风力发电机低压穿越
风机低电压穿越标准
风机低电压穿越标准风机低电压穿越标准是风力发电系统中重要的技术要求和规范,旨在确保风力发电机组在电网故障或电压跌落时能够安全、稳定地运行。
下面将详细介绍风机低电压穿越标准的定义、目的、实现方法和实际应用。
一、定义风机低电压穿越标准是指风力发电机组在电网电压跌落时,能够保持并网运行,并且不发生停机或脱网等异常情况的能力要求。
在风力发电系统中,由于风速的不稳定性和电网的复杂性,经常会出现电网电压跌落的情况。
如果风力发电机组不能在低电压情况下保持稳定运行,将会对电网的稳定性和电力系统的可靠性造成严重影响。
因此,风机低电压穿越标准是衡量风力发电机组性能的重要指标之一。
二、目的风机低电压穿越标准的目的是为了确保风力发电机组在电网故障或电压跌落时能够持续供电,减少对电网的冲击和影响,同时避免风力发电机组的停机和脱网等情况发生,提高电力系统的可靠性和稳定性。
此外,风机低电压穿越标准还有助于保护风力发电机组的设备和部件,延长其使用寿命。
三、实现方法为了满足风机低电压穿越标准的要求,需要在风力发电机组的控制系统和结构设计等方面进行优化和完善。
以下是实现风机低电压穿越的常用方法:1.控制系统优化:通过对风力发电机组的控制系统进行优化,可以提高其在低电压情况下的运行稳定性。
例如,可以采用矢量控制方法,通过调节励磁电流来控制发电机的输出电压,使其在低电压情况下保持稳定运行。
2.增加储能装置:在风力发电机组中增加储能装置,如超级电容器、飞轮储能等,可以在电网故障或电压跌落时提供一定的电能支持,保证风力发电机组的正常运行。
3.采用变换器技术:通过采用变换器技术,可以实现对发电机输出电压的稳定控制,使其在低电压情况下保持稳定运行。
常用的变换器包括DC/DC变换器和AC/DC变换器等。
4.加强电网支撑:加强电网的支撑能力,提高电网的稳定性,可以有效降低电网故障和电压跌落的发生率,从而减少对风力发电机组的冲击和影响。
四、实际应用风机低电压穿越标准在实际应用中具有重要的意义和作用。
低电压穿越
低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的LVRT要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。
[1]低电压穿低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT 原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的 LVRT能力设计。
风电机组低电压穿越能力
低电压穿越能力(Low voltage ride through capability),就是指风力发电机的端电压降低到一定值的情况下不脱离电网而继续维持运行,甚至还可为系统提供一定无功以帮助系统恢复电压的能力。
具有低电压穿越能力的风力发电机可躲过保护动作时间,故障切除后恢复正常运行。
这可大大减少风电机组在故障时反复并网次数,减少对电网的冲击。
具有低电压穿越能力可保证风电机组在电网故障电压降低的情况下 ,尽最大可能与电网连接 ,保持发电运行能力,减少电网波动。
一般 230 kV 或更高电压等级线路的故障,在 6 个周波(120 ms)内被切除 ,电压恢复到正常水平的 15 %需要 100 ms ,恢复到正常水平的 75 %或者更高水平则需要1 s ,LVRT功能是要风电机组在故障电压短时间消失期间 ,保持持续运行的能力 ,如此后电压仍处在低压 ,风电机组将被低压保护装置切除。
低电压穿越能力的具体实现方式目前实现低电压穿越能力的方案一般有三种:1).采用了转子短路保护技术,2).引入新型拓扑结构,3).采用合理的励磁控制算法。
1、转子短路保护技术(crowbar电路)这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
2、新型拓扑结构包括以下几种:1).新型旁路系统 2).并联连接网侧变流器 3).串联连接网侧变流器3、采用新的励磁控制策略从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机能安全度越故障,同时变流器继续维持在安全工作状态。
风力发电低电压穿越技术浅析
风力发电低电压穿越技术浅析摘要:随着工业化的进程加快,能源问题日趋尖锐化,世界各国都在开发新的可再生能源,利用风力发电也在全球范围内日趋盛行。
我国的风电的装机容量在近几年内也获得了快速地增长。
低电压穿越是风里电网中的重要技术,我国的风力电网系统的快速发展对低电压穿越技术提出了新的要求和挑战。
关键词:风力发电系统;低电压;穿越1低电压穿越概述低电压穿越即LVRT,指在电网发生故障或者电压下跌时,在一定的下跌范围内风机能够保持并网不脱落,向电网提供无功功率,直到电网恢复正常,从而“穿越”这个低电压时间或低电压区域。
具体来说,当电压发生故障时,风发机组在这段时间内地控制不能引起电网的相位变化和功率波动。
电网电压发生跌落的这段时间,电网只管输电系统的短路电流而忽视风电场内部的短路电流。
可以这么说,低电压的穿越技术是决定一个风电系统技术高低的重要指标。
