人教A版高中数学选修一第一章 常用逻辑用语
高中数学人教A版选修1-1课件1-2-1充分条件与必要条件3
[例 4] 已知方程 x2-2(m+2)x+m2-1=0 有两个大于 2 的 根,试求实数 m 的取值范围.
[错解] 由于方程 x2-2(m+2)x+m2-1=0 有两个大于 2
的根,设这两个根为 x1,x2,则有
(1)s 是 q 的________条件? (2)r 是 q 的________条件? (3)p 是 q 的________条件?
[解析] 根据题意得关系图,如图所示. (1)由图知:∵q⇒s,s⇒r⇒q, ∴s 是 q 的充要条件. (2)∵r⇒q,q⇒s⇒r, ∴r 是 q 的充要条件. (3)∵q⇒s⇒r⇒p, ∴p 是 q 的必要条件.
4.A 是 B 的充分条件,是指 A⇒B; A 的充分条件是 B,是指 B⇒A; A 的充要条.件.是.B.·,充分性是指 B⇒A,必要性是 A⇒B, 此语句应抓“条件是 B”. A· 是.B 的充要条.件.,此语句应抓“A 是条件”.
1.已知 p 是 r 的充分不必要条件,s 是 r 的必要条件,q 是 s 的必要条件,那么 p 是 q 的( )
①s 是 q 的充要条件; ②p 是 q 的充分条件而不是必要条件; ③r 是 q 的必要条件而不是充分条件; ④r 是 s 的充分条件而不是必要条件.
则正确命题的序号是( ) A.①④ B.①② C.②③④ D.②④
[答案] B
[解析] 由题意知, 故①②正确;③④错误.
命题方向二:集合法
[例 2] 设 p,q 是两个命题,p:log12(|x|-3)>0,q:x2-56x +16>0,则 p 是 q 的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 知识点考点汇总及解题方法规律提炼
第一章集合与常用逻辑用语1.1.1集合的概念 (1)1.1.2集合的表示 (4)1.2集合间的基本关系 (8)1.3.1并集与交集 (13)1.3.2补集及集合运算的综合应用 (17)1.4.1充分条件与必要条件 (20)1.4.2充要条件 (24)1.5.1全称量词与存在量词 (28)1.5.2全称量词命题与存在量词命题的否定 (32)1.1.1集合的概念要点整理1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.温馨提示:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.温馨提示:(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.常用的数集及其记法题型一集合的基本概念【典例1】判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.[思路导引] 构成集合的关键是要有明确的研究对象,即元素不能模糊不清、模棱两可.[解] (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合.对集合含义的理解给定一个集合,那么任何一个元素在不在这个集合中就确定了,所谓“确定”,是指所有被“研究的对象”都是这个集合的元素,没有被“研究的对象”都不是这个集合的元素.题型二元素与集合的关系【典例2】(1)下列关系中,正确的有( )①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个 B.2个 C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[思路导引] 判断一个元素是否为某集合的元素,关键是抓住集合中元素的特征.[解析] (1)12是实数;2是无理数;|-3|=3,是自然数;|-3|=3,是无理数.故①②③正确,选C.(2)当x=0时,63-0=2;当x=1时,63-1=3;当x=2时,63-2=6;当x≥3时不符合题意,故集合A中元素有0,1,2.[答案] (1)C (2)0,1,2判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.题型三集合中元素的特性【典例3】已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[思路导引] 由集合中元素的确定性和互异性切入.[解析] 若a=1,则a2=1,此时集合A中两元素相同,与互异性矛盾,故a≠1;若a2=1,则a=-1或a=1(舍去),此时集合A中两元素为-1,1,故a=-1.综上所述a=-1.[答案] -1[变式] (1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?[解] (1)若a=2,则a2=4,符合元素的互异性;若a2=2,则a=2或a=-2,符合元素的互异性.所以a的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a≠a2,所以a≠0且a≠1.应用集合元素的特性解题的要点(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么.(2)构成集合的元素必须是确定的(确定性),而且是互不相同的(互异性),在书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.1.1.2集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.题型一用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x (x -1)2=0的所有实数根组成的集合;(2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数.[解] (1)方程x (x -1)2=0的实数根为0,1,故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎨⎧ y =x y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.题型二用描述法表示集合【典例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合;(4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.(4)不等式3x-2<4可化简为x<2,所以不等式3x-2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.题型三集合表示方法的应用【典例3】(1)若集合A={x|ax2-8x+16=0,a∈R}中只有一个元素,则a的值为( )A.1 B.4 C.0 D.0或1(2)已知A={x|kx+2>0,k∈R},若-2∈A,则k的取值范围是________.[思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征.[解析] (1)①当a=0时,原方程为16-8x=0.∴x=2,此时A={2};②当a≠0时,由集合A中只有一个元素,∴方程ax2-8x+16=0有两个相等实根,则Δ=64-64a=0,即a=1.从而x1=x2=4,∴集合A={4}.综上所述,实数a的值为0或1.故选D.(2)∵-2∈A,∴-2k+2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a的取值范围.(2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围.[解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎨⎧ a ≠0,Δ=64-64a >0,解得a <1,且a ≠0.(2)∵-2∉A ,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.子集的概念温馨提示:“A是B的子集”的含义是:对任意x∈A都能推出x∈B.2.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B 且B⊆A,则A=B.3.真子集的概念温馨提示:在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x ∈B,但x∉A.4.空集的概念题型一集合间关系的判断【典例1】判断下列两个集合之间的关系:(1)A={-1,1},B={x|x2=1};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.[思路导引] 集合间基本关系的刻画均是由元素的从属关系决定的.[解] (1)用列举法表示集合B={-1,1},故A=B.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)解法一(特殊值法):两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.解法二(列举法):由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.判断集合间关系的3种方法(1)列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.(2)元素特征法:根据集合中元素满足的性质特征之间的关系判断.(3)图示法:利用数轴或Venn图判断两集合间的关系.题型二有限集合子集、真子集的确定【典例2】(1)填写下表,并回答问题原集合子集子集的个数∅________________{a}________________{a,b}________________{a,b,c}________________由此猜想,含n个元素的集合的所有子集的个数是多少?真子集的个数及非空真子集个数呢?(2)求满足{1,2}M⊆{1,2,3,4,5}的集合M.[解] (1)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8猜想:含n个元素的集合的子集共有2n个,真子集有2n-1个,非空真子集有2n-2个.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(1)求解有限集合子集问题的3个关键点①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.(2)与子集、真子集个数有关的3个结论 假设集合A 中含有n 个元素,则有: ①A 的子集的个数为2n 个; ②A 的真子集的个数为2n -1个; ③A 的非空真子集的个数为2n -2个.【典例3】 已知集合A ={x |-3<x <4},B ={x |1-m <x ≤2m -1},且A ⊆B ,求实数m 的取值范围.[思路导引] A ⊆B ,即集合A 中的数在集合B 中,特别注意A =∅的情况. [解] 由A ⊆B ,将集合A ,B 分别表示在数轴上,如图所示,则⎩⎨⎧1-m ≤-3,1-m <2m -1,4≤2m -1,解得m ≥4.故m 的取值范围是{m |m ≥4}.[变式] (1)本例中若将“A ⊆B ”改为“B ⊆A ”,其他条件不变,求m 的取值范围.(2)本例若将集合A ,B 分别改为A ={3,m 2},B ={1,3,2m -1},其他条件不变,求实数m 的值.[解] (1)由B ⊆A ,将集合A ,B 分别表示在数轴上,如图所示.∵B ⊆A ,∴当B =∅时,1-m ≥2m -1,解得m ≤23;当B ≠∅时,有⎩⎨⎧2m -1>1-m ,2m -1<4,1-m ≥-3,解得23<m <52.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <52. (2)由A ⊆B ,按m 2=1和m 2=2m -1两种情况分类讨论. ①若m 2=1,则m =-1或m =1.当m =-1时,B 中元素为1,3,-3,适合题意; 当m =1时,B 中元素为1,3,1,与元素的互异性矛盾. ②若m 2=2m -1,则m =1,由①知不合题意. 综上所述,m =-1.由集合间的关系求参数的2种方法(1)当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.(2)当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用.1.3.1并集与交集1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质【典例1】(1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.题型二交集的运算【典例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. (2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎨⎧2-k ≤2k -1,2-k >-3,2k -1≤4,解得1≤k ≤52.综上所述,k ≤52.[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B . ∴⎩⎨⎧2-k ≤-3,2k -1≥4,解得k ≥5.由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A ∩B =A 或A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将A ∩B =A 转化为A ⊆B ,A ∪B =B 转化为A ⊆B .(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.1.3.2补集及集合运算的综合应用要点整理1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.题型一补集的运算【典例1】(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________________.[思路导引] 借助补集定义,结合数轴及Venn图求解.[解析] (1)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.[答案] (1){x|x<-3或x=5} (2){2,3,5,7}求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.题型二交集、并集、补集的综合运算【典例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.[解] 把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-U3<x≤-2或x=3}.解决集合交、并、补运算的2个技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.