底.
学习目标
新课讲授
课堂总结
问题3:若基底选取不同,则表示同一向量的实数λ1,λ2是否相同?
可以不同,也可以相同
F
以 OM ,ON 为基底
OC OM ON
M
C
以 OF,OE 为基底
OC OF OE
O
N
E
学习目标
新课讲授
课堂总结
练一练
1.若{e1,e2} 是平面内的一个基底,则下列四组向量能作为平面向量的
课堂总结
思考:如果给定的两向量 e1,e2 共线,还能用来表示这一平面内的任何一
个向量吗?
不能,此时1e1 2 e2 与 e1, e2 共线,当向量a
与它们不共线时,则无法表示.
只有 e1,e2 不共线,才可以用来表示平面内的任 一向量.
e1 e2
学习目标
新课讲授
课堂总结
思考:用 a 1e1 2e2 表示平面内任何一个向量 a 时,实数λ1,λ2是唯
①再给出另一个向量a ,还能这样表示吗?
M
C
②与e1 或 e2 共线的向量,a 能这样表示吗?
③零向量,如e1 何表示?
取λ1=λ2=0. 即 0 0e1 e20e2
O
NB
平面上任意一个向量a 都可以表示为:
学习目标
新课讲授
课堂总结
知识点2:基底
若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内所有向量的
一个基底.
问题1:零向量可以作为基底吗?
零向量与任意向量共线,因此零向量不能作为基底.
问题2:一组平面向量的基底有多少对?
ห้องสมุดไป่ตู้
无数多对,只要是同一平面内的两个不共线向量都可以作为基底.
学习目标
新课讲授
课堂总结
问题3:若基底选取不同,则表示同一向量的实数λ1,λ2是否相同?
可以不同,也可以相同
F
以 OM ,ON 为基底
OC OM ON
M
C
以 OF,OE 为基底
OC OF OE
O
N
E
学习目标
新课讲授
课堂总结
练一练
1.若{e1,e2} 是平面内的一个基底,则下列四组向量能作为平面向量的
课堂总结
思考:如果给定的两向量 e1,e2 共线,还能用来表示这一平面内的任何一
个向量吗?
不能,此时1e1 2 e2 与 e1, e2 共线,当向量a
与它们不共线时,则无法表示.
只有 e1,e2 不共线,才可以用来表示平面内的任 一向量.
e1 e2
学习目标
新课讲授
课堂总结
思考:用 a 1e1 2e2 表示平面内任何一个向量 a 时,实数λ1,λ2是唯
①再给出另一个向量a ,还能这样表示吗?
M
C
②与e1 或 e2 共线的向量,a 能这样表示吗?
③零向量,如e1 何表示?
取λ1=λ2=0. 即 0 0e1 e20e2
O
NB
平面上任意一个向量a 都可以表示为:
6.3.1平面向量基本定理课件-高一下学期数学人教A版必修第二册
巩固新知
ⅹ
ⅹ
ⅹ
ⅹ
√
平面向量基本定理
(存在性)
(唯一性)
平面向量相等的充要条件
巩固新知
【练习】(1)(多选)设{,}是平面内所有向量的一个基底,则下列四组向量中,能作为基底的是( ) A.+和- B.3-4和6-8 C+2和2+ D.和+(2)已知向量{,}是一个基底,实数x,y满足 (3x-4y)+(2x-3y)=6+3,则x-y=_____.
典型例题
解题反思:将不共线的向量作为基底表示其他向量的一种方法:是运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止
例1.已知 ,C为线段AO上距离A较近的一个三等分点,D为线段CB上距C较近的一个三等分点,则用 表示 的表达式为( )
C
D
B
典型例题
2.向量的数量积是否为零,是判断相应的两条线段(或直线)是否垂直的重要方法之一.
A
解题反思:1.直径所对的圆周角为直角
练习2
已知正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE.
巩固新知
【练习】课本P27 练习3
典型例题
P、A、B三点共线
C
练习3:
拓展训练
例4.
