2017地平线报告
2023地平线行业报告
2023地平线行业报告
概述
本报告旨在分析和预测2023年地平线行业的发展趋势和关键问题。
通过收集和分析行业数据、市场研究和专家观点,我们提供了对地平线行业未来的洞察和建议。
行业概况
地平线行业是指涉及地平线技术和产品的领域,主要包括人工智能、机器研究、自动驾驶、物联网和云计算等。
发展趋势
1. 人工智能在地平线行业的应用将逐渐扩大,包括图像识别、自然语言处理和智能推荐系统等。
2. 自动驾驶技术将继续推进,预计在2023年将有更多实际应用场景。
3. 物联网的发展将促进地平线行业的增长,通过连接设备和传感器,提供更智能化和高效的解决方案。
4. 云计算和边缘计算技术的成熟将为地平线行业提供更好的基础设施和支持。
关键问题
1. 数据隐私和安全:随着地平线行业的发展,如何保护用户数
据的隐私和安全将成为一个重要问题。
2. 法律和规范:地平线行业面临着法律和规范的挑战,如自动
驾驶的法规、人工智能的伦理操守等。
3. 技术标准和互操作性:如何制定技术标准和实现不同技术之
间的互操作性,将影响地平线行业的发展和合作。
建议
1. 加强数据保护和隐私政策,确保用户数据的安全性和合规性。
2. 政府应制定相关法律和规范,以引导地平线行业的健康发展。
3. 推动技术标准的制定和统一,促进不同技术之间的互操作性
和协同发展。
以上是对2023地平线行业的简要报告,旨在帮助您了解行业
发展和面临的关键问题。
请勿引用未经确认的内容。
2023地平线报告 pdf
2023地平线报告 pdf标题:2023地平线报告PDF引言概述:2023年地平线报告是一份关于未来科技发展趋势的重要文件,其中的PDF格式具有广泛的应用和重要性。
本文将从五个大点出发,详细阐述2023地平线报告PDF的相关内容。
正文内容:1. PDF格式的重要性1.1 PDF格式的普及性PDF(Portable Document Format)是一种独立于操作系统、硬件和软件的文件格式,具有普适性和可靠性。
它可以在各种设备上保持文档的格式和布局的一致性,适用于电子书籍、报告、合同等各种文档。
1.2 PDF格式的安全性PDF格式具有强大的安全性,可以通过密码保护、数字签名等手段保护文档的机密性和完整性。
这使得PDF格式成为商业、法律等领域中传输和共享敏感信息的首选格式。
2. 2023地平线报告的重要性2.1 未来科技发展趋势的指引地平线报告是由地平线公司发布的一份年度科技发展趋势报告,被广泛认为是预测未来科技发展的重要参考。
报告涵盖了人工智能、机器人、生物技术等领域,对于政府、企业和研究机构制定战略和决策具有重要意义。
2.2 对科技行业的影响地平线报告的发布对科技行业产生了深远的影响。
它引领了科技创新的方向,推动了技术的突破和应用的发展。
报告中的趋势和预测为科技企业提供了参考,帮助它们抓住市场机遇,实现持续创新和竞争优势。
2.3 对社会的影响地平线报告不仅对科技行业有影响,也对整个社会产生了重要影响。
它为公众提供了了解未来科技发展的机会,帮助人们更好地适应科技进步带来的变革。
报告中的趋势和预测也引发了公众对于科技伦理、隐私保护等问题的讨论和关注。
3. 2023地平线报告PDF的优势3.1 便于传播和共享PDF格式的文件可以轻松地在不同的平台和设备上进行传播和共享,无需担心格式兼容性的问题。
这使得地平线报告可以迅速传播到全球各地,让更多的人了解和参与到未来科技的讨论中来。
3.2 保持文档的完整性和可读性PDF格式可以保持文档的原始格式和布局,无论在何种设备上打开,都能保持文档的可读性和完整性。
前沿信息技术(2017)
仿真电路模拟器Droid Tesla Pro是一款安卓平台上的SPICE模 拟器。
仿真电路模拟器
数学的实践
几何计算器
化学助手
自带技术支持的情境学习
• 情境学习强调知识具有情境性、学习者需要在情境中获得和应用知 识;学习者最好在真实活动和文化背景中学习;通过协作与互动学 习效果更佳等。 • 移动终端设备和移动通信技术为我们在真实的问题情境、工作活动、 文化背景中开展情境学习提供了独特的机遇。
1.现代风格书柜,支持封面管理,支持书 签标识、支持多屏滑动 2.任意书名搜书 3.高速下载:下载管理功能,下载图书 自动导入 4.全格式支持:小说 、图片、漫画
字典词典类
Dictionary
同类热门下载
新华字典
应用介绍 :
有道词典 快乐单词 金山词霸 新华字典 谷歌翻译 成语词典 英汉词典 诗词词典 英语简明语法大全 汉语拼音字母表 医药圣典 交规考试复习模考软件
常见的创客工具:
3D打印机
乐高玩具
Arduinos开 源平台
树莓(pi)电 脑
激光切割机
雕刻机
切割机
电钻
锤子
锉刀
创客教育与STEM教育
• 创客教育是指培养学生创新、创业所需的知识、能力、视野等方面的教育行为。 创客教育不同于任何一个学科教育教学,他包含正式学习,也包含贯穿学习者 一生的非正式学习。 • STEM 教育是上世纪80 年代美国人提出的,包含四个学科:Science(科学)、 Technology(技术)、Engineering(工程)、Mathematics(数学),由 奥巴马大力推进这种综合课程的实施,旨在从小培养学生动手、创新、综合运 用科学知识的能力,培养具有STEM素养的人才。 • 奥巴马政府想解决美国创新人才培养的问题,认为这四门学科相对较弱,其实 这也折射出美国政府对其科技创新国际领先地位的担忧。 • 科学、技术、工程和数学有着不同的侧重。科学注重知识运用,技术注重改造 创新,工程注重项目设计与开发,数学注重分析推理,合到一起是一种典型的 理科思维方式。通过理工科的意识、思维和能力为培养创新人才奠定基础,这 是美国STEM教育的基本价值取向。
地平线报告2017年高等教育版前瞻
地平线报告2017年高等教育版前瞻岳培锫 张渝江 重庆市聚奎中学校●加速高等教育技术采用的关键趋势1.长期趋势:将在五年及以后驱动高等教育对技术的采用(1)推进创新文化很多思想领袖一直认为大学在国家经济增长中能够发挥重要作用。
为了培育创新和适应经济需要,学校必须保持灵活的组织结构来激发创造力和创业思维。
学校的领导力和课程设置能从敏捷创业模式中受益,也成为众多有识之士的共识。
基于这些模型,教育工作者们正努力开发新的方法和方案,以期刺激自上而下的变革,并能在更广泛的机构设置中实施。
在商业领域,精益创业运动使用技术作为催化剂在更大范围内且以更具成本效益的方式来提升创新文化,这也提供了引人注目的模式供高等教育领导者借鉴。
(2)更深层次的学习方法高等教育越来越重视深层次学习方式。
威廉和弗洛拉·休利特基金会(William and Flora Hewlett Foundation)把它定义为内容掌握的同时培养学生批判性思维、解决问题的能力以及协作和自主学习能力。
为了保持学习的动机,学生需要了解现实世界以及新的知识和技能给他们带来的影响。
基于项目的学习,挑战性学习和探究性学习以及其他类似方式的学习能给学生在课堂内外带来更加积极的学习体验。
随着技术在学习中所扮演的角色日趋具体化,教育者们能够很方便地利用这些工具联系并平衡课程和现实生活应用程序之间的关系。
这些方法显然更以学习者为中心,让学习者自主学习,甚至可以集思广益解决全球性的问题,并在自己的社区进行实践。
2.中期趋势:将在三到五年内驱动高等教育对技术的采用(1)对量化学习的日趋关注人们越来越多地聚焦到量化学习,一种新的评价方式,即教育者使用多种方式或工具对学生学习前的情况、学习过程和学习需求进行评估、量化以及记录。
由于社会和经济因素重新定义了当今社会所需求人才的能力,教育机构必须重新思考如何定义、量化以及论证学科、技能和职业能力素质。
数据挖掘软件的普及和在线学习、移动学习以及教学管理系统的发展都渐渐整合进了学习环境,利用分析和可视化软件更加多维度、便利地描述学习数据。
2019地平线报告
2019地平线报告实景体验研究是一种非常有效的研究方式。
通过实际操作和体验,学生可以更好地理解和掌握知识和技能。
虚拟现实、增强现实和混合现实等技术为实景体验研究提供了更多的可能性。
例如,学生可以通过虚拟现实技术模拟实际操作场景,进行真实的体验研究。
这种方式不仅可以提高学生的研究效果,还可以激发他们的研究兴趣和创造力。
4、推广个性化研究。
每个学生都有自己的研究特点和需求,因此个性化研究是非常重要的。
基于数据分析和人工智能技术,可以为每个学生提供个性化的研究计划和资源,帮助他们更好地发挥自己的潜力。
同时,个性化研究也需要考虑到学生的兴趣和爱好,以及社交和情感因素等方面。
5、加强教育评估和监管。
教育评估和监管是保证教育质量的重要手段。
现代技术可以为教育评估和监管提供更多的支持。
例如,使用大数据分析技术可以更准确地评估学生的研究成果和教师的教学效果;使用区块链技术可以实现教育记录的安全和透明。
6、促进教育公平。
教育公平是现代教育的重要目标之一。
现代技术可以为教育公平提供更多的支持。
例如,使用互联网技术可以为偏远地区和贫困地区的学生提供更多的研究资源;使用人工智能技术可以为研究困难的学生提供更好的研究支持。
同时,需要注意的是,技术本身并不能解决教育公平的问题,还需要政策和社会的支持和努力。
式应用时,它们只是无用的玩具。
数字化素养是指能够有效地使用数字技术和工具,以实现个人和社会目标的能力。
这种能力不仅是在职场中必需的,也是在日常生活中必需的。
因此,基础教育必须致力于培养学生的数字化素养,以便他们在未来的生活和职业中能够成功。
这需要教育机构提供支持,为学生提供数字技术和工具的使用培训,同时也需要教师具备数字化素养,以便他们能够有效地应用数字技术和工具来教学和管理。
数字化素养的普及将有助于学生更好地适应数字化时代的挑战和机遇。
7、注重社会情感研究。
学生的发展不仅仅是关于知识和技能的获取,还包括情感和社会方面的发展。
ABNT_NBR6601_2005en
BRAZILIAN STANDARD ABNT NBR6601 Second edition30.09.2005 Effective as from31.10.2005Light Road Motor Vehicles – Determination of hydrocarbons, carbon monoxide, nitrogen oxides, carbon dioxide and particulate matter in exhaust gasKeywords: Exhaust gas, road vehicleDescriptors: Exhaust gas. Road vehiclesICS 43.020; 13.040.50ABNT - Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards)Reference number ABNT NBR 6601:200544 PAGES©ABNT 2005© ABNT 2005All rights reserved. Unless specified otherwise, no portion of this publication may be reproduced by any means, electronic or mechanical, including photocopy and microfilm, without ABNT’s written permission. ABNT HeadquartersAv. Treze de Maio, 13 – 26o. andar20031-901 – Rio de Janeiro – RJPhone: +55 21 3974-2300Fax: +55 21 2220-1762abnt@.br.brPrinted in Brazil.SummaryForeword (iv)1 Purpose (1)2 StandardReferences (1)3 Definitions (1)4 Apparatus (3)4.1 Chassisdynamometer (3)4.2 Sampling system for testing vehicle with spark ignition (3)4.3 Sampling system for Diesel vehicle testing (5)4.4 Equipment for analysing particulate matter gas and filter (7)heater (11)4.5 Fuel4.6 Temperature recorder (11)4.7 Drainage and feeding apparatus (11)cooling fan (12)4.8 Engineverification of apparatus (12)4.9 Calibrationand4.9.1 Calibrations gases (12)4.9.2 Frequencycalibrations and verifications (12)ofdynamometer calibration and performance checking (13)4.9.3 Chassisverificationconstant volume sampling (CVS) (124)ofand4.9.4 Calibrationverification