题型三利用集合间的关系求参数【典例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁A)∩B=∅,求实数m的取值范围.U[思路导引] 理清集合间的关系,分类求解.[解] 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是m≥2.[变式] (1)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B≠∅”,其他条件不变,则m的取值范围又是什么?(2)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?[解] (1)由已知得A={x|x≥-m},所以∁U A={x|x<-m},又(∁U A)∩B≠∅,所以-m>-2,解得m<2.(2)由已知得A={x|x≥-m},∁U B={x|x≤-2或x≥4}.又(∁U B)∪A=R,所以-m≤-2,解得m≥2.利用集合关系求参数的2个注意点(1)与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.[针对训练]5.已知集合A={x|x<a},B={x|1<x<3}.(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.[解](1)∵B={x|1<x<3},B={x|x≤1或x≥3},∴∁R因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.1.4.1充分条件与必要条件要点整理1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若p,则q”形式的命题.若不是,则首先将命题改写成“若p,则q”的形式.(2)不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.题型一充分、必要条件的概念及语言表述【典例1】将下面的定理写成“若p,则q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解①对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如x>2,x>3都是x>0的充分条件.②对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.(2)用充分、必要条件的语言表述定理的一般步骤第一步:分析定理的条件和结论;第二步:将定理写成“若p,则q”的形式;第三步:利用充分、必要条件的概念来表述定理.题型二充分条件、必要条件的判定【典例2】判断下列各题中p是q的充分条件吗?p是q的必要条件吗?(1)p:x>1,q:x2>1;(2)p:(a-2)(a-3)=0,q:a=3;(3)已知:y=ax2+bx+c(a≠0),p:Δ=b2-4ac>0,q:函数图象与x轴有交点.[思路导引] 判断“若p,则q”命题的真假及“若q,则p”命题的真假.[解] (1)由x>1可以推出x2>1,因此p是q的充分条件;由x2>1,得x<-1,或x>1,不一定有x>1.因此,p不是q的必要条件.(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3,因此p不是q的充分条件;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要条件.(3)二次函数y=ax2+bx+c,当Δ>0时,其图象与x轴有交点,因此p是q的充分条件;反之若函数的图象与x轴有交点,则Δ≥0,不一定是Δ>0,因此p不是q的必要条件.充分、必要条件的判断方法(1)定义法:首先分清条件和结论,然后判断p⇒q和q⇒p是否成立,最后得出结论.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.显然,p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,即p ⇒q ,只是说法不同而已.题型三充分条件、必要条件与集合的关系【典例3】 (1)已知p :关于x 的不等式3-m 2<x <3+m 2,q :0<x <3,若p 是q 的充分条件,求实数m 的取值范围.(2)已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且q 是p 的必要条件,求实数m 的取值范围.[思路导引] p 是q 的充分条件转化为对应集合A ⊆集合B ,q 是p 的必要条件转化为集合A ⊆集合B .[解] (1)记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3}, 若p 是q 的充分条件,则A ⊆B .注意到B ={x |0<x <3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A ⊆B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A ⊆B ,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,m >0,解得0<m ≤3. 综上可得,实数m 的取值范围是{m |m ≤3}.(2)由已知可得 A =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y | y ≥-54, B ={x |x ≥-2m }.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B ,所以-2m ≤-54,所以m ≥58,即m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≥58. [变式] 本例(1)中若将“若p 是q 的充分条件”改为“p 是q 的必要条件”,其他条件不变,求实数m 的取值范围.[解] 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3},若p 是q 的必要条件,则B ⊆A .应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,解得m ≥3.综上可得,实数m 的取值范围是{m |m ≥3}.(1)利用充分、必要条件求参数的思路根据充分、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.(2)从集合角度看充分、必要条件:设命题p 、q 分别对应集合A 、B ,若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件.1.4.2充要条件要点整理充要条件如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,记作p ⇔q .此时p 既是q 的充分条件,也是q 的必要条件.我们说p 是q 的充分必要条件,简称为充要条件.如果p 是q 的充要条件,那么q 也是p 的充要条件,即如果p ⇔q ,那么p 与q 互为充要条件.温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且q⇒/p,则称p是q的充分不必要条件.④若p⇒/q,且q⇒p,则称p是q的必要不充分条件.⑤若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.(2)“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p 是s的充要条件.题型一充要条件的判断【典例1】在下列各题中,试判断p是q的什么条件.(1)p:a+5是无理数,q:a是无理数;(2)若a,b∈R,p=a2+b2=0,q:a=b=0;(3)p:A∩B=A,q:∁U B⊆∁U A.[思路导引] 判断是否p⇒q,q⇒p.[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.(3)因为A∩B=A⇒A⊆B⇒∁U A⊇∁U B,并且∁U B⊆∁U A⇒B⊇A⇒A∩B=A,所以p 是q的充要条件.[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:(1)p是r的什么条件?(2)s是q的什么条件?(3)p,q,r,s中哪几对互为充要条件?[解] 作出“⇒”图,如右图所示,。
高中数学人教A版选修1-1课件1-3-123且或非2
牛刀小试
1.“xy≠0”是指( )
A.x≠0且y≠0
B.x≠0或y≠0
C.x,y至少一个不为0 D.不都是0
[答案] A
[解析] xy≠0当且仅当x≠0且y≠0.
2.p:点P在直线y=2x-3上;q:点P在曲线y=-x2上,则使 “p∧q”为真命题的一个点P(x,y)是( )
跟踪训练
指出下列各命题的构成形式并判断命题的真假. (1)等腰三角形的顶角平分线垂直平分底边; (2)4或3是15的约数; (3)10≤10; (4)矩形的对角线互相垂直平分.
[解析] (1)这一命题是“p且q”的形式.其中p:等腰三角形的顶角平 分线垂直于底边,q:等腰三角形的顶角平分线平分底边.因为p、q 都是真命题,所以这一复合命题是一个真命题.
5.给出如下条件: (1)“p成立,q不成立”; (2)“p不成立,q成立”; (3)“p与q都成立”; (4)“p与q都不成立”. 其中能使“p或q”成立的是__________(填序号). [答案] (1)(2)(3)
典例探究学案
命题方向一:命题的构成形式
分别指出下列命题的构成形式. (1)小李是老师,小赵也是老师; (2)1是合数或质数; (3)他是运动员兼教练员; (4)这些文学作品不仅艺术上有缺点,而且政治上有错误. [分析] 本题考查命题的构成形式,是本节课的重点,也是以后学习 的基础.
A.(0,-3)
B.(1,2)
C.(1,-1) D.(-1,1)
[答案] C
[解析] 点 P(x,y)满足yy==-2x-x2 3 ,解得 P(1,-1)或 P(- 3,-9),故选 C.
人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语说课教学课件复习
栏目 导引
第一章 集合与常用逻辑用语
3.集合相等的概念 一般地,如果集合 A 的___任__何__一__个__元__素_____都是集合 B 的元素, 同时集合 B 的___任__何__一__个__元__素_____都是集合 A 的元素,那么集 合 A 与集合 B 相等,记作_A__=__B_,也就是说,若_A__⊆_B__,且 _B__⊆_A__,则 A=B.
栏目 导引
第一章 集合与常用逻辑用语
(1)求集合子集、真子集个数的 3 个步骤
栏目 导引
第一章 集合与常用逻辑用语
(2)与子集、真子集个数有关的 4 个结论 假设集合 A 中含有 n 个元素,则有 ①A 的子集的个数有 2n 个; ②A 的非空子集的个数有 2n-1 个; ③A 的真子集的个数有 2n-1 个; ④A 的非空真子集的个数有 2n-2 个.
栏目 导引
第一章 集合与常用逻辑用语
若集合 A {1,2,3},且 A 中至少含有一个 奇数,则这样的集合有________个. 解析:若 A 中含有一个奇数,则 A 可能为{1},{3},{1,2}, {3,2}; 若 A 中含有两个奇数, 则 A={1,3}. 答案:5
栏目 导引
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
4.真子集的概念 文字语言
如果集合 A⊆B,但存在元 素___x_∈__B_,__且___x_∉_A____, 就称集合 A 是 B 的真子集
符号语言
A______B (或 B A)
图形语言
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 (1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A=B,则 A⊆B, 且 B⊆A. (2)若两集合相等,则两集合所含元素完全相同,与元素排列顺 序无关. (3)在真子集的定义中,A B 首先要满足 A⊆B,其次至少有一 个 x∈B,但 x∉A.
高中数学高考核心考点提醒选修1-1 第一章 常用逻辑用语
高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。
四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。
互为逆否的命题等价。
逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。
必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。
类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。
类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。
类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。
存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。
一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.3 简单的逻辑联结词 1.3.1 且(and)》赛课课件_2
(2) p:35是15的倍数, q:35是7的倍数。
解:(2) pq: 35是15的倍数且35是7的倍数。 由于p假、q真,从而pq假。
将下列命题用“且”联结成新命题,并判断它们的真假; (1)p:菱形的对角线相等,
q:菱形的对角线互相平分 (2) p:35是5的倍数,
q:35是7的倍数。
解:(1) pq:菱形的对角线相等且互相平分。 由于p假、q真,从而pq假。
口诀:全假为假,有真即真.
课后练习 课后习题
课后练习
将下列命题用“且”联结成新命题,并判断它们的真假:
(1)p: 5是10的约数,q:5是15的约数
p且q: 5是10的约数且是15的约数
真
(2)p: 矩形的对角线相等,q:矩形的对角线互相垂直
p且q:矩形对角线相等且互相垂直
假
(3)p:π是有理数,q:π是自然数
(2) pq: 35是5的倍数且35是7的倍数。 由于p真、q真,从而pq真。
例2、用逻辑联结词“且”改写下列命题,并判断它们的真假;
(1) 1既是奇数,又是素数; (1)可改写为:1是奇数且1是素数。 由于p真q假, 所以这个命题是假命题。
(2)2和3都是素数。
(2)可为:2是素数且3是素数。 “2是素数”与“3是素数”都是真命题, 所以这个命题是真命题。
即 pq 。
因为p真、q假, 所以命题pq 是真命题。
(2) 集合A是A∩B的子集或是A∪B的子集; 解:命题“集合A是A∩B的子集或是A∪B的子集” 是用“或”联结构成的命题: p:集合A是A∩B的子集; q:集合A是A∪B的子集;
用“或”联结后构成新命题,即 pq 因为p假q真,所以命题pq是真命题。
如果pq 为真命题, 那么pq一定是真命题吗?