解题反思:将不共线的向量作为基底表示其他向量的方法:1.运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止2.通过列向量方程或方程组,利用基底表示向量的唯一性求解。
A
拓展训练
探究新知
平面向量基本定理
(存在性)
(唯一性)
说明:若共线,则当与共线时可用表示,且表示方法不唯一;
当不共线时不可用表示
判断正误:如果是平面α内两个不共线的向量 1.一个平面内只有一对不共线的向量可作为表示该平面内所有 向量的基底 ( ) 2.一个平面内任意两个向量都可作为两个基底( ) 3.基底向量可以是零向量( ) 4.使一确定向量的实数对(无数多个( ) 5.若λ+μ=,则λ =μ=0( )
ⅹ
ⅹ
ⅹ
ⅹ
√
平面向量基本定理
(存在性)
(唯一性)
平面向量相等的充要条件
巩固新知
【练习】(1)(多选)设{,}是平面内所有向量的一个基底,则下列四组向量中,能作为基底的是( ) A.+和- B.3-4和6-8 C+2和2+ D.和+(2)已知向量{,}是一个基底,实数x,y满足 (3x-4y)+(2x-3y)=6+3,则x-y=_____.
典型例题
解题反思:将不共线的向量作为基底表示其他向量的一种方法:是运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止
例1.已知 ,C为线段AO上距离A较近的一个三等分点,D为线段CB上距C较近的一个三等分点,则用 表示 的表达式为( )
C
D
B
典型例题
2.向量的数量积是否为零,是判断相应的两条线段(或直线)是否垂直的重要方法之一.
A
解题反思:1.直径所对的圆周角为直角
练习2
已知正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE.
巩固新知
【练习】课本P27 练习3
典型例题
P、A、B三点共线
C
练习3:
拓展训练
例4.
解题反思:将不共线的向量作为基底表示其他向量的方法:1.运用向量的线性运算法则对所求向量不断转化,直至能用基底表示为止2.通过列向量方程或方程组,利用基底表示向量的唯一性求解。
A
拓展训练
探究新知
平面向量基本定理
(存在性)
(唯一性)
说明:若共线,则当与共线时可用表示,且表示方法不唯一;
当不共线时不可用表示
判断正误:如果是平面α内两个不共线的向量 1.一个平面内只有一对不共线的向量可作为表示该平面内所有 向量的基底 ( ) 2.一个平面内任意两个向量都可作为两个基底( ) 3.基底向量可以是零向量( ) 4.使一确定向量的实数对(无数多个( ) 5.若λ+μ=,则λ =μ=0( )
2.3.1平面向量基本定理(必修四 数学 优秀课件)
即(2 - )a +(k - 4 )b = 0
k – 4 = 0 8.
2 - = 0
k =
e2是同一平面内的两个不 如果 e1 、 共线向量,那么对于这一平面内的任 一向量 a 有且只有一对实数1、 2 使 a = 1 e1 + 2e2 e2叫做表 我们把不共线的向量e1 、 示这一平面内所有向量的一组基底。
思考 (1)一组平面向量的基底有多少对? (有无数对) C F M M C A O a N B O a N E
AB与BD共线,则存在实数
λ使得AB = λBD.
由于BD = CD – CB
k =
=(2a – b) –(a +3b) = a – 4b 则需 2a + kb = (a – 4b ) 2 = 由向量相等的条件得 k = 4
8.
此处可另解:
则需 2a + kb = (a – 4b )
e2
B
A
e1 2.5e
1
3e2
· O
向量的夹角
思考1:不共线的向量有不同的方向,对 于两个非零向量a和b,作 OA a,OB b, 如图.为了反映这两个向量的位置关系, 称∠AOB为向量a与b的夹角.你认为向量 的夹角的取值范围应如何约定为宜?