of analysers 17 and4.9.5 Calibration5Performing the test (20)5.1 Fuels (20)requirements (20)5.2 General5.3 Vehiclepreparation (20)vehicle (21)5.4 Preconditioningthe5.5 Vehicle operation and exhaust gas sampling (24)5.6 Analysis of the exhaust gas sample (31)5.7 Weighing and handling particulate filter of the Diesel (31)6 Results (32)6.1Calculation procedure (32)for the calculations (32)6.1.1 Readingsrequired6.1.2 Calculations of the correction coefficients and of the general parameters (33)mass 33 6.1.3 Pollutantof final results (33)6.1.4 Calculation6.1.5 Calculation of emissions of particulate matter by diesel vehicles (34)6.2. Report (35)ATTACHMENT A (Informational)– Determination of the tractive effort on the roll at the speed of 80.5 km (TE80)38 ATTACHMENT B (Informational) ATTACHMENT B (Informational) Coordinates of the Urban Driving Cycle41ForewordThe Brazilian Association of Technical Standards – ABNT is a National Forum for Standardisation. The Brazilian Standards, the content of which is the responsibility of the Brazilian Committees (ABNT/CB), of the Sectoral Standardisation Organisms (ABNT/ONS) and of the Temporary Special Study Commissions (ABNT/CEET) are prepared by Study Commissions (CE) formed by representatives of the involved industries including: producers, consumers and neutral parties (universities, laboratories and other).ABNT NBR 6601 was written by the Brazilian Automotive Committee (ABNT/CB-05), by the Committee of Study of Emissions in Light Vehicles (CE-05:102.02). This Project was circulated for National Examination in accordance with Invitation No. 12, dated 12/30/2004, under ABNT NBR 6601 Project.This second edition cancels and replaces the prior edition (ABNT NBR 6601:2001), which has been technically revised. This Standard includes Attachments A and B, which are of an informational nature.Light Road Motor Vehicles – Determination of hydrocarbons, carbon monoxide, nitrogen oxides, carbon dioxide and particulate matter in exhaust gas1 Purpose1.1 This Standard prescribes a method for the determination of total hydrocarbons (THC) and non-methane hydrocarbons (NMHC), carbon monoxide (CO), nitrogen oxides (NO x), carbon dioxide (CO2) and particulate matter emitted by the engine through the exhaust tailpipe of light road motor vehicles, under simulated conditions of average regular use in urban traffic.1.2 This Standard also establishes the minimum characteristics of the equipment and materials and also the driving cycle for performing the tests.References2 StandardThe standards listed below include provisions, which, whenever cited herein, are applicable to this Standard. The issues listed herein were in force at the time of this publication. Since any standard is subject to revision, it is recommended that, when executing an agreement based on this standard, the parties review the convenience of using more recent issues of the standards cited below. ABNT can inform which standards are in force on a given date.ABNT NBR 6070:2002 – Masses of road motor vehicles, their trailers and combiners – Definitions and symbolsABNT NBR 8689:2000 – Light road motor vehicles – Fuel for testing – Gasoline, alcohol and their mixturesABNT NBR 10312:1991 – Light Road Motor Vehicles – Determination of resistance to displacement by free deceleration on a driving track and simulation in a dynamometerABNT NBR 11481:2002 – Light Road Motor Vehicles – Measurement of evaporative emission3 DefinitionsFor the purposes of this Standard, the definitions in ABNT NBR 6070 and the definitions below are applicable:3.1 engine feeding:Group of fuel reservoirs, pipelines, pumps, pressure regulators, feeding valve, filters, vapour return lines, mixture generators and all vents and control of evaporative emissions in the vehicle.3.2 evaporative emission control: It includes all vehicle components for controlling or reducing the quantity of fuel vapour emitted.3.3 canister: a reservoir for absorbing vehicle fuel vapours.3.4 measurement accuracy: Proximity between the value of a magnitude obtained by measurement and the actual conventional value of such magnitude.ABNT NBR-6601:20053.5 calibration gas: Gas of known concentration, used to determine the response curve of an analyser.3.6 exhaust gas: A group of substances released by any opening in the tail pipe exhaust, emitted into the atmosphere.3.7 reference gas: Gas of known concentration, used in checking during testing of the analyser response. 3.8 zero gas: Gas used in setting the analyser to zero.3.9 total Hydrocarbons (THC): Total hydrocarbons, including methane, contained in a gas sample.3.10non-methane hydrocarbons (NMHC): hydrocarbons, excluding methane (CH 4), contained in a gas sample.3.11 measurement uncertainty: Part of the expression of a result from a measurement that indicates the value range among which the actual value of the measured magnitude is included.3.12 equivalent inertia: Sum of all rotational inertia masses, in kilograms (or pounds) that, connected to the chassis dynamometer rolls, produces a dynamic effect equivalent to the inertia mass in a vehicle in linear movement. Equivalent inertias observe a discrete staggering according to the vehicle mass under testing, as per 5.5.1.1. 3.13 total gross vehicle mass (TGVM): Mass corresponding to maximum total vehicle weight as specified by NBR6070. 3.14 curb weight: The corresponding mass of a vehicle curb weight as specified by NBR 6070. 