高中数学必修第一册第1章 集合与常用逻辑用语
6 集合的3种表示方法之描述法
一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x
所组成的集合表示为{ x ∈A|P(x)},这种表示集合的方法称为描述法。
例如,我们可以把奇数集表示为{ x ∈Z| x =2k + 1(k∈Z)},
偶数集表示为{ x ∈Z| x =2k(k∈Z)};
如{x|x < −1或x > 2}
6 课堂练习
请用描述法表示下列集合:
(1)方程x 2 − 4 = 0的所有实数根组成的集合A;
(2)由大于10而小于20的所有整数组成的集合B.
解:(1)A={| x 2 − 4 = 0}
(2)B={∈Z|10 < < 20}
7 表示集合的三种方法各有什么特点?
同,那么它们就是相等的集合。{1,2,3}和{3,2,1}是
同样的集合
3 集合和元素怎么表示?它们之间有什么关系?
一般来说:用大写拉丁字母A、B、C…等表示集合
用小写拉丁字母, , …等表示元素
元素与集合的关系:
如果是是集合A的元素,那么就说属于集合A,记作∈A;
如果是不是集合A的元素,那么就说不属于集合A,记作∉A;
比如,3∈自然数集;4∉奇数集
4 常用的数集比如自然数集怎么表示?
注意写法
【自然数集】全体自然数组成的集合,0,1,2…,记作N,也叫非负整数集
【正整数集】全体正整数组成的集合,记作N*或N+;
【整数集】 全体整数组成的集合,记作Z;
【有理数集】全体有理数组成的集合,记作Q;
【实数集】 全体实数组成的集合,记作R;
确定性
对于一个给定的集合,它的元素必须是确定的。也就是说,对于
新人教A版新教材学高中数学必修第一册第一章集合与常用逻辑用语集合间的基本关系讲义
最新课程标准:(1)在具体情境中,了解空集的含义.(2)理解集合之间包含与相等的含义,能识别给定集合的子集.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A 中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A错误!“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A都能推出x∈B.知识点二集合相等文字语言:一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作A=B.符号语言:若A⊆B,且B⊆A,则A=B.错误!1.若A ⊆B,又B ⊆A,则A=B;反之,如果A=B,则A ⊆B,且B ⊆A.2.若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三真子集文字语言:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集(proper subset).符号语言:A B(或B A).错误!在真子集的定义中,A B首先要满足A ⊆B,其次至少有一个x∈B,但x∉A.知识点四空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,若A⊆B,B⊆C,则A⊆C.[教材解难]教材P8思考{a}表示含有一个元素a的集合,{a}⊆A表示集合A包含{a},这是两个集合之间的关系;a∈A,表示a是A的一个元素,这是元素与集合之间的关系.[基础自测]1.下列四句话中:1∅={0};2空集没有子集;3任何一个集合必有两个或两个以上的子集;4空集是任何一个集合的子集.其中正确的有()A.0个B.1个C.2个D.3个解析:由空集的性质可知,只有4正确,123均不正确.答案:B2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|—1—x<0},则下列各式正确的是()A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A解析:集合A={x|—1—x<0}={x|x>—1},所以0∈A,{0}⊆A,D正确.答案:D4.已知集合A={—1,3,2m—1},集合B={3,m2},若B⊆A,则实数m=________.解析:∵B⊆A,∴2m—1=m2,∴m=1.答案:1题型一集合间关系的判断[经典例题]例1(1)下列各式中,正确的个数是()1{0}∈{0,1,2};2{0,1,2}⊆{2,1,0};3∅⊆{0,1,2};4∅={0};5{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:1A={—1,1},B={(—1,—1),(—1,1),(1,—1),(1,1)};2A={x|x是等边三角形},B={x|x是等腰三角形};3M={x|x=2n—1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于1,是集合与集合的关系,应为{0}{0,1,2};对于2,实际为同一集合,任何一个集合是它本身的子集;对于3,空集是任何集合的子集;对于4,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于5,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故23是正确的,应选B.(2)1集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.2等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.3方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B (2)见解析根据元素与集合、集合与集合之间的关系直接判断1234⑥,对于5应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2—1=0},T={—1,0,1},则M与T的关系是()A.M TB.M TC.M=TD.M T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2—1=0}={—1,1},又T={—1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A (2)见解析错误!(2)学习完知识点后,我们可以得到B ⊆A,C ⊆A,D ⊆A,D ⊆B,D ⊆C.题型二子集、真子集及个数问题[教材P8例1、2]例2(1)写出集合{a,b}的所有子集,并指出哪些是它的真子集.(2)判断下列各题中集合A是否为集合B的子集,并说明理由:1A={1,2,3},B={x|x是8的约数};2A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.【解析】(1)集合{a,b}的所有子集为∅,{a},{b},{a,b}.真子集为∅,{a},{b}.(2)1因为3不是8的约数,所以集合A不是集合B的子集.2因为若x是长方形,则x一定是两条对角线相等的平行四边形,所以集合A是集合B的子集.错误!(1)题写出集合的子集时易忘∅,真子集是在子集的基础上去掉自身.(2)题先确定集合A,B中的元素,再根据子集的定义判断.教材反思1.求集合子集、真子集个数的三个步骤2.若集合A中含有n个元素,集合A的子集个数为2n,真子集的个数为2n—1,非空真子集的个数为2n—2.跟踪训练2(1)已知集合A={x∈R|x2—3x+2=0},B={x∈N|0<x<5},则满足条件A C B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.—2B.4C.0 D.以上答案都不是解析:(1)由x2—3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.答案:(1)B (2)C错误!(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.题型三根据集合的包含关系求参数[经典例题]例3已知集合A={x|1<ax<2},B={x|—1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,1A=∅,满足A⊆B.(2)当a>0时,A=错误!.又∵B={x|—1<x<1},且A⊆B,∴错误!2∴a≥2.(3)当a<0时,A=错误!.3∵A⊆B,∴错误!∴a≤—2.综上所述,a的取值范围是{a|a=0,或a≥2,或a≤—2}.错误!1欲解不等式1<ax<2,需不等号两边同除以a,而a的正负不同时,不等号的方向不同,因此需对a分a=0,a>0,a<0进行讨论.2A ⊆B用数轴表示如图所示:(a>0时)由图易知,错误!和错误!需在—1与1之间.当错误!=—1,或错误!=1时,说明A 与B的某一端点重合,并不是说其中的元素能够取到端点,如错误!=1时,A=错误!,x 取不到1.3a<0时,不等式两端除以a,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3设集合A={x|x2—8x+15=0},B={x|ax—1=0}.(1)若a=错误!,试判定集合A与B的关系.(2)若B⊆A,求实数a的取值集合.解析:(1)由x2—8x+15=0得x=3或x=5,故A={3,5},当a=错误!时,由ax—1=0得x=5.所以B={5},所以B A.(2)当B=∅时,满足B⊆A,此时a=0;当B≠∅,a≠0时,集合B=错误!,由B ⊆A得错误!=3或错误!=5,所以a=错误!或a=错误!.综上所述,实数a的取值集合为错误!错误!(1)解方程x2—8x+15=0,求出A,当a=错误!时,求出B,由此能判定集合A与B的关系.(2)分以下两种情况讨论,求实数a的取值集合.1B=∅,此时a=0;2B≠∅,此时a≠0.易错点忽略空集的特殊性致误例设M={x|x2—2x—3=0},N={x|ax—1=0},若N⊆M,求所有满足条件的a 的取值集合.【错解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N={—1}或{3}.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【正解】由N⊆M,M={x|x2—2x—3=0}={—1,3},得N=∅或N={—1}或N={3}.当N=∅时,ax—1=0无解,即a=0.当N={—1}时,由错误!=—1,得a=—1.当N={3}时,由错误!=3,得a=错误!.故满足条件的a的取值集合为错误!.【易错警示】错误原因纠错心得错解忽略了N=∅这种情况空集是任何集合的子集,解这类问题时,一定要注意“空集优先”的原则课时作业2一、选择题1.