B a b b
[0°,180°]
1 a 2
总结: 1、平面向量基本定理内容 2、对基本定理的理解 (1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 (3)定理的拓展性 3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面几何问题
思考
设 a、b是两个不共线的向量, 已知AB = 2a + kb, CB = a + 3b, CD = 2a – b,若A、B、D三点共线, 求k的值。 解: A、B、D三点共线
平面向量基本定理-PPT
1、平面向量基本定理内容
2、对基本定理的理解
(1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 (3)定理的拓展性
3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面标
要求学生掌握平面向量的基本定理,能用 两个不共线向量表示一个向量;或一个向量分 解为两个向量,了解平面基本定理的证明。
教学重点
平面向量基本定理,应用向量基本定理解 决问题。
教学难点
对平面向 量基本定理的理解,应用定理解 决平面几何问题
知识链接
1、实数与向量的积 2、两个向量的和(差)的求法
关于基底{ OA,OB }的分解式为
OP (1 t)OA tOB. (1)
P
并且,满足该式的点P
一定在l上
B
O
A
根据平面向量基本定理,同一平面内任一 向量都可以用两个不共线的向量表示,再由已 知可得
OP OA AP OA t AB
OA t(OB OA)
(1 t)OA tOB
P满足等式
OM 1 (OA OB) 2
特征: OA与OB 的系数之和是1 用途:判断点P在直线AB上,即是判定
三点共线的依据。
达标练习:
1、给出下面三种说法: (1)一个平面内只有一对不共线的非零向量可
作为表示该平面所有向量的基底;
(2)一个平面内有无数多对不共线非零向量可 作为表示该平面所有向量的基底;
GH 2e1 5e2
设e1、e2是同一平面内两个不共线的向量, 该平面内给定的向量a能用e1、e2来线性表示。
5
问题:(1)任何向量a是否都可以用含有e1、 e2的式子来表示呢? (2)若向量a能够用e1、e2表示,这种表示 是否唯一?请说明理由.
2、对基本定理的理解
(1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 (3)定理的拓展性
3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面标
要求学生掌握平面向量的基本定理,能用 两个不共线向量表示一个向量;或一个向量分 解为两个向量,了解平面基本定理的证明。
教学重点
平面向量基本定理,应用向量基本定理解 决问题。
教学难点
对平面向 量基本定理的理解,应用定理解 决平面几何问题
知识链接
1、实数与向量的积 2、两个向量的和(差)的求法
关于基底{ OA,OB }的分解式为
OP (1 t)OA tOB. (1)
P
并且,满足该式的点P
一定在l上
B
O
A
根据平面向量基本定理,同一平面内任一 向量都可以用两个不共线的向量表示,再由已 知可得
OP OA AP OA t AB
OA t(OB OA)
(1 t)OA tOB
P满足等式
OM 1 (OA OB) 2
特征: OA与OB 的系数之和是1 用途:判断点P在直线AB上,即是判定
三点共线的依据。
达标练习:
1、给出下面三种说法: (1)一个平面内只有一对不共线的非零向量可
作为表示该平面所有向量的基底;
(2)一个平面内有无数多对不共线非零向量可 作为表示该平面所有向量的基底;
GH 2e1 5e2
设e1、e2是同一平面内两个不共线的向量, 该平面内给定的向量a能用e1、e2来线性表示。
5
问题:(1)任何向量a是否都可以用含有e1、 e2的式子来表示呢? (2)若向量a能够用e1、e2表示,这种表示 是否唯一?请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题在解决过程中用到了两向量共 线的等价条件这一定理,并用基向量表 示有关向量,用待定系数法列方程,通 过消元解方程组。这些知识和考虑问题 的方法都必须切实掌握好。
2020年12月29日星期二
课堂总结 1.平面向量基本定理可以联系物理
学中的力的分解模型来理解,它说明在 同一平面内任一向量都可以表示为不共 线向量的线性组合,该定理是平面向量 坐标表示的基础,其本质是一个向量在 其他两个向量上的分解。
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
D
C
b
M
A
a
B
变式1 : 上题中,若N在AC上, 且 AN 3NC,
P为BC的中点,求PN .
2020年12月29日星期二
变式2、 已知平行四边形ABCD的边BC ,CD的中点
为M , N , AM e1 , AN e2 , 试用e1 , e2表示BC , CD.