3.15 mass of a vehicle used in tests: The curb weight, increased by 136 kilograms.3.16particulate matter: Solid particles emitted by the Diesel engine and resulting from combustion.3.17 micromol/mol (μmol/mol): Ratio between the number of moles of the component and the number of total moles of a gaseous mixture. For the purposes of this Standard, the μmol/mol unit is considered as equivalent to the ppm unit.3.18 nitrogen oxides (NOx): Sum of nitric oxide and nitrogen dioxide contained in a sample.3.19 Parts per million (ppm): Number of volume of units in a determined gas, contained in a million of units of volume of a gaseous mixture.3.20 Parts per million of carbon (ppmC): Hydrocarbons concentration, in ppm, expressed as equivalent to methane. Thus, 1 ppm of methane is indicated as being 1 ppmC. To convert concentrations in ppm from any HC into an equivalent value in ppmC, multiply the concentration in ppm by the number of carbon atoms in each gas molecule. For example, 1 ppm of hexane is equal to 6 ppmC.3.21 Friction power (P f ): Power inherent to the chassis dynamometer through its internal frictions, measured at the speed of 80.5 km/h.3.22 Indicated power (IP 80): Power indicated on the chassis dynamometer controls, at the speed of 80.5 km/h, in such a way that the sum of this power plus the machine friction power results in the tractive effort value on the rolls at 80.5 km/h (TE 80).3.23 Tractive effort (braking force) on the rolls (TE 80): Net power corresponding to the force and to the tangential speed applied to the roll surface on the chassis dynamometers, at a speed of 80.5 km/h.Main fuel tank of the vehicle, i.e., the tank that contains the predominant fuel used to make the tank:3.24 fuelengine function.3.25 light road motor vehicles: Light road passenger vehicle, cargo or all purpose, with carrying capacity up to 12 passengers including the engine or total maximum mass lower than 2800 kilograms.Speed at which the vehicle is regularly driven, according to various convenience factors.speed:3.26 cruising4 ApparatusThe necessary apparatus for conducting the tests is described in items 4.1 to 4.8.4.1 Chassis dynamometerThe chassis dynamometer must have an electric or hydraulic power absorption unit, to simulate the laden condition of the vehicle on the track, as specified by ABNT NBR 10312 or Attachment A. It should also have a group of inertia flywheels and/or other means to simulate the equivalent inertia of the vehicle (see 3.12). Twin roll chassis dynamometers must have rated roll diameters greater than or equal to 219 mm. Single roll chassis dynamometer must have a rated dynamometer greater than or equal to 1200 mm.4.2 Sampling system for vehicle testing with spark ignition4.2.1 This system must be a constant volume sampler type (CVS) and it should permit to measure the actual masses of the substances released by the engine through the tail pipe exhaust. For this, the following is required:a) measurement of the total volume of the mixture of exhaust gas / dilution air.b) ongoing collection for analysis of an amount of this mixture, proportional to that volume.4.2.2The system must have sufficient capacity to eliminate the water condensation in the system. A flow of 0.10 m3/s to 0.20 m3/s is enough in most cases.4.2.2.1The static pressure in the tail pipe(s) exhaust of the vehicle connected to the CVS, verified during the driving cycle should not have variations higher than ± 1.2 kPa in relation to the same conditions, however with the tail pipe(s) exhaust under free exhaustion. The connections used should not have leaks.4.2.3The system must be equipped with sample collecting bags, for the dilution air and for the diluted exhaust gas, with sufficient volumetric capacity so that it will not restrict the flow of the sample being collected. It should be of a special material to prevent quantitative and qualitative changes in the composition of the stored samples.4.2.4The sampling system may be critical venturi (CV), called CVS-CV sampling system. Other sampling systems may be used, provided that the equivalence of results is demonstrated and proven.4.2.4.1The CVS-CV sampling system works based on the fluid dynamics principles associated to a critical flow. In this kind of system, the total flow of diluted gas is kept at a sonic velocity, which is proportional to the square root of the absolute gas temperature, continuously computed. Proportional sampling is performed through another VC system, installed in the same gas flow. Since the pressure and temperature are the same for the inlet of the respective venturis, the sampling volume is proportional to the total volume of the mixture. This system, according to Figure 1, is formed by the following components:a) mixture chamber with filter in the dilution air inlet;b) cyclone-type collection for particulate matter;c) critical venturi for the establishment of total flow;sampling;venturid) criticalsystem;e) samplingf) valves and sensors of temperature and pressure;g) temperature measuring device for the diluted gas at the CV inlet, with a resolution lower than or equal to 1o C;g) integrating electronic circuit for the establishment of the total volume sampled;h) pressure meter with a resolution lower than or equal to 0.40% kPa.Ambient air inletTo the air dilution sample bagSampling Venturi; To the diluted gas pipe sample bagPulse absorberAbsolute pressure transducerAbsolute manifold Critical venturi Tail pipe gas inlet Pressure gauge CVS exhausting unitSampling unit CVSExhaustDischargeSymbolsFlow control valveParticulate filterPumpPressure meterFlow meterTemperature sensor Figure 1- Sampling system of the exhaust gas (CVS-CV)4.2.4.2 Other sampling systems may be used, provided that the equivalence of results is demonstrated and proven. 