世界各个国家和地区根据其电网状况不同,对低电压穿越技术的指标提出的要求不同。
技术指标的制定往往为各国关注的焦点,特别是发达国家将其作为经济发展的战略重点。
德国的输电系统运营商E.on公司在2003年提出了低电压穿越的概念,2006年制定了并网标准。
由于德国北部的风机密度高,对LVRT的要求如下:当电压跌落至15%~45%时,要求风机一直提供无功支持,并能保持并网至少625ms。
而在电压跌落至90%以上,风机一直保持并网运行。
我国在2009年制订了风电场并网标准。
当电网跌落低于额定电压的1/5,风力发电机保持与电网相连接,并保持运行625ms,风电场并网点电压跌落后,三秒钟之内能还原至90%的额定电压。
2 LVRT技术在风力发电低压穿越中的应用(1)已建成风电场的改造对于已经建成的风电场,如果不具有LVRT能力,必须适应当前的并网规则要求,对风电场进行改造,目前有几种方案可供选择:在风电场采用动态无功补偿装置,动态提供风电机组暂态过程所消耗的无功,以恢复机端电压;安装可控串补效限制风电场机端输出电流,提高风电场机端电压;利用串联制动电阻在电网故障时提升风电机组端电压,并吸收过剩有功功率,进而提高风电场LVRT能力;安装超导储能装置,提高风电场机端电压。
风力发电机低电压穿越技术
什么是风力发电机低电压穿越技术定义2011/05/04 07:37:20来源:中国风力发电网我要投稿小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
低电压穿越(Low voltage ride through,LVRt)低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT曾称“低电压穿越”。
定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
一、风力发电机低电压穿越技术1、问题的提出对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。
在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。
于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。
2、LVRT概念的解释当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。
目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。
双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点:1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内;2)所采取的对策应具备各种故障类型下的有效性;3)控制策略须满足对不同机组、不同参数的适应性;4)工程应用中须在实现目标的前提下尽量少地增加成本。
3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导)在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术一、双馈式风力发电机简介双馈式风力发电机是一种能有效调节转子速度的风力发电机,其主要特点是在转子绕组中引入了一个次级电流,较大地提高了发电机的转矩与功率因数,从而提高了风力发电机的整体性能。
与传统的固定式风力发电机相比,双馈式风力发电机有着更高的风能利用效率和更好的低电压穿越能力。
其工作原理主要是通过定子绕组的多级变压器和双馈路,使得风力发电机能够在较低的电网电压下继续运行,从而提高了风电的可靠性和稳定性。
1. 低电压穿越现象在一些特殊情况下,比如电网故障或者风速急剧下降等情况下,风力发电系统所接入的电网电压可能急剧下降,甚至出现短暂的停电情况。
针对这种情况,传统的固定式风力发电机可能因为电网电压下降而无法继续正常运行,甚至发生机组停机。
而双馈式风力发电机则能够通过其特有的双馈路和多级变压器的设计,使得发电机能够在较低的电网电压下继续运行,从而避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。
双馈式风力发电机低电压穿越技术的主要原理是通过其次级电流的调节,使得风力发电机能够在电网电压下降的情况下,自动地调节转子速度和输出功率,以保证发电机的安全稳定运行。
具体来说,当电网电压下降时,通过次级电流的调节,可以在一定程度上提高转子的磁场励磁,从而提高发电机的输出功率,使得风力发电系统在低电压情况下仍能够继续正常运行。
双馈式风力发电机低电压穿越技术具有以下几点优势:(1)提高了风力发电系统的可靠性和稳定性。
在电网电压下降的情况下,双馈式风力发电机可以通过调节次级电流和转矩,使得发电机能够在较低的电网电压下继续运行,避免了由于电网电压下降而引起的停机现象,提高了风力发电系统的可靠性。
(2)提高了风能的利用效率。
通过低电压穿越技术,双馈式风力发电机可以在较低的电网电压下继续正常运行,保证了风能的稳定利用,提高了风力发电系统的整体性能。
(3)降低了对电网的影响。