D A
N C
M B
2020年12月29日星期二
2020年12月29日星期二
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
若2 0,则a 1 e1 ,即a与e1共线, 若1 0,则a 2 e2 ,即a与e2共线,
2020年12月29日星期二
检测
1、给出下面三种说法: (1)一个平面内只有一对不共线的非零向量可
作为表示该平面所有向量的基底; (2)一个平面内有无数多对不共线非零向量可
作为表示该平面所有向量的基底; (3)零向量不可作为基底的向量
2020年12月29日星期二
例3:
已知向量 e1 、e2 求做向量-2.5 e1+3 e2
还有其他作法?
e2
e 2020年12月129日星期二
3e2 O 2.5e1
四、 例题分析 :
例1、如图, 平行四边形 ABCD的两条对角
线相交于点M , 且 AB a, AD b, 试用a, b
表示MA, MB, MC , MD.
其中正确的说法是( B )
A、(1)(2) B、(2)(3) C、(1)(3) D、(2)
2020年12月29日星期二
练习
1、若e1,e2是平面内向量的一组基底,则下面的
向量中不能作为一组基底的是(B)
A)e1 + e2和e1 - e2
B)3 e1 -2 e2和-6e1 +4 e2
C)e1+3 e2和3 e1 + e2 D) e1 + e2和 e2
不共线向量,a 是这一平面内的任一向量.
♦ 探究1:a 与 e1, e2, 的关系
e1
a
想一想?
e2
2020年12月29日星期二
学生活动:
e1
a
e2
2020年12月29日星期二
OC OM ON 1OA 2OB
即 a 1e1 2 e2
M
C
A AA
e1 e1e1
O
e2
N
B
唯一性 存在性
三.数学建构
B
a
e1 O e2
M A
2020年12月29日星期二
B
a x
Oy
M A
思考二、 若可以相同,也可以不同
B
M
B
M
a
a
e1
O e2
A
a 3e1 2e2
mx O yn
A
a 3 x4y 2
a 3m 2n
2020年12月29日星期二
当a 0时, 有且只有1 2 0时可使 0 1 e1 2 e2 , (e1 , e2不共线). 若1与2中只有一个为零 ,情况会是怎样 ?
例2.用向量的方法证明 :
平行四边形OACB中, BD 1 BC ,OD与BA 3
相交于E,求证 : BE 1 BA. 4
BD
C
E
O
A
2020年12月29日星期二
例3.证明:向量OA,OB,OC的终点A, B,C共线
的等价条件是存在实数 、 且 1, 使得 OC OA OB.
2020年12月29日星期二
1)平面向量基本定理的内容
如果 e1, e2,是同一平面内的两个不共线向量,
那么对于这一平面的任意向量 a,
有且只存有在 一对实数, 1, 2 ,
使 a 1e1 2 e2
思考: 上述表达式中的 1,2 是否唯一?
2020年12月29日星期二
思考一、 平面内用来表示一个向 量的基底有 多少组 ? (有无数组)
a的方向与a相反;
(3) 0时, a 0.
2020年12月29日星期二
向量的数乘运算律 :
(1)(a) ( )a; (2)( )a a a; (3)(a b) a b.
特别地, 我们有( )a ( a) (a)
(a b) a b.
2020年12月29日星期二
共线向量定理 : 向量a(a 0)与b共线,当且仅当有唯一一个
2.3.1 平面向量基本定理
如果没有运算,向量只是一个“” .因为有了运算,向量的力量无限!
2020年12月29日星期二
一、 回顾 :向量的数乘运算
一般地, 规定实数与向量a的积是一个向量,这种运算 叫做向量的数乘 , 记作 a,它的长度与方向规定如 下 :
(1) | a || || a |; (2)当 0时, a的方向与a相同;当 0时,
实数 , 使b a.
2020年12月29日星期二
二、 新课导入 :
问题1 : 给定平面内任意两个向 量e1, e2 , 我们能 否作出向量3e1 2e2 , e1 2e2 ?
问题2 : 平面内的任一向量是否 都可以用形如
1 e1 2 e2的向量表示呢 ?
2020年12月29日星期二
问题3.学生活动: 已知 e1, e2, 是同一平面内的两个