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B2.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1B.—1C.±1D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C3.已知集合A={—1,0,1},则含有元素0的A的子集的个数为()A.2B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,—1},{—1,0,1},共4个.答案:B4.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题5.已知集合:(1){0};(2){∅};(3){x|3m<x<m};(4){x|a+2<x<a};(5){x|x2+2x+5=0,x∈R}.其中,一定表示空集的是________(填序号).解析:集合(1)中有元素0,集合(2)中有元素∅,它们不是空集;对于集合(3),当m<0时,m>3m,不是空集;在集合(4)中,不论a取何值,a+2总是大于a,故集合(4)是空集;对于集合(5),x2+2x+5=0在实数范围内无解,故为空集.答案:(4)(5)6.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:367.若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:5三、解答题8.已知{1,2}⊆A{1,2,3,4},写出所有满足条件的集合A.解析:∵{1,2}⊆A,∴1∈A,2∈A.又∵A{1,2,3,4},∴集合A中还可以有3,4中的一个,即集合A可以是{1,2},{1,2,3},{1,2,4}.9.已知M={2,a,b},N={2a,2,b2},且M=N,试求a与b的值.解析:方法一根据集合中元素的互异性,有错误!或错误!解得错误!或错误!或错误!再根据集合中元素的互异性,得错误!或错误!方法二∵两个集合相同,则其中的对应元素相同.∴错误!即错误!∵集合中的元素互异,∴a,b不能同时为零.当b≠0时,由2得a=0或b=错误!.当a=0时,由1得b=1或b=0(舍去).当b=错误!时,由1得a=错误!.当b=0时,a=0(舍去).∴错误!或错误![尖子生题库]10.已知集合A={x|—3≤x≤4},B={x|2m—1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B⊆A,(1)当B=∅时,m+1≤2m—1,解得m≥2.(2)当B≠∅时,有错误!解得—1≤m<2.综上得m≥—1.即实数m的取值范围为[—1,+∞).。
高中数学 第一章 集合与常用逻辑用语 1.1.2 第2课时 集合的表示精品练习(含解析)新人教A版必
第2课时集合的表示第2课时 集合的表示必备知识基础练1.解析:(1)因为15的正约数为1,3,5,15, 所以所求集合可表示为{1,3,5,15}. (2)因为不大于10的正偶数有2,4,6,8,10, 所以所求集合可表示为{2,4,6,8,10}.(3)解方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0,得⎩⎪⎨⎪⎧x =-3,y =0.所以所求集合可表示为{(-3,0)}.2.解析:(1)被5整除的数可用式子x =5n ,n ∈Z 表示,所以所有被5整除的数的集合可表示为{x |x =5n ,n ∈Z }.(2)由6x 2-5x +1=0解得x =12或x =13,所以方程6x 2-5x +1=0的实数解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =12或x =13. (3)直线y =x 上除去原点,即x ≠0,所以直线y =x 上去掉原点的点的集合为{(x ,y )|y =x ,且x ≠0}.3.解析:选项A 中应是xy <0;选项B 的本意是想用描述法表示,但不符合描述法的规X 格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{ }”与“全体”意思重复.答案:D4.解析:∵x ∈Z 且86-x ∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x =0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x=4时,4∈N ;当x =5时,8∈N .综上可知A ={-2,2,4,5}.答案:{-2,2,4,5}5.解析:当t =-2时,x =4;当t =2时,x =4;当t =3时,x =9; 当t =4时,x =16;∴B ={4,9,16}. 答案:{4,9,16}6.解析:∵-2∈A ,∴-2k +2>0,得k <1. 答案:k <1关键能力综合练1.解析:∵x 2-2x +1=0,即(x -1)2=0,∴x =1,选B. 答案:B2.解析:先求出方程组的解⎩⎪⎨⎪⎧x =2,y =1,再写成集合的形式.注意集合的元素是有序实数对(2,1),故选C.答案:C3.解析:由于集合中的元素具有无序性,故{3,2}={2,3}. 答案:B4.解析:若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以-2∈M .故选A.答案:A5.解析:∵3=31,观察集合中的元素,不难发现,若令分母为n ,则分子为2n +1,且n ∈N *,∴集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2n +1n ,n ∈N *. 答案:D6.解析:①当a =0时,原方程为16-8x =0. ∴x =2,此时A ={2};②当a ≠0时,由集合A 中只有一个元素, ∴方程ax 2-8x +16=0有两个相等实根, 则Δ=64-64a =0,即a =1. 从而x 1=x 2=4,∴集合A ={4}. 综上所述,实数a 的值为0或1.故选D. 答案:D7.解析:由题知,a ∈A ,a ∈B ,所以a 是方程组⎩⎪⎨⎪⎧y =2x +1,y =x +3的解,解得⎩⎪⎨⎪⎧x =2,y =5,即a 为(2,5).答案:(2,5)8.解析:∵x ∈A ,∴当x =-1时,y =|x |=1; 当x =0时,y =|x |=0;当x =1时,y =|x |=1. ∴B ={0,1}. 答案:{0,1}9.解析:由于2的倒数12不在集合A 中,故集合A 不是可倒数集.若一个元素a ∈A ,则1a ∈A .若集合中有三个元素,故必有一个元素a =1a ,即a =±1,故可取的集合有⎩⎨⎧⎭⎬⎫1,2,12,⎩⎨⎧⎭⎬⎫-1,3,13等.答案:不是⎩⎨⎧⎭⎬⎫1,2,12 10.解析:(1)由x 2(x +1)=0,得x =-1或x =0,所以该集合可表示为{-1,0}.故该集合为有限集.(2)平面直角坐标系中,不在第一、三象限内的点组成的集合可表示为{(x ,y )|xy ≤0,x ∈R ,y ∈R }.故该集合为无限集.(3)自然数的平方组成的集合用列举法可表示为{0,12,22,32,…},用描述法可表示为{x |x =n 2,n ∈N }.故该集合为无限集.学科素养升级练1.解析:由题意易知集合A 表示奇数集,集合B 表示偶数集.又由x 1,x 2∈A ,x 3∈B ,则x 1,x 2是奇数,x 3是偶数.对于A ,两个奇数的积为奇数,即x 1x 2∈A ,故A 正确;对于B ,一奇一偶两个数的积为偶数,即x 2x 3∈B ,故B 正确;对于C ,两个奇数的和为偶数,即x 1+x 2∈B ,故C 正确;对于D ,两个奇数与一个偶数的和为偶数,即x 1+x 2+x 3∈B ,故D 错误.答案:ABC2.解析:对于①,在平面直角坐标系中,第一象限内的点的横、纵坐标均大于0,且集合中的代表元素为点(x ,y ),所以①正确;对于②,方程x -2+|y +2|=0的解为⎩⎪⎨⎪⎧x =2,y =-2,解集为{(2,-2)}或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ x =2y =-2, 所以②不正确;对于③,因为集合{y |y =x 2-1,x ∈R }等于集合{y |y ≥-1},集合{y |y =x -1,x ∈R }等于R ,故这两个集合不相等,所以③正确.答案:①③3.解析:集合A 是方程x 2+ax +1=0的解构成的集合.(1)当a =2时,x 2+2x +1=0,即(x +1)2=0,x =-1,所以A ={-1}.(2)A 中只有一个元素,即方程x 2+ax +1=0有两个相等实根,由Δ=a 2-4=0,得a =±2.所以a =±2时,集合A 中只有一个元素.(3)A 中有两个元素,即方程x 2+ax +1=0有两个不相等的实根,由Δ=a 2-4>0,得a <-2或a >2.所以a <-2或a >2时,集合A 中有两个元素.。
人教A版高中数学必修第一册第一章集合与常用逻辑用语1.4《充要条件》课件
知识点 充要条件
1.如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有 p⇒_q, 又有 q⇒p,就记作 p⇔q ,此时,p既是q的充分条件,也是q的必要条件, 我们说p是q的充分必要条件,简称为 充要 条件. 2.如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p⇔q, 那么p与q互为 充要 条件.
证明 必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x0,
则 x20+2ax0+b2=0,x20+2cx0-b2=0. 两式相减,得 x0=c-b2a, 将此式代入 x20+2ax0+b2=0,
可得b2+c2=a2,故∠A=90°.
充分性:∵∠A=90°,∴b2=a2-c2.
反思 感悟
充要条件证明的两个思路 (1)直接法:证明p是q的充要条件,第一要明确p是条件,q是 结论;其次推证p⇒q是证明充分性,推证q⇒p是证明必要性. (2)集合思想:记p:A={x|p(x)},q:B={x|q(x)},若A=B,则 p与q互为充要条件.
三、充要条件的应用
例3 已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的必要不 充分条件,求实数m的取值范围.
故p是q的必要不充分条件.
3.△ABC是锐角三角形是∠ABC为锐角的_充__分__不__必__要___条件. 4.若p是q的充要条件,q是r的充要条件,则p是r的__充__要___条件.