双馈风力发电机组低压穿越运行技术
称故 障情况进 行相关 试验 和仿 真研究 。
1 电力 系统 电压跌 落 的原 因 j
电压跌 落 , 称 为 电压 骤 降 、 也 电压 下 跌 、 电压 凹陷 , 指 电压 下 降 至 额 定 电压 幅值 的 1% ~ 是 0 9% , 0 持续 时 间为 0 5个周期 到 几 S . 的一 种现 象 。 IE E E标 准 中电压跌 落定 义是 : 电系统 中某点 的 供 工 频 电 压 有 效 值 突 然 下 降 至 额 定 值 的 1% ~ 0
Absr c :Th e s n o otg p a h e a l y so o rta m iso i swee a l z d,a d te ta t e r a o fv la e di nd t r e fu ttpe fp we rns s in lne r nay e n h i mpa to h rd futi n o rg n r t n t o to ta e i swe e e po n d Thesmulto n x c ft e g i a l n wi d p we e e ai a d isc n rlsrtg e r x u de . on i ain a d e — p rme t lsude h we h tCr wba o l fe,v l n i i t e rt ro e - u r n n o e tt e rt rsd O ・ e i n a t is s o d t a o rc ud ef ciey i h bt h o o v rc re ta d prt c h oo ie C n- t -
低压电器( 00 e 0 2 1 N2 )
・ 智能电网与智能电器 ・
双 馈 风 力 发 电 机 组 低 压 穿 越 运 行 技 术
风力发电机组低电压穿越技术探析
风力发电机组低电压穿越技术探析摘要:近年来,随着科技水平的不断提高,风力发电技术体系日益成熟,风电产业规模呈现出爆发式增长态势。
但在接入电网出现运行故障、电压异常波动时,将会对风电系统与风力发电机组的运行状态造成影响,可能出现风电机组脱网解列问题,对发电企业造成严重的损失。
因此,本文围绕风力发电机组低电压穿越技术的应用问题进行探讨,希望通过改善风电机组低电压穿越性能,解决这一问题。
关键词:风力发电机组;低电压穿越技术;应用一、风力发电机组低电压穿越技术概述1.技术原理风电机组低电压穿越技术是当风力发电系统所接入电网出现各类运行故障、电压跌落现象时,将会实时向所接入电网提供无功功率支撑,以此做到对电网正常运行状态的快速恢复,在短时间内将跌落的电压值调整至安全范围,避免风电机组出现局部或是大规模脱网现象。
根据低电压穿越技术要求可知,在电网电压异常波动时,如若实时电压值、故障发生时间处于风机跳闸区域时,将会对风电机组采取必要的脱网解列措施,避免风电机组受到外部因素影响出现损坏问题。
而在实时电压值、故障发生时间保持在曲线上方区域时,会持续向所接入电网提供无功功率,风电机组将保持并网运行状态。
2.技术标准现阶段,在应用低电压穿越技术时,为取得应有的技术作用,保障风电机组运行安全稳定,必须满足不脱网运行、具备无功支持以及有功恢复使用功能的技术应用标准,具体如下。
(1)不脱网运行。
在风电场运行过程中,如若实时并网点电压值稳定保持在相应电压轮廓线上方区域中,要求风电机组稳定保持为并网运行状态,禁止风电机组出现脱网解列现象。
在电网电压脱落后,风电机组将在一定时间内仍旧保持并网运行状态,提供无功功率补偿,将电网电压值快速提升至额定值。
如若电网电压值在一定时间没有得到有效恢复、处于电压轮廓线下方区域时,将风电机组从电网中切出。
(2)无功支持。
根据技术实际应用情况来看,在出现电网三相电压对称跌落、并网点电压小于额定值90%现象时,都将对所接入电网提供无功电流,起到控制电网稳定运行、快速恢复正常电压值的作用。
风机低压穿越能力定义及计算方法
风机低压穿越能力定义及计算方法
风机低压穿越能力是指风机在低压条件下(如大气压力低于标准大气压的情况下)依然能够正常运行和提供所需的风量和压力的能力。
在一些特殊环境中,比如高海拔地区或者高原地区,大气压较低,这就需要风机具有较强的低压穿越能力。
风机的低压穿越能力需要考虑风机的设计参数、叶轮的叶片角度、电机功率等因素。
一般来说,风机的低压穿越能力可以通过以下计算方法来评估:
1. 风机性能曲线分析,通过风机的性能曲线,可以了解在不同的大气压条件下,风机的风量和压力输出情况。
从性能曲线中可以得出在低压条件下风机的运行情况。
2. 风机叶片角度调整,通过调整风机叶片的角度,可以改变叶轮的性能曲线,从而提高风机在低压条件下的运行效果。
3. 电机功率匹配,在低压条件下,风机所需的电机功率可能会有所变化,需要对电机功率进行匹配,以确保风机在低压条件下能够正常运行。
综合考虑以上因素,可以评估风机在低压条件下的穿越能力,并采取相应的措施来提高风机的低压穿越能力,以满足特殊环境下的使用需求。
关于风电场低压穿越问题