4.3 Sampling system for testing Diesel vehiclesThis system, according to figure 2, is formed by the components described in 4.3.1 to 4.3.7.4.3.1 The CVS-VC must be equipped with a measurement system for particulate matter, so as to provide sufficientflow/volume to keep the diluted sample at a temperature lower than 52oC at the intake point of the particulate sample. If gas temperature is increased due to the heated points, the use of a heat exchanger after the sampling point of the particulate matter, as well as filters and cyclone separator to withdraw particulate matter before reaching the CV is optional.4.3.2 The dilution air must be between 20o C and 30oC during testing.FID = Flame Ionising DetectorFigure 2 – Sampling system for Diesel testing4.3.3 The dilution tunnel must be:a) sized so as to permit a turbulent flow and a thorough mixing of the exhaustion gas with the dilution gas before the point where sample is collected;b) built with a minimum diameter of 203 mm;c) built with an electricity –conducting material which does not react to the components of the vehicle exhaust gas;d) grounded.4.3.4 The sampling collection point (probe) of particulate matter must be:a) installed in front of the flow, at the point where the exhaust gas and the dilution gas are well mixed (near the tunnel centreline and approximately 10 times the tunnel diameter, as from the point where the gas enters in the dilution tunnel).b) sufficiently far (radially) from the sample collection to the heated flame ionising detector (HFID) for the determination of hydrocarbons so as to be free from influences such as vacuum produced by the probe;c) minimum internal diameter of 12.7 mm;d) such that the distance from the probe to the filter support is not less than 5 times the diameter of the sampler (for filters located inside the tunnel), but no more than 1,020 mm distant, for filters located outside the dilution tunnel;e) free from live edges;f) configured in a way that a pair of clean particulate filters (primary and secondary) may be selected, at the same time as the selection of the set of empty bags for gas emissions, for each phase of the measurement process.4.3.5To pass through the particulate probe, the adjusted flow must be kept at a constant value within +- 5%.4.3.6The sampling pump and the volume measuring devices must be far enough away from the dilution tunnel, so that the temperature of the gas may be kept constant at about +-2.8ºC.4.3.7The sampling point for HFID shall be:a) installed facing the flow, at a distance of about 10 times the diameter of the tunnel, as from its inlet;b) installed at a sufficient radial distance from the particulate probe, to remain free from the influence of such factors as vacuums produced by the probe;c) through a heated line with an internal diameter of at least 4.8 mm with filter, insulated along its whole length, in order to keep the temperature at 191ºC ± 11ºC at its wall.4.4 Equipment for gas analysis and filters for particulate matter4.4.1 The equipment for gas analysis shall consist essentially of an analytical system as that shown in Figure 3. The exact conformity to this scheme is by no means necessary, provided that it is possible to obtain satisfactory results within the specified accuracy of measurements. In order to obtain further information or to co-ordinate the functions of some of the subsystems, other components may be added, including instruments, valves, solenoids, pumps, and so forth, as long as they do not in any way affect the results.4.4.2 The equipment for gas analysis, as shown in Figure 3, consists of flame detector by ionisation, to establish the total hydrocarbon content; a flame detector by ionisation equipped with a selective catalytic converter (cutter), or a chromatographic column in gaseous phase, to establish the methane content; analysing devices by absorption of non-dispersive infrared rays (IND) to establish the content of carbon monoxide and carbon dioxide; and a chemical luminescence analyser (CL) to establish the quantity of nitrogen oxides present. All these analysing devices shall always be operated in full compliance with the manufacturer’s instructions.4.4.3After the initial setting up of the equipment for gas analysis, a check shall be carried out, to see if the analysing devices meet the requirements set forth in 4.4.3.1 to 4.4.3.5 below.4.4.3.1In all analysing devices, the stability of the “zero” and “reference” points over a period of 24 hours shall show deviation of no more than 3% of the maximum showing of the scale.4.4.3.2The FID must show a response to oxygen (O2) of no more than 2% of the maximum showing of the scale, in the case of mixtures of nitrogen (N2) and O2, within a band from 0% to 21% of O2 by volume.4.4.3.3 A CO analyser is considered free from interference caused by CO2 and water vapour when it supplies a response of less than 1% of the maximum showing of the scale (when the maximum showing of the scale is 300 ppm or more) or 3 ppm (when the maximum showing of the scale is less than 300 ppm), for a mixture containing between 3% and 5% of N2 bubbling in water at room temperature, analysed using the equipment’s most sensitive scale.4.4.3.4The maximum response of the CO2 analyser for concentrations between 3,000 ppm and 5,000 ppm of CO, at room temperature and water vapour saturation conditions, should be no more than 1% of the maximum showing of the scale.4.4.3.5The analysing device for NOx by CL requires that the nitrous acid (NO2) present in the sample be converted into nitric oxide (NO) before the analysis, with an efficiency rate of above 90%.4.4.4 The particulate material sampling filters should meet the criteria set forth in items 4.4.4.1 to 4.4.4.4 below.4.4.4.1.1 Acceptance Criterion for the filters:a) During each phase of the conduction cycle, the diluted exhaustion gas shall be