解析 因为p⇔q,q⇔r,所以p⇔r, 所以p是r的充要条件
பைடு நூலகம் 题型探究
PART TWO
一、充分、必要、充要条件的判断
解 p:-2≤x≤10,q:1-m≤x≤1+m(m>0). 因为p是q的必要不充分条件, 所以q是p的充分不必要条件, 即{x|1-m≤x≤1+m} {x|-2≤x≤10},
高中数学新课标人教A版必修第一二册教材解读〖第一章集合与常用逻辑用语章整体解读〗
第一章集合与常用逻辑用语集合是刻画一类事物的语言和工具,使用集合语言可以简洁、准确地表述数学的研究对象,提升数学抽象素养.常用逻辑用语是数学语言的重要组成部分,是数学表达和交流的工具,是逻辑思维的基本语言,使用常用逻辑用语表达数学对象、进行数学推理,可以提高交流的严谨性与准确性,提升逻辑推理素养.《课程标准(2021年版)》将集合与常用逻辑用语作为高中数学课程的预备知识,要求学生用集合语言和常用逻辑用语梳理、表达学过的数学内容,实现从具体的初中数学知识向较为抽象的高中数学知识的过渡,为高中数学学习做好知识与技能、方法与习惯、能力与态度方面的准备.一、本章内容安排学生在小学和初中已经接触过一些集合,如各种数集、不等式的解集、点集等.以此为基础,高中阶段系统安排了集合的初步知识,包括集合的含义、关系与运算,帮助学生使用集合的语言简洁、准确地表述数学的研究对象.常用逻辑用语也是基于初中学习过的命题等知识,在高中阶段继续学习充分条件、必要条件、充要条件和量词,并将它们相联系,加强“如何严谨准确地进行数学表述”,让学生逐渐习惯用数学的思维和符号表述、研究数学结论.本章知识结构如下:二、选取典型数学实例和命题,回顾旧知、学习新知在初中,学生接触的集合与常用逻辑用语知识较为零散;在高中,学生首次系统学习这些表述数学内容的语言和工具.数学语言虽然简洁、准确,但是也相对抽象,教科书的任务就是需要通过这些抽象的数学语言的学习,提升学生数学表达的抽象层次,从而做好初高中数学学习的过渡.具体来说,集合的学习起点是之前学习过的数集、解集、点集等,如今要从直观到抽象,系统学习集合的初步知识;逻辑用语的学习起点是之前学习过的命题,如今要从特殊到一般,学习一些逻辑用语的形式化表达.如何从直观到抽象,从特殊到一般?教科书通过选取典型数学实例和命题,搭建初高中过渡的桥梁,从回顾旧知到学习新知.在集合中,教科书选取了丰富的实例,既涵盖了数、方程、不等式、函数、几何图形等数学领域,也包含了贴近学生生活的实际问题.例如,引入元素与集合概念的6个实例,既有偶数集、正方形集、二次方程解集,又有学生集、四大洋集等.针对不同知识的特点,选取典型的实例帮助学生理解相关知识.例如,对于集合中元素的“确定性”,教科书选取了实例“较小的数”“高中学生中的游泳能手”;对于描述法,通过表示不等式-7<3的解集来体现引入的必要性;等等.在常用逻辑用语中,无论是充分条件与必要条件,还是全称量词与存在量词,都是在回顾命题的基础上,选取初中典型的数学命题,学习新知识.特别是充分条件、必要条件、充要条件和判定定理、性质定理、数学定义之间的关系,例题中选取了三角形相似、四边形为菱形、四边形是平行四边形,习题中选取了三角形全等、勾股定理等典型命题,并用“四边形是平行四边形”设置三个探究栏目,详细分析、说明各种关系.三、类比数的研究,学习集合,提升数学抽象素养数学知识包括数学的概念、公式、法则、定义、定理等及由其内容所反映的数学思想方法.在集合中,教科书除了介绍集合的基本知识,还特别注意指引学生“如何研究一个数学对象”,即引入一个新的数学对象后,需要研究些什么,研究方法是什么等.事实上,这是整套教科书贯穿始终的编写理念之一.集合的研究方法,主要是“类比”,类比的对象是学生非常熟悉的“数”,遵循数的研究路径(定义一关系一运算)就获得了集合需要研究的内容(关系和运算).因此,教科书在12节和13节,通过提出引导性的问题,指引学生发现和提出研究问题;通过设置观察栏目,指引学生类比数的大小关系和运算,联想集合的基本关系和运算.由此,让学生在运用数学思维方法(如概括、类比、联想等)的过程中,提高数学思维能力,初步掌握数学研究方法.集合语言是数学的基本语言,它能简洁、准确地表述数学的研究对象,表达和交流数学问题.掌握语言的最好的方法就是使用,因此,教科书在本章分三个层次安排集合语言的使用:一是读懂问题中的集合概念和符号;二是在处理问题时,根据需要运用集合语言进行表述;三是创设情境,根据情境需求进行三种语言(自然语言、图形语言、符号语言)的转换.通过这样进阶式的安排,让学生逐渐熟悉集合语言的抽象性,积累数学抽象的经验,从而提升数学抽象素养.在教学中,也建议教师多选取一些例子,创设使用语言的情境,同时让学生自己举些例子,互相表达和交流.四、联系典型数学命题,学习逻辑用语,提升逻辑推理素养相对于初中的数学知识,常用逻辑用语这部分内容比较抽象,对学生的逻辑推理、数学语言的运用等能力要求较高,是学生高中阶段数学学习的一个难点.为了降低学生的认知难度,教科书先从初中学习过的一些数学命题出发,分析这些命题中条件和结论的关系,由此引入充分条件、必要条件和充要条件的概念.然后,通过一些熟悉的数学实例,让学生辨析哪些条件是充分不必要的,哪些条件是必要不充分的,哪些条件是充分必要的,哪些条件是既不充分又不必要的,加深学生对这三个常用逻辑用语的认识,提升他们的逻辑推理素养.同时,通过联系初中的一些典型数学命题,让学生理解判定定理与充分条件、性质定理与必要条件,以及数学定义和充要条件之间的关系.另外,教科书在介绍全称量词和存在量词之前,先回顾命题的概念,然后通过判断一些含有变量的陈述句是否为命题,让学生体会到对一些非命题的陈述句,如果用一个短语对变量的取值范围进行限定,就可以得到一个命题,在此基础上比较自然地引入全称量词和全称量词命题、存在量词和存在量词命题的概念.对一个数学命题进行否定,可以得到一个新的命题,称为原命题的否定,它与原命题一真一假.教科书通过对数学中一些简单的含有一个量词的全称量词命题和存在量词命题进行否定,分析得到的新命题的特点,引导学生归纳出全称量词命题和存在量词命题的否定的一般形式,让学生学会如何正确使用存在量词对全称量词命题进行否定,以及如何正确使用全称量词对存在量词命题进行否定. 同时,教科书还通过设置拓广探索的习题,让学生根据一些熟知的数学事实,写出给定结论成立的一个充分必要条件或写出一个全称量词命题或存在量词命题,并加以证明,让学生体会逻辑用语在表述和论证中的作用.在教学中,建议教师为学生提供用逻辑用语梳理初中典型命题的机会,让学生在使用语言的过程中突破学习难点,并逐渐习惯用常用逻辑用语表述和交流数学对象.五、基于知识学习,关注数学学习心理和方法的过渡 相对于义务教育阶段的数学知识,高中阶段的数学知识较为抽象,所以学生不仅感到数学知识变难了,而且还会有无从下手、不知如何学习的感觉.因此,初中到高中的过渡,一是知识量的增加和知识难度的提高,二是学习心理的调整和学习方法的掌握. 数学语言虽然简洁、准确,但是符号较多、形式化程度高.在初次接触时,学生难以体会到它们的作用,容易产生为什么要学的困惑.因此,教科书编写时特别关注学生数学学习心理的调整和学习方法的引导.例如,地于为什么要学习集合,教科书设计了章引言中的问题“方程X 2=2在不同范围内的解”,其目的是希望学生意识到研究数学问题需要“明确研究对象、确定研究范围”,这就需要使用集合的语言和工具;对于为什么学习逻辑用语,教科书设计了各种情境的问题,让学生认识到形式化可以克服很多逻辑错误,如根据“x M ∀∈,()p x ”否定的一般形式为“x M ∃∈,()p x ⌝”,可以知道“所有的矩形都是平行四边形”的否定是“存在一个矩形,它不是平行四边形”,而不是“所有的矩形都不是平行四边形”;等等. 关于学习心理和学习方法,教科书在“主编寄语”“本册导引”“章引言”“节引言”“小结”等处或有明确的论述,或有隐形的提示,建议教学时既能总揽全局,从全套教科书到每一节;也能细致入微,充分利用一篇寄语,一句引言让学生体会数学的作用和学习方法,引领学生以良好的心理状态进入数学学习,以有效的学习方法学习数学.。
新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 习题课件(精选配套习题,含解析)
A.1
B.2
C.3
D.4
解析:方程 x2-5x+6=0 的解为 x=2 或 x=3,x2-x-2=0 的解为 x=2 或 x=-1,所以集合 M 中含有 3 个元素.
4.设x∈N,且1x∈N,则x的值可能是( B )
A.0
B.1
C.-1
D.0或1
解析:∵-1∉N,∴排除C;0∈N,而 10 无意义,排除A、D, 故选B.
——能力提升—— 14.若11-+aa∈A,且集合 A 中只含有一个元素 a,则 a 的值为 ______-__1_±__2___.
解析:由题意,得11- +aa=a, ∴a2+2a-1=0且a≠-1,∴a=-1± 2.
15.已知数集 A 满足条件:若 a∈A,则1-1 a∈A(a≠1),如果 a=2,试求出 A 中的所有元素.
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
解析:根据集合中元素的互异性可知,一定不是等腰三角形.
8.有下列说法:
①集合 N 中最小的数为 1;②若-a∈N,则 a∈N;③若 a∈
N,b∈N,则 a+b 的最小值为 2;④所有小的正数组成一个集合.
其中正确命题的个数是( A )
A.0
解析:深圳不是省会城市,而广州是广东省的省会.
10.设直线 y=2x+3 上的点集为 P,点(2,7)与点集 P 的关系 为(2,7)___∈__ P(填“∈”或“∉”).
解析:直线 y=2x+3 上的点的横坐标 x 和纵坐标 y 满足关系: y=2x+3,即只要具备此关系的点就在直线上.由于当 x=2 时,y =2×2+3=7,∴(2,7)∈P.
(2)不能.理由:若-5 为集合 A 中的元素,则 a-3=-5 或 2a-1=-5.
人教A版高中数学选修1-1《一章 常用逻辑用语 “且”“或”“非”与“交”“并”“补”》赛课课件_0
(2)﹁p:3 2 ;
∵p是假命题, ∴ ﹁p是真命题.
(3)﹁p:空集不是集合A的子集.
∵ p是真命题, ∴ ﹁p是假命题.
思考:否命题与命题的否定的区别?
(1)否命题:否定条件,也否定结论. (2)命题的否定:只否定结论,不否定条件. (3)原命题: 若 p , 则 q .
则∆=16(m-2)2-16<0,
即1<m<3 :1 m 3
设p:方程x2+mx+1=0有两个不等的负根,q: 方 程 4x2+4(m-2)x+1=0 无 实 根 . 若 p 或 q 为 真,p且q为假,求m的取值范围.
p或q为真,则p,q至少一个为真,又p且q为假, 则p,q至少一个为假
真
真 真 假
一般地,我们规定:
当p,q两个命题中有一个命题是真命 题时,p∨q是真命题;当p,q两个命题都 是假命题时,p∨q是假命题。
p
p
q p∨q
q
真真真
真假真 假真真
假假假
有真或必真.