路CROWBAR,先经过散热电阻,再进入三相整流桥,每一 桥臂上为晶闸管下为一二极 管,直流输出经铜排短接.当 低电压发生后,无功电流均有加大,有功电流有短时间的 震荡,过流在散热电阻上以热的形式消耗,按照不同的标 准,能坚持的时间要 根据电压跌落值来确定。当然,在 直流环节上也要有保护装置.详细就不讨论.具体的讨论再 联系。FRT的实物与图片可供大家参考。但是大家所提到 的FRT只是老式的,新式是在直流环节有保护装置,但输出 侧仍是无源CROWBAR。
跌落时,由于双馈发电机中的电磁耦合关系,在定转子中
感应出过电压过电流,为保护转子侧变换器,需要通过
cnowbar来短路双馈发电机的转子。针对传统的passive
crowbar的不足,采用active crowbar电路的控制方法。当
电网故障造成双馈发电机转予过流时,开启active
crowbar电路来旁路转子侧变换器。当转子电流下降到一
•
目前,风力发电技术领先的国家,如丹麦、德国、
美国已经相继定量的给出了风力发电系统的低电压穿越的
标准。图为美国电网LVRT标准,从图中曲线可以看出:曲 线以上的区域是风电场需要保持同电力系统连接的部分,
只有在曲线以下的区域才允许脱离电网。风电场必须具有
在电网电压跌落至额定电压15%能够维持并网运行625ms 的低电压穿越能力;风电场并网点电压在发生跌落故障后 3s内能够恢复到额定电压的90%时,风电场必须保持并网 运行。只有当电力系统出现在曲线下方区域所示的故障时
仍与电网相连。一般转子各相都串连一个可关断晶闸管和
一个电阻器,并且与转子侧变流器并联。电阻器阻抗值不
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机低电压穿越技术是指在风力发电系统中,当受到低电压影响时,通过双馈式风力发电机的技术手段,依然可以保持正常运行,并尽可能减小对发电机的影响。
这项技术在提高风力发电机稳定性和可靠性方面具有重要意义。
接下来,我们将对双馈式风力发电机低电压穿越技术进行一定的浅析。
一、双馈式风力发电机简介双馈式风力发电机是目前常见的一种风力发电机结构。
它的主要特点是在转子上设置两套独立的绕组,分别是定子绕组和转子绕组。
传统风力发电机通常采用固定磁极和定子绕组的方式,工作在同步运转模式下。
而双馈式风力发电机通过在转子上设置绕组,实现了外接转子发电机的结构,使得发电机在一定程度上具有了可调节的功率特性,从而提高了风能的利用效率。
二、双馈式风力发电机低电压穿越技术的意义在风力发电系统中,由于风速的不稳定性以及外部环境等因素的影响,往往会出现电网电压下降的情况。
当电网电压下降至发电机的额定电压以下时,传统的固定磁极风力发电机会出现失速现象,无法继续正常发电。
而双馈式风力发电机通过其独特的结构和控制方式,可以相对灵活地应对低电压情况,尽可能减小对发电机的影响,保持正常运行。
三、双馈式风力发电机低电压穿越技术的实现方式1. 转子侧功率控制当发电机所接电网电压下降时,可以通过控制变流器改变转子侧功率的输出,以实现对电网电压的支撑。
变流器可以根据电网电压的变化,调整转子侧的功率输出,保持发电机继续运行。
这种方式可以避免发电机失速,延长发电机的寿命,提高系统的可靠性。
2. 电网电压感应控制另一种方式是通过感应电网电压的变化,实现对发电机的控制。
当电网电压下降时,发电机系统可以通过感应电网电压的变化,调整转子侧功率输出,进而保持系统的稳定运行。
这种方式相对简单,成本较低,适用于一些对控制精度要求不高的场合。
四、双馈式风力发电机低电压穿越技术的优势1. 提高了系统的稳定性和可靠性双馈式风力发电机低电压穿越技术,使得发电机在电网电压下降的情况下仍然可以保持正常运行,大大提高了系统的稳定性和可靠性。
什么是风力发电机低电压穿越技术定义
什么是风力发电机低电压穿越技术定义2011/05/04 07:37:20来源:中国风力发电网我要投稿小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
低电压穿越(Low voltage ride through,LVRt)低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT曾称“低电压穿越”。
定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
一、风力发电机低电压穿越技术1、问题的提出对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。
在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。
于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。
2、LVRT概念的解释当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。
目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。
双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点:1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内;2)所采取的对策应具备各种故障类型下的有效性;3)控制策略须满足对不同机组、不同参数的适应性;4)工程应用中须在实现目标的前提下尽量少地增加成本。