collected, simultaneously by a pair offilters (primary and secondary);b) The secondary filter shall be located between 76 mm and 102 mm after the primary filter;c) The net weight of the particulate materials collected from each primary filter shall be established as set forth in item5.7;d) The net weight ratio shall be calculated using the following equation:R pl = MP fp / (MP fp + MP fs)Where: Rpl is the net weight ratio;MPfp is the mass of particulates in the primary filter, in micrograms;MPfs is the mass of particulates in the secondary filter, in micrograms.e) If the ratio is greater than 0.95, the calculations of emissions of particulates shall be based only on the net weight ofthe primary filter;f) If the ratio is less than 0,95, then the calculations of emissions of particulates shall be based on the combination ofthe net weights of the primary and secondary filters.4.4.4.2 – The filter for the collection of particulate materials shall have a diameter of at least 47 mm (a minimum of 37 mmdiameter in the retention and deposit area).4.4.4.3 - The recommended minimum load on the primary filter 47 mm in diameter is 0.05 g. Equivalent loads (i.e.,deposition mass/diameter) are recommended when setting the size for larger filters.4.4.4.4 - The filters for the collection of particulate materials shall be made of glass fibre coated with fluorocarbon or othermembrane of the fluorocarbon type.Ambient(openingtoairinletAtmosphere)Zero gas Fuel gasgasesCalibrationGas Fuel gasCalibration GasesHighZero gasFrom gas sample ConditioningBags ColumnCalibrationGases LowZero GasCalibration GasesAir or O2Zero GasTo externalOutletCalibration gasesSymbolsFlow control valve PumpvalvemeterPressureselectorTwo-wayFlowmetervalveselectorThree-wayFilter Recorder ParticulateFigure 3 – Analytical System for exhaust gas4.4.5For the system for the analysis of exhaust gas emitted by diesel engines, proceed as stated in sections 4.4.5.1 and 4.4.5.2 below.4.4.5.1 The schematic drawings and the descriptions of the main components for the analysis of CO, NOx and CO2 are the same as described for the Otto cycle (spark ignition) as shown in Figure 3.4.4.5.2 To carry out measurements on Diesel vehicles, THC levels should be sampled and measured continuously through HFID, using a heated set of equipment, with analyser, line, filter and pump. Flow control shall be according to Figure 2 or 4.The response time of this instrument shall be less than 1.5 seconds for a response of 90% of the main scale.The set of equipment for the continuous collection of THC can have an overflow system for the zero point calibration gas and also for the gas at the end of the scale (span), as shown in Figure 4. In this case, the gases for the overflow shall enter the heated line as close as possible to the outside face of the dilution tunnel.No other system shall drain the sample of the THC continuous collection line.The sampling line and the filter shall be heated, to keep the gas at a temperature of 191ºC ± 6ºC before the filter and the HFID.Other equipment and analysing devices may be used, provided it has been proven that they produce similar results.4.4.6 The specifications of the weighing chamber (or room) and scales for particulate materials are described in items 4.4.6.1 to 4.4.6.7 below.4.4.6.1 The temperature of the room where the particulate materials filters are made and weighed shall be recorded, and kept between 20ºC and 30ºC during the whole production and weighing process.4.4.6.2 The relative humidity of the room where the particulate materials filters are made and weighed shall be recorded, and kept between 30% and 70% during the whole production and weighing process.4.4.6.3 The site must be free from any contaminant (dust) that could settle on the particulate filters during their stabilisation period.4.4.6.4 It is necessary that two reference filters remain in the weighing room, and that these filters are weighed every 24 hours, when in trial mode.4.4.6.5 If the weight of one of the reference filters deviates by more than ±2% off the filter’s nominal tare (the minimum recommended tare for the 47 mm filter is 0.05 g) during a period of 24 hours, then all filter weighings carried out over this period shall be rendered invalid. The filters that are undergoing a stabilisation process over this period shall be disposed of.4.4.6.6 The reference filters shall be changed at least once a month.4.4.6.7 The scales used in establishing the weights of all the filters shall have a resolution of 1 μg.Zero Span HC Integrator CounterCounterHeated FID3-way valve ExhaustRecorderFigure 4 – HFID Optional configuration with overflow schematic4.5 Fuel heater4.5.1This consists of a heat source and a temperature regulating device. An electric heating mat, with enough power to accompany the fuel heating curve, as set forth in 5.4.10.7, equipped with a transformer for electrical voltage variations, to regulate the amount of heat supplied, is appropriate for most vehicles.4.5.2Alternative heating methods may be used, provided they show the performance necessary for the carrying out of the trials, as stated in 5.4.10.7. All methods shall avoid hot points on the wet surface of the reserve tank, that could bring about local overheating of the fuel. Heating may not be applied directly onto the fuel vapour, within the reserve tank.4.6 Temperature recorder4.6.1 A continuous recorder should be employed to record the fuel temperature in the tank of the vehicle. The temperature should be recorded at least every minute.4.6.2The recorder should have a time resolution of not more than 15 s and a temperature of 0.5°C or less. As for time, it shall have a measurement accuracy of 15 s in the period