例3:判断下列命题的真假: (1)2≤2; (2)集合A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的
解: (1)p∧q:平行四边形的对角线 互相平分且相等
由于p是真命题,q是假命题, 所以p∧q是假命题。
(2)p:菱形的对角线互相垂直, q:菱形的对角线互相平分
解: (2)p∧q:菱形的对角线互相垂 直且平分
由于p是真命题,q是真命题, 所以p∧q是真命题。
(3)p:35是15的倍数, q: 35是7的倍数
人教A版高中数学选修1-1 教师用书
第一章常用逻辑用语1.1命题及其关系1.1.1命题目标导学1.了解命题的有关概念.2.会判断命题的真假.3.理解若p,则q形式的命题的条件和结论.能指出此类命题的条件和结论.‖知识梳理‖1.命题的概念一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题的分类判断为真的语句为真命题,判断为假的语句为假命题.3.命题的结构命题的结构形式是“若p,则q”,其中p是条件,q是结论.1.对于命题概念的理解(1)并不是任何语句都是命题,一个语句是命题应具备两个条件:①该语句是陈述句;②能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有字母变量的语句,根据字母的取值范围,若能判断真假,则是命题;若不能判断真假,则不是命题.2.命题的结构形式(1)在数学中,一般用小写字母p,q,r,…等表示命题.如命题p:2是无理数;命题q:π是有理数.(2)常见的命题形式为:“若p,则q”,其中p称为命题的条件,q称为命题的结论.当一个命题不是“若p,则q”的形式时,为了找出命题的条件和结论,可以对命题改写为“若p,则q”的形式.如命题“菱形的对角线互相垂直且平分”,可以改写为:“若一个四边形是菱形,则它的对角线互相垂直且平分”.题型一命题及其真假的判断判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)垂直于同一直线的两条直线必平行吗?(2)x2+4x+5>0(x∈R);(3)x2+3x-2=0;(4)一个数不是正数就是负数;(5)4是集合{1,2,3,4}中的元素;(6)求证y=sin 2x的最小正周期为π.【思路探索】解答本题,首先要根据命题的概念,判断是否是命题,若是,再根据条件和结论的逻辑关系判断真假.【解】(1)是疑问句,不是命题.(2)是命题.因为当x∈R时,x2+4x+5=(x+2)2+1>0恒成立,可判断真假,所以是命题,而且是真命题.(3)不是命题.因为语句中含有变量x,在没给定x的值之前,无法判断语句的真假,所以不是命题.(4)是命题.因为数0既不是正数也不是负数,所以是假命题.(5)是命题.因为4∈{1,2,3,4},且是真命题.(6)是祈使句,不是命题.[名师点拨]判断一个语句是否是命题,关键在于能否判断其真假.一般地,陈述句“π是无理数”,反意疑问句“难道矩形不是平行四边形吗?”都是命题;而祈使句“求证2是无理数”,疑问句“你是高一的学生吗?”,感叹句等都不是命题.(2019·陆良八中月考)下面命题中是真命题的是() A.函数y=sin2x的最小正周期是2πB.等差数列一定是单调数列C.直线y=ax+a过定点(-1,0)D .在△ABC 中,若AB →·BC →>0,则角B 为锐角解析:A 中,y =sin 2x =12-12cos 2x ,周期T =π,A 为假命题;B 中,当公差为0时,等差数列为常数列,B 为假命题;D 中,若AB→·BC →>0,则AB →与BC →的夹角为锐角,角B 为钝角,D 为假命题,故C 正确.答案:C题型二 命题的结构形式把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)当x 2-2x -3=0时,x =-1或x =3;(3)有两个内角之和大于90°的三角形是锐角三角形;(4)实数的平方是非负数;(5)平行于同一平面的两条直线互相平行.【思路探索】 本例所给的命题都不具备“若p ,则q ”的形式,解决这类题型既要找准命题的条件和结论,还要注意表述的完整性.【解】 (1)若ac >bc ,则a >b ,是假命题.(2)若x 2-2x -3=0,则x =-1或x =3,是真命题.(3)若一个三角形中,有两个内角之和大于90°,则这个三角形是锐角三角形,是假命题.(4)若一个数是实数,则它的平方是非负数,是真命题.(5)若两条直线平行于同一个平面,则它们互相平行,是假命题.[名 师 点 拨](1)把命题改写成“若p ,则q ”(或“如果p ,那么q ”)的形式,其中p 为命题的条件,q 为命题的结论,要注意条件及结论的完整性,将条件写在前面,结论写在后面.“若p ,则q ”是原来命题的另一种叙述形式,它的真假性等同于原来的命题.(2)不要认为假命题没有条件和结论,对于一个命题无论是真命题还是假命题,它必须由条件和结论两个部分组成,只是有些命题的条件或结论不十分明显.(3)判断一个命题的真假.“若p ,则q ”为真命题,则需要由p 经过严格推理得出q.“若p,则q”为假命题,只需举出一个反例说明即可.把下列命题改写成“若p,则q”的形式,并判断其真假.(1)能被9整除的数是偶数;(2)当x2+(y-1)2=0时,有x=0,y=1;(3)如果a>1, 那么函数f(x)=(a-1)x是增函数.解:(1)若一个数能被9整除,则这个数是偶数,是假命题.(2)若x2+(y-1)2=0,则x=0,y=1,是真命题.(3)若a>1,则函数f(x)=(a-1)x是增函数,是假命题.1.下列语句为命题的个数有()①一个数不是正数就是负数;②梯形是不是平面图形呢?③22 019是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.A.1个B.2个C.3个D.4个解析:①④是命题,故选B.答案:B2.(2019·莆田月考)下列命题中是假命题的是()A.若a·b=0,则a⊥b(a≠0,b≠0)B.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析:B中两个向量模相等,方向不一定相同,故B为假命题.答案:B3.(2019·杭高期末)已知α,β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是()A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m⊂α,n⊂α,l⊥n,l⊥m,则l⊥αC.若m∥α,n⊥β且α⊥β,则m⊥nD.若l⊥α且l⊥β,则α∥β解析:A中,α与β有可能平行,A错;B中,m与n不一定相交,B错;C 中,m与n的关系不确定,C错;D中,垂直于同一条直线的两个平面互相平行,D正确.故选D.答案:D4.指出下列命题中的条件p和结论q.(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.解:(1)条件p:整数a能被2整除,结论q:整数a是偶数.(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.5.把下列命题改写为“若p,则q”的形式,并判断其真假.(1)函数y=x3是奇函数;(2)奇数不能被2整除;(3)与同一直线平行的两个平面平行;(4)已知x,y是正整数,当y=x+1时,y=3,x=2.解:(1)若一个函数是y=x3,则它是奇函数,它是真命题.(2)若一个数是奇数,则它不能被2整除,它是真命题.(3)若两个平面都与同一直线平行,则这两个平面平行,它是假命题.(4)已知x,y是正整数,若y=x+1,则y=3,x=2,它是假命题.一、选择题1.下列语句中命题的个数是()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0 B.1C.2 D.3解析:①③④是命题,②不是命题.答案:D2.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a >0C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB→·BC →>0,则△ABC 是锐角三角形 解析:B 正确,由韦达定理知,x 1x 2=c a >0.答案:B3.(2019·商丘联考)给出下列命题:①若直线l ⊥平面α,直线m ⊥平面α,则l ⊥m ;②若a ,b 都是正实数,则a +b ≥2ab ;③若x 2>x ,则x >1;④函数y =x 3是指数函数.其中假命题为( )A .①③B .①②③C .①③④D .①④解析:①中,l ∥m ,①错;②为真命题;③中,由x 2>x ,得x >1或x <0,③错;④中,y =x 3是幂函数,④错.故选C.答案:C4.(2019·海林月考)已知命题“非空集合M 中的元素都是集合P 的元素”是假命题,那么下列命题:①M 中的元素都不是P 的元素;②M 中有不属于P 的元素;③M 中有P 的元素;④M 中的元素不都是P 的元素.其中真命题的个数为( )A .1B .2C .3D .4解析:“非空集合M 中的元素都是集合P 的元素”是假命题,则集合M 中有不属于P 的元素,故②④正确,故选B.答案:B5.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“相等”和“直角”B .语句“当a >4时,方程x 2-4x +a =0有实根”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题解析:D 中,当a >4时,判别式Δ=16-4a <0,此方程无实根,故是假命题. 答案:D6.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:对于①,设球的半径为R ,则43π⎝ ⎛⎭⎪⎫R 23=18·43πR 3,故体积缩小到原来的18,故①正确;对于②,可举例1,3,5和3,3,3两组数据的平均数相等,但它们的标准差不同,故②错;对于③,圆心(0,0)到直线x +y +1=0的距离d =|0+0+1|2=22,等于圆x 2+y 2=12的半径,所以直线与圆相切,故③正确.答案:C二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗;③x ,y 都是无理数,则x +y 是无理数;④若直线l 不在平面α内,则直线l 与平面α平行;⑤60x +9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句,所以②不是命题;因为⑤中自变量x 的值不确定,所以无法判断其真假,所以⑤不是命题;因为⑥是祈使句,所以不是命题.①③④是命题.答案:①③④8.(2019·长春月考)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π;②终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ α=k π2,k ∈Z ; ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点;④把函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin 2x 的图象; ⑤函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是减函数. 其中,真命题的序号是________(写出所有真命题的序号).解析:由y =sin 4x -cos 4x =sin 2x -cos 2x =-cos 2x ,得T =2π2=π,①为真命题;终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =π2+k π,k ∈Z ,②为假命题;在同一坐标系中,函数y =sin x 的图象和y =x 的图象只有一个公共点,③为假命题;把函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=3sin 2x 的图象,④为真命题;函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是增函数,⑤为假命题,故真命题有①④. 