3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导)在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。
风力发电机组低电压穿越
摘要风力发电机因为电网故障引起网电压跌落到一定值以下并且保持625ms不脱离电网而继续维持运行,并仍能为系统提供有功功率以至少每秒10%额定功率的变化率恢复至故障前的能力称作是低电压穿越能力。
关键词低电压穿越技术;风电机组;并网目录1.低电压穿越技术 (1)2.低电压穿越特性及与保护动作时间关系 (2)3.实现低电压穿越需要风电场各种保护的配合 (3)3.1.风电机组保护 (3)3.1.1.对于电压越限所进行的保护 (3)3.1.2.对于频率越限所进行的保护 (3)3.1.3.对于电流所进行的保护 (3)3.2.风电机变流器保护 (3)3.3.箱变保护 (3)3.4.风电场内部电网保护 (4)3.5.集电线路的保护 (4)3.6.母线保护 (4)3.7.风电场中的主变保护 (4)3.8.高压母线保护 (4)3.9.继电保护 (4)4.风力发电场中的并网技术严格要求 (4)引言中国在颁布《在再生能源法》并且实施配套政策后,在2011年颁布国家标准GB/T19963-2011《风电场接入电力系统技术规定》对低电压穿越技术的明确规定。
是目前主流的风电机组是双馈型和直驱型风电机组,因具有优异的无功和电压控制能力而得到广泛的应用,但由于变流器容量、低电压穿越期间的控制不同,具体情况有差异。
国内外对这项技术的研究工作都取得了巨大成果,并且对不同机组提出了多种方案。
风电场电气部分由一次部分和二次部分构成,一次主要包括风电机组、集电环节、升压变电站、厂用电;二次主要包括风电机组监控与保护、箱变监控与保护、变电站监控与保护、线路监控与保护。
风电场是由主变、箱变、无功补偿设备、集电线路等组成。
中国在2008年4月9日吉林大范围风电机组切机事故,故障位置从白城至开发变66KV线路(19km),发生两相短路(B-C)。
这事故说明即使风电场都具备低电压穿越技术,风电场也有低电压穿越失败的可能,风电场无功补偿装置如果没有具备快速电压调节能力,将会造成大量无功涌入电网。
风力发电机低电压穿越原理
风力发电机低电压穿越原理
风力发电机低电压穿越(LVRT)的原理主要是在电网发生故障或电压跌落时,风力发电机组能够保持并网状态,并向电网提供无功功率,从而支持电网恢复正常运行。
具体来说,当电网发生故障或电压跌落时,风力发电机组通过控制策略,能够快速检测到电网的状态变化,并实时向电网提供无功功率支撑。
这样做的目的是在短时间内将跌落的电压值调整至安全范围,避免风电机组出现局部或是大规模脱网现象。
风力发电机组低电压穿越的实现依赖于先进的控制系统和算法,能够快速响应电网的故障或电压跌落,并进行相应的控制和调节。
同时,还需要保证风电机组的机械和电气系统在低电压穿越过程中的安全和稳定性。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询风力发电领域专家。
风电低电压穿越介绍
风电低电压穿越介绍低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的LVRT要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。
低电压穿越- 具备能力低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
低电压穿越- 对机组造价影响风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
低电压穿越
低电压穿越网英文:Low voltage ride through缩写: LVRT低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持低电压穿越并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的LVRT要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。
风电场低电压穿越要求基本要求对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有低电压穿越能力。
风电场低电压穿越要求右图为对风电场的低电压穿越要求。
a) 风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的能力;b) 风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组能够保证不脱网连续运行。
不同故障类型的考核要求对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下:a) 当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