under testing.4.6.3The sensor of the temperature meter in the fuel tank shall be placed in such a way that the fuel temperature can be measured at about half of the fuel film quota as measured in the region where the buoy/pump grouping has been assembled.4.7 Drainage and supply apparatusThe fuel tank of the vehicle should be totally drained by gravity or by a transfer pump. Fuel should be supplied by an apparatus that, when the fuel is finished, enables the temperature of the tank to go lower than 14°C.NOTE: The fuel heater, the temperature registration and the fuel temperature below 14ºC apply to the measurement of evaporating emissions or in the canister saturation test in vehicles with spark ignition.4.8 Engine cooling fanA fan with constant speed and a capacity not greater than 2.50 m3/s, under normal conditions of temperature and pressure.4.9 Calibration and verification of apparatus4.9.1 Calibration gases4.9.1.1 Gases for calibration of CO and CO2 analysers must be plain CO and CO2 mixtures, respectively, using N2 as the dilution medium.4.9.1.2Gases for calibration of HC analysers must be plain propane mixtures using air as the dilution medium.4.9.1.3The calibration gases of the NO x analysers must be NO mixtures (denominated NO x with a maximum NO2 concentration of 5% of the nominal value), using N2 as the dilution medium.4.9.1.4The gases for the calibration of the CH4 analysers should be simple mixtures of methane, using air as the dilution medium.4.9.1.5In order to obtain the calibration curve, there is a need to use at least six concentrations distributed along the whole of the scale used. The use of proportioning and mixing equipment is allowed, and such equipment should operate with gases at concentrations between 90% and 100% of the maximum readings of each scale used. This equipment shall have an accuracy of ± 0,5% of the maximum reading of the scale.4.9.1.6The fuel used for the FID and HFID must be a mixture of (40 ± 2)% of hydrogen, using helium or nitrogen as a dilution medium. The mixture must have a response lower than 1 ppmC. A fuel gas with 98% to 100% of hydrogen may be used, provided that the requirements of item 4.4.3 are complied with.4.9.1.7The zero gas impurity concentration (air or nitrogen) must not exceed the requirements of ABNT NBR 12857for synthetic and nitrogen.4.9.1.8The calibration gases must be specified within ± 1% of their actual value.4.9.2 Frequency of calibrations and verifications4.9.2.1 The chassis dynamometer and the HC, CH4, CO, NO x and CO2 analysers must be calibrated at least once a month and after any maintenance service that may affect them. In the case of the dynamometer, this monthly calibration may be dispensed with if, at the weekly checking according to item 4.9.3.1.2 or 4.9.3.2.2, it is verified that it remained calibrated.4.9.2.2The performance of the chassis dynamometer and the constant volume sampler system must be verified at least once a week and after any maintenance service that may affect them.4.9.2.3The constant volume sampler must be calibrated after the initial installation during the main check-ups or when the weekly check indicates such need (as according to 4.9.4.4).。
压力容器材质DNV规范
DET NORSKE VERITAS AS
FOREWORD
DNV is a global provider of knowledge for managing risk. Today, safe and responsible business conduct is both a license to operate and a competitive advantage. Our core competence is to identify, assess, and advise on risk management. From our leading position in certification, classification, verification, and training, we develop and apply standards and best practices. This helps our customers safely and responsibly improve their business performance. DNV is an independent organisation with dedicated risk professionals in more than 100 countries, with the purpose of safeguarding life, property and the environment. The Rules lay down technical and procedural requirements related to obtaining and retaining a Class Certificate. It is used as a contractual document and includes both requirements and acceptance criteria.
8846用户手册(1)
目录
章节 1
标题
页
章概述和技术指标.................................................................................. 1-1
概述 ................................................................................................................... 1-3 用户文件 ........................................................................................................... 1-3 关于本手册 ....................................................................................................... 1-3 安全信息 ........................................................................................................... 1-4
®
8845A/8846A Digital Multimeter
用户手册
July 2006, Rev. 2, 6/08 (Simplified Chinese)
© 2006, 2007, 2008 Fluke Corporation. Specifications subject to change without notice. All rights reserved. All product names are trademarks of their respective companies.
地平线报告(2012高等教育版)
《地平线报告(2012 高等教育版) 》编译
目录 1
国际高等教育信息化发展的动力、挑战和趋势
图目录
图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 1 移动应用 ....................................................................................................................................................5 2 Good Reader ..............................................................................................................................................6 3 JotNot Pro .................................................................................................................................................7 4 宾夕法尼亚州立大学教学系统系...................................................................................................8 5 MindJet 思维导图 ..............................................................