答案:①④9.若命题“ax 2-2ax +3>2”是真命题,则实数a 的取值范围是________. 解析:令f (x )=ax 2-2ax +1,当a =0时,f (x )=1>0成立;当a ≠0时,要使f (x )>0恒成立,只要Δ=(-2a )2-4a =4a (a -1)<0,且a >0,即0<a <1.综上知,a 的取值范围是[0,1).答案:[0,1)三、解答题10.将下列命题改写成“若p ,则q ”的形式,并判断其真假.(1)当ab =0时,a =0或b =0;(2)等腰三角形的两个底角相等;(3)末位数字是0或5的整数,能被5整除;(4)方程x 2+x +1=0有两个实数根.解:(1)若ab =0,则a =0或b =0,是真命题.(2)若一个三角形是等腰三角形,则两个底角相等,是真命题.(3)若一个整数的末位数字是0或5,则能被5整除,是真命题.(4)若一个方程为x 2+x +1=0,则它有两个实数根,是假命题.11.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解:由x 2-2x -2≥1,得x 2-2x -3≥0,解得x ≤-1或x ≥3,即命题p :x ≤-1或x ≥3.而命题q :0<x <4,由命题p 是真命题,命题q 是假命题,得⎩⎨⎧x ≤-1或x ≥3,x ≤0或x ≥4,所以x ≤-1或x ≥4.故实数x 的取值范围是(-∞,-1]∪[4,+∞).12.已知命题A :2x -1>a ;命题B :x >3.试确定实数a 的一个值,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若A 为条件,则命题“若p ,则q ”为“若x >1+a 2,则x >3”,由命题为真命题,得1+a 2≥3,即a ≥5.若B 为条件,则命题“若p ,则q ”为“若x >3,则x >1+a 2”,由命题是真命题,得1+a 2≤3,即a ≤5.由以上分析知,取a =5,符合题意.13.(2019·上海七宝月考)已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是( )A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数解析:∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0]f (x )=cos x +sinx =2sin ⎝ ⎛⎭⎪⎫x +π4,f (x )在[-π,0]上不单调,D 为假命题,故选D. 答案:D1.1.2 四种命题1.1.3 四种命题间的相互关系目 标 导 学1.了解四种命题的概念.2.认识四种命题的结构形式,会写某命题的逆命题、否命题和逆否命题.3.认识四种命题之间的关系以及真假性之间的关系.4.能利用命题的等价性解决简单问题.‖知识梳理‖1.四种命题的概念名称栏目内容定义 表示形式 互逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题原命题为“若p ,则q ”;逆命题为“若q ,则p ” 互否命题 对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p ,则q ”;否命题为“若﹁p ,则﹁q ” 互为逆否对于两个命题,其中一个命题的条原命题为“若p ,则2.四种命题的相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.1.四种命题的表示形式一般地,用p 和q 分别表示一个命题的条件和结论,用﹁p 和﹁q 分别表示p 和q 的否定,于是四种命题的形式为:原命题:若p ,则q (p ⇒q );逆命题:若q ,则p (q ⇒p );否命题:若﹁p,则﹁q (﹁p ⇒﹁q );逆否命题:若﹁q ,则﹁p (﹁q ⇒﹁p ).注:命题的四种形式中,哪一个为原命题是相对的,而不是绝对的.2.命题的真假判断一个命题要么是真命题,要么是假命题,不能既真又假,也不能模棱两可,无法判断其真假.判断一个命题为真命题,需要逻辑推理(证明),判断一个命题是假命题,只需举出一个反例即可.在四种命题中,互为逆否的两个命题同真或同假,称为等价命题.原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题中真假命题的个数一定为偶数个.题型一四种命题的概念写出下列命题的逆命题、否命题、逆否命题.(1)若a<1,则方程x2+2x+a=0有实根;(2)若ab是正整数,则a,b都是正整数;(3)若a+5是有理数,则a是无理数.【思路探索】首先弄清楚原命题的条件和结论,再写出其逆命题、否命题、逆否命题.【解】(1)原命题的逆命题为:若方程x2+2x+a=0有实根,则a<1.否命题为:若a≥1,则方程x2+2x+a=0没有实根.逆否命题为:若方程x2+2x+a=0没有实根,则a≥1.(2)原命题的逆命题为:若a,b都是正整数,则ab是正整数;否命题为:若ab不是正整数,则a,b不都是正整数;逆否命题为:若a,b不都是正整数,则ab不是正整数.(3)原命题的逆命题为:若a是无理数,则a+5是有理数.否命题为:若a+ 5 不是有理数,则a不是无理数.逆否命题为:若a不是无理数,则a+5不是有理数.[名师点拨]若一个命题不是“若p,则q”的形式,则先改写为“若p,则q”的形式,然后再按定义写出其逆命题、否命题和逆否命题.(2019·江门月考)“若a≥2,则a2≥4”的否命题是() A.若a≤2,则a2≤4B.若a≥2,则a2≤4C.若a<2,则a2<4D.若a≥2,则a2<4解析:否命题既否定条件,又否定结论,所以“若a≥2,则a2≥4”的否命题为“若a<2,则a2<4”,故选C.答案:C题型二四种命题的相互关系下列说法中,不正确的是()A.“若p,则q”与“若q,则p”互为逆命题B.“若﹁p,则﹁q”与“若q,则p”互为逆否命题C.“若﹁p,则﹁q”是“若p,则q”的逆否命题D.“若﹁p,则﹁q”与“若p,则q”互为否命题【思路探索】题目中每个选项都给了两个命题,应从四种命题的概念入手进行判断.【解析】根据四种命题的概念知,A、B、D正确;C错误.【答案】C[名师点拨]原命题:若p,则q,逆命题:若q,则p,否命题:若﹁p,则﹁q,逆否命题:若﹁q,则﹁p,熟记四种命题的形式,是解决此类问题的关键.若命题A的否命题为B,命题A的逆否命题为C,则B与C的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:设命题A为:“若p,则q”,依题意得,命题B为:“若﹁p,则﹁q”,命题C为:“若﹁q,则﹁p”,所以B与C为互逆命题.答案:A题型三四种命题的真假判断有下列四个命题:①“若b2=ac,则a,b,c成等比数列”的否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a,b是非零向量,若a·b>0,则a与b方向相同”的逆否命题;④“若x≤3,则x2-x-6>0”的逆否命题.其中为真命题的个数是()A.1B.2C.3D.4【思路探索】先正确的写出相对应的命题,再判断真假.也可以根据互为逆否命题同真同假直接进行判断.【解析】命题“若b2=ac,则a,b,c成等比数列”的逆命题为:“若a,b,c成等比数列,则b2=ac”,是真命题.因为逆命题与否命题等价,所以①正确;因为②中原命题的逆命题为:“若直线x+y=0与直线2x+my+1=0平行,则m=2”,是真命题,故②正确;对于③可考虑原命题.设a=(0,1),b=(1,1),则a·b=1>0,但a与b不同向,所以原命题为假命题,故③为假命题;④中命题“若x≤3,则x2-x+6>0”的逆否命题为:“若x2-x+6≤0,则x>3”,是假命题,故④为假命题.【答案】B[名师点拨](1)判断四种命题的真假,可以通过逻辑证明或举反例进行判断.(2)判断四种命题的真假可以利用真假性关系:原命题与逆否命题等价,逆命题与否命题等价,它们同真同假,在只要求判断真假的题目中,可以不一一写出逐个判断,利用等价性判断更为方便简捷.(2019·铜陵一中期中)下列命题中为真命题的是() A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:A中,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,为真命题;B中,命题“若x>1,则x2>1”的逆命题为“若x2>1,则x>1”,为假命题,所以其否命题为假命题;C中,命题的逆命题为“若x2+x-2=0,则x=1”,为假命题,所以其否命题为假命题;D中,命题“若x2>1,则x>1”为假命题,则逆否命题为假命题,故选A.答案:A题型四等价命题的应用判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.【思路探索】解法一:由已知命题,写出逆否命题,再判断真假;解法二:判断原命题的真假,即得逆否命题的真假.【解】解法一:原命题的逆否命题:已知a,x为实数,若a<1,则关于x 的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断过程如下:抛物线y=x2+(2a+1)x+a2+2开口向上,Δ=(2a+1)2-4(a2+2)=4a-7.若a<1,则4a-7<0.所以抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故逆否命题为真命题.解法二:判断原命题的真假.已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,得a≥74,从而a≥1成立.所以原命题为真命题.又因为原命题与其逆否命题等价,所以逆否命题为真命题.[名师点拨]由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的两个命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.已知奇函数f(x)是定义在R上的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0.证明:原命题的逆否命题是:若a+b<0,则f(a)+f(b)<0.∵a+b<0,∴a<-b.又∵f(x)在R上为增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b).∴f(a)<-f(b),即f(a)+f(b)<0.∴原命题的逆否命题为真命题.故原命题成立.1.(2019·分宜中学月考)命题“若a>b,则a-1>b-1”的否命题是() A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:否命题应同时否定条件和结论.答案:C2.命题“若p不正确,则q不正确”的逆命题的等价命题是() A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确解析:由于原命题的逆命题与否命题互为等价命题,故D正确.答案:D3.(2019·贵阳月考)下列有关命题的说法正确的是()A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.“若sin α=12,则α=π6”的逆否命题为真命题C.“若x+y=0,则x,y互为相反数”的逆命题为真命题D.命题“若cos x=cos y,则x=y”的逆否命题为真命题解析:C中,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.答案:C4.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有____________;互为否命题的有____________;互为逆否命题的有____________.