b) 当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
风力发电机低压穿越
低电压穿越和电力系统稳定性风力发电能够顺利地并入一个国家或地区的电网,主要取决于电力系统对供电波动反映的能力。
风电机组III于风的随机性,运行时对无功只能就地平衡等原因将对电网造成一定的影响。
在过去,我国风力发电所占电力系统供电的比例不大,大型电网具有足够的备用容量和调节能力,风电接入,一般不必考虑频率稳定性问题,当电力系统某处发生电压暂降时风力发电机可以瞬间脱网进行自我保护。
但对于先如今,我国风力资源的不断开发。
风力发电所占我国电网供电的比例与日俱增就不得不考虑电网电压暂降时风力发电机组脱网给电力系统所带来严重的影响系统的稳定运行这时就需要风电机组具有低电压穿越能力,保证系统发生故障后风电机组不间断并网运行。
电压暂降:供电电压有效值供电电压有效值突然将至额定电压的10%"90%0然后乂恢复至正常电压,这一过程的持续时间为10ms~60s。
低电压穿越,指在风力发电机并网点电压跌落的时候,风机能够保持电压跌落会给电机带来一系列暂态过程,如出现过电压、过电流或转速上升等,严重危害风机本身及其控制系统的安全运行。
一般情况下若电网出现故障风机就实施被动式自我保护而立即解列,并不考虑故障的持续时间和严重程度,这样能最大限度保障风机的安全,在风力发电的电网穿透率(即风力发电占电网的比重)较低时是可以接受的。
然而,当风电在电网中占有较大比重时,若风机在电圧跌落时仍采取被动保护式解列,则会增加整个系统的恢复难度,甚至可能加剧故障,最终导致系统其它机组全部解列,因此必须采取有效的措施,以维护风场电网的稳定。
电网发生故障(尤其是不对称故障)的过渡过程中,电机电磁转矩会出现较大的波动,对风机齿轮箱等机械部件构成冲击,影响风机的运行和寿命。
定子电圧跌落时,电机输出功率降低,若对捕获功率不控制,必然导致电机转速上升[外7]。
在风速较高即机械动力转矩较大的情况下,即使故障切除,双馈电机的电磁转矩有所增加,也难较快抑制电机转速的上升,使双馈电机的转速进一步升高,吸收的无功功率进一步增大,使得定子端电压下降,进一步阻碍了电网电压的恢复,严重时可能导致电网电压无法恢复,致使系统崩溃[9, 10],这种情况与电机惯性、额定值以及故障持续时间有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低电压穿越和电力系统稳定性
风力发电能够顺利地并入一个国家或地区的电网,主要取决于电力系统对供电波动反映的能力。
风电机组由于风的随机性,运行时对无功只能就地平衡等原因将对电网造成一定的影响。
在过去,我国风力发电所占电力系统供电的比例不大,大型电网具有足够的备用容量和调节能力,风电接入,一般不必考虑频率稳定性问题,当电力系统某处发生电压暂降时风力发电机可以瞬间脱网进行自我保护。
但对于先如今,我国风力资源的不断开发。
风力发电所占我国电网供电的比例与日俱增就不得不考虑电网电压暂降时风力发电机组脱网给电力系统所带来严重的影响系统的稳定运行这时就需要风电机组具有低电压穿越能力,保证系统发生故障后风电机组不间断并网运行。
电压暂降:供电电压有效值供电电压有效值突然将至额定电压的10%~90%。
然后又恢复至正常电压,这一过程的持续时间为10ms~60s。
低电压穿越,指在风力发电机并网点电压跌落的时候,风机能够保持电压跌落会给电机带来一系列暂态过程, 如出现过电压、过电流或转速上升等, 严重危害风机本身及其控制系统的安全运行。
一般情况下若电网出现故障风机就实施被动式自我保护而立即解列, 并不考虑故障的持续时间和严重程度, 这样能最大限度保障风机的安全, 在风力发电的电网穿透率(即风力发电占电网的比重) 较低时是可以接受的。
然而, 当风电在电网中占有较大比重时, 若风机在电压跌落时仍采取被动保护式解列, 则会增加整个系统的恢复难度, 甚至可能加剧故障, 最终导致系统其它机组全部解列, 因此必须采取有效的措施, 以维护风场电网的稳定。
电网发生故障(尤其是不对称故障) 的过渡过程中, 电机电磁转矩会出现较大的波动, 对风机齿轮箱等机械部件构成冲击, 影响风机的运行和寿命。
定子电压跌落时, 电机输出功率降低, 若对捕获功率不控制, 必然导致电机转速上升[5~7]。
在风速较高即机械动力转矩较大的情况下, 即使故障切除, 双馈电机的电磁转矩有所增加, 也难较快抑制电机转速的上升, 使双馈电机的转速进一步升高,吸收的无功功率进一步增大, 使得定子端电压下降, 进一步阻碍了电网电压的恢复, 严重时可能导致电网电压无法恢复, 致使系统崩溃[9, 10] , 这种情况与电机惯性、额定值以及故障持续时间有关。
低电压穿越,指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
低电压穿越是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的低电压穿越要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件。