地平线芯片行业报告
地平线芯片行业报告地平线(Horizon Robotics)是一家专注于人工智能芯片研发的公司,成立于2015年,总部位于中国北京。
地平线的使命是通过人工智能技术的创新和落地,推动智能驾驶、智能城市和智能物联网等领域的发展。
在人工智能芯片行业中,地平线凭借其领先的技术和创新的产品,逐渐成为行业的领军者。
本报告将对地平线芯片行业进行全面的分析和展望。
一、地平线芯片行业现状。
1.1 地平线芯片产品概况。
地平线目前推出了一系列的人工智能芯片产品,包括车载智能处理器、智能摄像头芯片、智能计算芯片和边缘智能处理器等。
这些产品在智能驾驶、智能城市、智能安防、智能物联网等领域都有广泛的应用。
1.2 地平线芯片技术优势。
地平线芯片在性能、功耗和成本等方面都具有明显的优势。
其采用了先进的人工智能算法和芯片设计技术,能够实现高效的数据处理和智能决策,满足不同场景下的需求。
1.3 地平线芯片市场份额。
在人工智能芯片市场上,地平线已经取得了较大的市场份额,并且在全球范围内拥有了一定的影响力。
其产品不仅在国内市场得到了广泛应用,还出口到了多个国家和地区。
二、地平线芯片行业发展趋势。
2.1 智能驾驶市场的快速增长。
随着智能汽车的普及和智能驾驶技术的不断进步,智能驾驶市场呈现出快速增长的态势。
地平线芯片在智能驾驶领域具有明显的优势,有望在未来进一步扩大市场份额。
2.2 边缘计算的兴起。
随着物联网技术的普及和应用场景的不断扩大,边缘计算技术成为了人工智能芯片行业的一个重要发展趋势。
地平线芯片在边缘智能处理器方面有着显著的优势,有望在这一领域取得更大的突破。
2.3 人工智能芯片的应用拓展。
除了智能驾驶和智能物联网领域,人工智能芯片在智能安防、智能医疗、智能零售等领域也有着广阔的应用前景。
地平线芯片有望在这些领域实现更多的合作和应用。
三、地平线芯片行业面临的挑战。
3.1 技术创新的压力。
人工智能芯片行业的竞争日益激烈,技术创新的压力也在不断增加。
CALPUFF Model Guidance
Generic Guidance and Optimum Model Settings for the CALPUFF Modeling System for Inclusion into the ‘Approved Methods for the Modeling and Assessments of Air Pollutants in NSW, Australia’March 2011Prepared For:NSW Office of Environment and Heritage, Sydney AustraliaPrepared By:Jennifer Barclay and Joe ScireAtmospheric Studies GroupTRC Environmental Corporation650 Suffolk Street, Wannalancit MillsLowell, MA 01854USADisclaimerThis report was prepared by the Atmospheric Studies Group from TRC Environmental Corporation in good faith exercising all due care and attention, but no representation or warranty, express or implied, is made as to the relevance, accuracy, completeness or fitness for purpose of this document in respect of any particular user’s circumstances. Users of this document should satisfy themselves concerning its application to, and where necessary seek expert advice in respect of, their situation. The views expressed within are not necessarily the views of the Office of Environment and Heritage (OEH) and may not represent OEH policy.© Copyright State of NSW and the Office of Environment and Heritage NSWContentsSCOPE OF WORK AND BACKGROUND (1)A.1Introduction (1)A.2Requirements of the NSW OEH (1)1.INTRODUCTION (3)2.GUIDANCE ON CALMET CONFIGURATIONS (4)2.1Overview (4)2.2General Guidance for CALMET (4)2.2.1CALMET Overview (4)2.3Methodologies for Running CALMET (5)2.3.1 No-Observations Approach (6)2.3.2 Hybrid Mode (7)2.3.3Observations Only (10)2.3.4Single Station Meteorology (11)2.3.5Screening Model runs (11)2.4Prognostic-Derived Surface (SURF.DAT) and Upper (UP.DAT) files (12)2.5Seven Critical CALMET Parameters When Using Observations (12)2.6Other Important Parameters – Overwater Surface Fluxes and Mixing Heights133RECOMMENDED MODEL OPTION SETTINGS FOR CERTAINCONDITIONS AND SCENARIOS (17)3.1Introduction (17)3.2Complex terrain (17)3.2.1Terrain Data (17)3.2.2Choosing Grid Resolution and Model Domain Size (18)3.2.3Choosing a value for TERRAD (18)3.2.4Complex Terrain Sub-Grid Scale Terrain Features (CTSG) (19)3.3Shoreline Fumigation (20)3.3.1Sub-grid Scale TIBL (20)3.4Inversion Break-up Fumigation (21)3.4.1.Description of how CALMET computes mixing height and its relevance toproperly modeling Inversion-breakup fumigation (22)3.5Buoyant line plumes (22)3.5.1Entering Line sources into CALPUFF (24)3.5.2Evaluation Studies (27)3.6Calm winds (30)3.6.1Sub hourly meteorological data and its usage in CALPUFF (31)3.6.2User Options for treating Calms (39)4.DISCUSSION ON THE APPROPRIATE PROCEDURES FOR EVALUATINGCALMET AND CALPUFF MODELLING RESULTS (41)4.1Model Output: Uncertainty (41)4.2Procedures for Evaluating Model Output (42)4.2.1Overview (42)4.3How to Evaluate CALMET (42)4.3.1Graphical Evaluation (43)4.3.2Statistical Evaluation (46)4.3.3Other Meteorological Evaluation Packages (47)4.3.3.1Key Variable Field Extraction Module (47)4.3.3.2Gridded Meteorological Extraction and Merging (47)4.3.3.3Back Trajectory (47)REFERENCES (48)APPENDIX A: (50)MODEL OPTION SWITCHES FOR CALMET AND CALPUFF (50)Page Figure 2-1.Figure showing examples of how to choose RMAX1, R1, RMAX2 and R2 values. One value of RMAX1, RMAX2, R1 and R2 apply to all surface and upper air stations. RMAX1 andRMAX2 is typically the maximum radius of influence of the surface and upper air station,respectively. The approximate length (km) of RMAX1 and RMAX2 is shown in the figure asblack solid lines. The blue circles represent approximate values (km) of R1 valuesrepresentative of all surface stations. In complex terrain the R1 value is usually smaller thanthe RMAX value. The pink circle represents the R2 value of the upper air station for level 2and aloft (13)Figure 3-1.Example showing how to estimate TERRAD. Usually, (ridge (km) to ridge (km) ) / 2, plus add 1 or 2 km. A typical value for TERRAD in this example would be 10km (19)Figure 3-2.Aerial photograph of a typical aluminum plant showing rows of potrooms (23)Figure 3-3.Shows a cross-section of two adjacent buildings with dimensions defined (Schulman and Scire, 1980). The GUI screen shot below from CALPRO shows the Line Source Inputsection (25)Figure 3-4.CALPRO GUI screenshot showing the CALPUFF user input control screen for entering line source data (25)Figure 3-5GUI screenshot from CALPRO showing the CALPUFF user input control screen for the average properties for line sources (26)Figure 3-6Figure shows the difference between point source plume rise and line source plume rise (Scire and Schulman, 1981). If you treat a line source as a set of too few point sources youcan seriously under or overpredict the plume rise (27)Figure 3-7Comparison of AERMOD and CALPUFF predictions of line source impacts from the Arkadelphia Arkansas SF6 tracer study compared to BLP predictions. This study shows theimpacts of the line sources alone (28)Figure 3-8. Predictions of 1-hour average SO2 concentrations at the downwind Alcoa Tennessee monitor for 1977 versus Observations and models, CALPUFF, BLP and AERMOD. The BLP resultsbased on Version 1.1 of the model as well as the current version of BLP on the U.S. EPA website (with modifications to the meteorological file to allow it to run) are shown. CALPUFFclosely matches BLP results while AERMOD significantly overpredicts the observedconcentration measurements (29)Figure 3-9CALPUFF peak, 1-hr average concentration map using 1 hour meteorological data and default calm threshold of 0.5 m/s. Computed turbulence parameters were used assuming thedefault minimum σv of 0.5 m/s (33)Figure 3-10CALPUFF peak, 1-hr average concentration map using 10-minute meteorological data and default calm threshold of 0.5 m/s. Real turbulence parameters were used with a minimum σvof 0.2 m/s, σw was left unchanged at the model’s default values (34)Figure 3-12CALPUFF computed σv using model defaults and one hour meteorology. (It is always preferable to use real measured values of real time turbulence wherever possible) (39)Figure 3-13.Real 10-minute measured σv. (CALPUFF can read this real time data directly) (39)Page Table 2-1.Table shows the difference in effort required by the user to run CALMET in three different modes, (1) the most simple a No-Obs mode, (2) a Hybrid approach which combinesobservations with prognostic model data, and (3) an Observations only approach – whichrequires the most decisions and effort by the user (8)Table 2-2.Model Option