解析:命题③可以改写为:若一个四边形是正方形,则它的四条边相等;命题④可以改写为:若一个四边形是圆内接四边形,则它的对角互补;命题⑤可以改写为:若一个四边形的对角不互补,则它不内接于圆.其中②和④,③和⑥互为逆命题;①和⑥,②和⑤互为否命题;①和③,④和⑤互为逆否命题.答案:②和④,③和⑥①和⑥,②和⑤①和③,④和⑤5.写出命题“如果|x-2|+(y-1)2=0,则x=2且y=1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:如果x=2且y=1,则|x-2|+(y-1)2=0.真命题.否命题:如果|x-2|+(y-1)2≠0,则x≠2或y≠1.真命题.逆否命题:如果x≠2或y≠1,则|x-2|+(y-1)2≠0.真命题.一、选择题1.下列说法中正确的是()A.若一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.若一个命题的否命题为真,则它的逆命题为真解析:一个命题的否命题与逆命题互为逆否命题,同真同假.答案:D2.与命题“若实数a>1,则函数y=a x是增函数”互为逆否命题的是() A.若实数a<1,则函数y=a x不是增函数B.若实数a≤1,则函数y=a x不是增函数C.若函数y=a x是增函数,则实数a>1D.若函数y=a x不是增函数,则实数a≤1解析:写逆否命题否定并交换条件和结论即可.答案:D3.有以下命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B =B,则A⊆B”的逆否命题.其中真命题为()A.①②B.②③C.④D.①②③解析:①②③显然正确;若A∩B=B,则B⊆A,原命题为假命题,故其逆否命题也为假命题.答案:D4.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是() A.真、真、真B.假、假、真C.真、真、假D.假、假、假解析:∵a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,∴原命题与其逆命题都是真命题,所以逆否命题与否命题也是真命题,故选A.答案:A5.下列有关命题的说法正确的是()A.“若x>1,则2x>1”的否命题为真命题B.“若cos β=1,则sin β=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0解析:在A中,“若x≤1,则2x≤1”,是假命题,故A不正确;在B中,“若sin β=0,则cos β=1”,是假命题,故B不正确;在C中,原命题为假命题,所以其逆否命题也为假命题,故C正确;在D中,由x>a⇒x>1,则a>1,故D不正确.答案:C6.下列判断中不正确的是()A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B .“矩形的两条对角线相等”的否命题为假命题C .“已知a ,b ,m ∈R ,若am 2<bm 2,则a <b ”的逆命题是真命题D .“若x ∈N *,则(x -1)2>0”是假命题解析:A 中原命题为真,故其逆否命题为真;B 中否命题为“若四边形不是矩形,则对角线不相等”为假命题;C 中逆命题为“已知a ,b ,m ∈R ,若a <b ,则am 2<bm 2”为假命题;D 中当x =1时,(x -1)2=0,是假命题.答案:C二、填空题7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:当m =3,n =4时,m >-n ,但m 2<n 2,故原命题为假命题,所以其逆否命题为假命题;当m =-4,n =3时,m 2>n 2,但m <-n ,故逆命题为假命题,所以其否命题为假命题,所以假命题的个数是3.答案:38.设有两个命题:p :关于x 的不等式mx 2+1≥0的解集是R ;q :函数f (x )=log m x 是减函数(m >0,且m =0,m ≥1).若这两个命题中有且仅有一个是真命题,则实数m 的取值范围是________. 解析:若p 为真,则m ≥0,若q 为真,则0<m <1,若p 与q 中一真一假,则实数m 的取值范围是m =0或m ≥1.答案:[1,+∞)∪{0}9.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是____________.解析:由题意得⎩⎨⎧1+2-m ≤0,4+4-m >0,∴3≤m <8. 答案:[3,8)三、解答题10.判断命题“若m >0,则方程x 2+2x -3m =0有实数根”的逆否命题的真假.解:∵m >0,∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.11.设M是一个命题,它的结论是q:x1或x2是方程x2+2x-3=0的两个根,M的逆否命题的结论是﹁p:x1+x2≠-2,或x1x2≠-3.(1)写出M;(2)写出M的逆命题、否命题、逆否命题.解:(1)设命题M表述为:若p,则q,那么由题意知,其中的结论q为:x1或x2是方程x2+2x-3=0的两个根.而条件p的否定形式﹁p为:x1+x2≠-2或x1x2≠-3,故﹁p的否定形式,即p为:x1+x2=-2且x1x2=-3.所以命题M为:若x1+x2=-2且x1x2=-3,则x1或x2是方程x2+2x-3=0的两个根.(2)M的逆命题为:若x1或x2是方程x2+2x-3=0的两个根,则x1+x2=-2且x1x2=-3.否命题为:若x1+x2≠-2或x1x2≠-3,则x1或x2不是方程x2+2x-3=0的两个根.逆否命题为:若x1或x2不是方程x2+2x-3=0的两个根,则x1+x2≠-2或x1x2≠-3.12.设p:m-2m-3≥2,q:关于x的不等式x2-6x+m2≤0的解集为空集,试确定m的值,使p与q同时成立.解:由m-2m-3≥2,得m-2m-3-2≥0,即m-4m-3≤0,∴3<m≤4,∴当3<m≤4时,p成立.∵关于x的不等式x2-6x+m2≤0的解集为空集.∴Δ=(-6)2-4m2<0,即m2>9,∴m<-3或m>3.∴当m<-3或m>3时,q成立.若p与q同时成立,则3<m≤4.即当3<m≤4时,使p与q同时成立.13.设△ABC的三边分别为a,b,c,在命题“若a2+b2≠c2,则△ABC不是直角三角形”及其逆命题中()A.原命题真,逆命题假B.原命题假,逆命题真C.两个命题都真D.两个命题都假解析:原命题“若a2+b2≠c2,则△ABC不是直角三角形”是假命题,而逆命题“若△ABC不是直角三角形,则a2+b2≠c2”是真命题.故选B.答案:B1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件目标导学1.理解充分条件、必要条件、充要条件的意义.2.会判断所给条件是充分条件、必要条件还是充要条件.3.会求或证明命题的充要条件.‖知识梳理‖1.推出关系一般地,命题“若p,则q”为真,可记作“p⇒q”;“若p,则q”为假,可记作p q.2.充分条件与必要条件一般地,如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.3.充要条件如果p⇒q且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件,记作p⇔q.同时q也是p的充要条件.1.对充分条件,必要条件的理解若p⇒q,则说p是q的充分条件,所谓“充分”,即要使q成立,有p成立就足够了;q是p的必要条件,所谓“必要”,即q是p成立的必不可少的条件,。
人教A版选修2-1高中数学《第一章常用逻辑用语复习课》ppt课件
【自主解答】(1)选C.由题意p与q均为假命题,故p∧q为假. (2)若p为真命题,则-2-a<1<a,解得a>1. 若q为真命题,则-2-a<2<a,解得a>2. 依题意得p与q一真一假,若p真q假,则 若p假q真,则
a 1 , a 2, , a 1 即1<a≤2. a 2,
即x2+mx+1>0恒成立有Δ=m2-4<0,所以-2<m<2.
所以当r(x)为真,s(x)为假时,m<- 2 ,
同时m≤-2或m≥2,即m≤-2. 当r(x)为假,s(x)为真时,m≥- 2 且-2<m<2,即综上,实数m的取值范围是m≤-2或2≤m<2. 2 ≤m<2.
【强化训练】 1.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四 个命题中,真命题的个数是( A.0 B.2 C.3 D.4 )
q是p的“必要不充分条件”; ②若“p⇔q”,则p是q的“充要条件”,同时q是p的“充要条件”; ③若p q,则p是q的“既不充分也不必要条件”,同时q是p的
“既不充分也不必要条件”.
(2)等价命题法 利用互为逆否的两个命题间的等价关系判断. (3)用集合法判断充分条件、必要条件 若p以集合A的形式出现,q以集合B的形式出现,即 A={x|p(x)},B={x|q(x)},则: ①若A=B,则p是q的充要条件; ②若A ③若B B,则p是q的充分不必要条件; A,则p是q的必要不充分条件;
【解析】选B.原命题为假命题,而逆命题“若A=B,则A⊆B”是 真命题,所以在四种命题中真命题有两个.
2.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标 原点”的( ) B.必要不充分条件 D.既不充分也不必要条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章常用逻辑用语
1.3简单的逻辑联结词(练案)
考试要求
⌝p
⌝与p的否命题;
p
2,掌握,,
∧∨⌝的真假性的判断,关键在于p与q的真假的判断.
p q p q p
基础训练
一、选择题:
1.如果命题“⌝(p∨q)”为假命题,则( )
A.p、q均为真命题
B.p、q均为假命题
C.p、q至少有一个为真命题
D.p、q中至多有一个为假命题
2.由下列各组命题构成“p∨q”“p∧q”“⌝p”形式的命题中,“p∨q”为真,“p∧q”为假,“⌝p”为真的是( )
A.p:3为偶数,q:4是奇数
B.p:3+2=6,q:5>3
C.p:a∈{a,b};q:{a}{a,b}
D.p:Q R;q:N=N
3.已知a与b均为单位向量,其夹角为θ,有下列四个命题
p 1:|a +b |>1⇔θ∈[0,2π3) p 2:|a +b |>1⇔θ∈(2π3
,π] p 3:|a -b |>1⇔θ∈[0,π3) p 4:|a -b |>1⇔θ∈(π3,π]
其中的真命题是( )
A .p 1,p 4
B .p 1,p 3
C .p 2,p 3
D .p 2,p 4
4.已知全集S =R ,A ⊆S ,B ⊆S ,若命题p :2∈A ∪B ,则命题“⌝p ”是( ) A.2∉A
B.2∈∁S B
C.2∉A ∩B
D.2∈∁U (A ∪B )
二、填空题
5.命题“若abc =0,则a 、b 、c 中至少有一个为零”的否定为:________,
否命题为:________.
6.命题p :方向相同的两个向量共线,命题q :方向相反的两个向量共线.
则命题:“p ∨q ”为________.
7.若p :不等式ax +b >0的解集为{x |x >-b a
},q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },且“p ∧q ”真命题,则a ,b 满足________.
8.已知条件p :(x +1)2>4,条件q :x >a ,且⌝p 是⌝q 的充分不必要条件, 则a 的取值范围是________.
三、解答题
9.分别写出下列各组命题构成的“p 或q ”“p 且q ”“非p ”形式的新命题,并判断其真假.
(1)p :3是9的约数,q :3是18的约数;
(2)p :方程x 2
+x -1=0的两实根符号相同, q :方程x 2+x -1=0的两实根绝对值相等;
(3)p :π是有理数,q :π是无理数.
10.已知c>0.设p:指数函数y=c x在R上单调递减;q:不等式x+|x-2c|>1的解集为R. 如果p或q为真,p且q为假,求c的取值范围.。