在《国家电网公司风电场接入电网技术规定》(修订版)中也明确地给出了风机组应该具备的低电压穿越能力:
规定的低电压穿越要求为;
a)风电场内的风电机组具有在并网电压跌至20%额定电压时能够持续并网运行625ms的低电压穿越能力。
b)风电场并网点电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场内的风电机组保持并网运行。
对于目前尚不具备低电压穿越能力且已投运的风电场,应积极开展机组改造工作,已具备低电压穿越能力。
有功恢复;
对故障期间没有切出电网的风电场,其有功功率在故障切除后快速恢复,以至少10%额定功率\秒的功率变化率恢复至故障前的值。
对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下:
a) 当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电
压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
b) 当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电
压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意相电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。
c) 当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意相电压低于或部分低于图中电压轮廓线时,场内风电机
组允许从电网切出。
目前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术,二种是引入新型拓扑结构,三是采用合理的励磁控制算法。
1、转子短路保护技术(crowbar电路)
这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
目前比较典型的crowbar电路有如下几种:
a)混合桥型crowbar电路,如图1所示,每个桥臂有控制器件和二极管串联而成。
b)IGBT型crowbar电路,如图2所示,每个桥臂由两个二极管串联,直流侧串入一个IGBT器件和一个吸收电阻。
c)带有旁路电阻的crowbar电路,,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。
2、引入新型拓扑结构
这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。
在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电流等级较高的大功率IGBT器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。
电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。
因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。
脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。
再通过开通反并可控硅电路使定子与电网连接。
这样可以减小对IGBT耐压、耐流的要求。
对于短时间内
能够接受大电流的IGBT模块,可以减少双馈感应发电机的脱网运行时间。
转子侧大功率馈入直流侧会导致直流侧电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。
这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。
考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。
这里的可控硅串联电路如果采用穿透型IGBT 的话,IGBT必须串联二极管。
而采用非穿透型IGBT的话,通态损耗会很大。
理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。
而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持作用。
通常双馈感应发电机的背靠背式励磁变流器采用的与电网并联方式,这意味着励磁变流器能向电网注入或吸收电流。
为了提高系统的低电压穿越能力,文献提到了一种新的连接方式,即将变流器与电网进行串联连接,比如,变流器通过发电机定子端的串联变压器实现与电网串联连接,则双馈感应发电机定子端的电压为网侧电压和变流器输出的电压之和。
这样便可以通过控制变流器的电压来控制定子磁链,有效的抑制由于电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流的产生,减小系统受电网扰动的影响,达到强化电网的目的。
但这种方式将增加系统许多成本,控制也比较复杂。
低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。