Switches for No-Obs Simulations (9)Table 2-3.Tabulated List of Various Methods for Including Meteorological Data into CALMET. The list is detailed in order of decreasing preference (15)Table 3-1.Annual Average SO2 Concentrations (µg/m3) at Alcoa, TN for 1976 and 1977. Observed and predicted concentrations using the BLP, CALPUFF and AERMOD models (29)Table A-1.An Explanation of the 7 Critical User-Defined, Site Specific Parameters When Using Observational Data in CALMET (51)Table A-2.Explanation and Recommendations for the List of Key CALMET Model Options (54)Table A-3.Explanation and Recommendations for the Overwater Surface Fluxes Switches (58)Table A-4.Explanation and Recommendations for the List of Key CALUFF Model Options (61)SCOPE OF WORK AND BACKGROUNDA.1 IntroductionTRC’s Atmospheric Studies Group has been approached by the Office of Environment and Heritage, (OEH), NSW to prepare Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for inclusion into the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW.To ensure scientific rigueur and consistency in application, the OEH has requested that TRC’s Atmospheric Studies Group provide where possible recommended settings for CALMET and CALPUFF in the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW. The OEH have in particular asked for generic guidance on determining the site specific model options and guidance for recommended settings for a range of conditions and model scenarios.A.2 Requirements of the NSW OEH1.Generic guidance for setting site specific model options in CALMET and CALPUFF. Theguidance is to be suitable for inclusion in the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW. Where possible, provide examples to demonstrate the guidance.2.The recommended model option settings for CALMET and CALPUFF for modelling in thefollowing conditions and scenarios:plex terrain;b.Buoyant line plumes;c.Shoreline fumigation;d.Inversion break-up fumigation; ande.Low wind speed/calm conditions - if the recommended model settings include the use of10 minute average meteorological data, model option settings are also to berecommended for the use of 1 hour average meteorological data.The recommended model option settings are to be supported by the results of model evaluation studies. A discussion on the sensitivities to changes in model settings is to be provided.3.Optimal methodology to incorporate meteorological data in CALMET. In particular, therecommended methodology to incorporatea.Surface and upper air meteorological observations (diagnostic); andb.Surface and upper air meteorological numerical predictions (prognostic).In recommending the optimal methodology a number of different techniques for incorporating meteorological data should be evaluated. The recommended optimal methodologies are to be supported by the results of model evaluation studies.4.Discussion on the appropriate procedures for evaluating CALMET and CALPUFF modellingresults.1. INTRODUCTIONThe CALPUFF modeling system provides a non-steady state modeling approach which evaluates the effects of spatial changes in the meteorological and surface characteristics. It offers the ability to treat stagnation, multiple-hour pollutant build-up, recirculation and causality effects which are beyond the capabilities of steady-state models. The CALPUFF modeling system was adopted by the U.S. EPA as a Guideline Model for long range transport applications and, on a case-by-case basis, for near-field applications involving complex flows (Federal Register, April 15, 2003, Pages 18440-18482). CALPUFF is also recommended by both the Federal Land Managers Air Quality Workgroup (FLAG, 2000, 2008) and the Interagency Workgroup on Air Quality Modeling (IWAQM, 1998). It has been adopted for world-wide use by the United Nations International Atomic Energy Agency (IAEA). CALPUFF is widely used in many countries (over 100 countries) throughout the world. In several countries it has been incorporated as a regulatory model.CALMET is a diagnostic meteorological model that produces three-dimensional wind fields based on parameterized treatments of terrain effects such as slope flows and terrain blocking effects. Meteorological observations are used to determine the wind field in areas of the domain within which the observations are representative. Fine scale terrain effects are determined by the diagnostic wind module in CALMET. CALPUFF is a non-steady-state puff dispersion model. It accounts for spatial changes in the meteorological fields, variability in surface conditions such as (elevation, surface roughness, vegetation type, etc.), chemical transformation, wet removal due to rain and snow, dry deposition and terrain influences on plume interaction with the surface.This document is divided into several sections. The first section provides an introduction to the CALMET/CALPUFF modelling system. The second section provides guidance for specific model options in CALMET and CALPUFF and also discusses the optimal methodology to incorporate meteorological data into CALMET. The third and fourth sections provide recommended model settings for complex terrain, buoyant line sources, shoreline fumigation, inversion break-up fumigation and low wind speed and calms. While Section five looks at current best recommended model evaluation procedures for both CALMET and CALPUFF.Appendix A contains the model option tables.2.GUIDANCE ON CALMET CONFIGURATIONS2.1 OverviewThe aim of this section is to provide model guidance for setting site specific model options in CALMET and CALPUFF and also to provide the optimal preferred methodology for incorporating meteorological data into CALMET. For the sake of brevity, Appendix A, TablesA-1 to A-4 contain the detailed model option switches.It is important to note that it is impossible to specify a single set of options/user-defined factors for every circumstance as some factors depend entirely on the meteorological and geophysical characteristics of the model domain along with their associated site specific source characterization. The model option switches which are provided in Appendix A for both CALMET and CALPUFF provide the best recommended guidance.2.2 General Guidance for CALMETOverviewCALMET2.2.1The CALMET meteorological model consists of a diagnostic wind field module and micrometeorological modules for overwater and overland boundary layers (Scire et al., 2000a). When using large domains, the user has the option to adjust input winds to a Lambert Conformal Projection coordinate system to account for the Earth's curvature. The diagnostic wind field module uses a two-step approach to the computation of the wind fields (Douglas and Kessler, 1988). In the first step, an initial-guess wind field is adjusted for kinematic effects of terrain, slope flows, and terrain blocking effects to produce a Step 1 wind field. The second step consists of an objective analysis procedure to introduce observational data into the Step 1 wind field in order to produce a final wind field. An option is provided to allow gridded prognostic wind fields to be used by CALMET, which may better represent regional flows and certain aspects of sea breeze circulations and slope/valley circulations. The prognostic data as a 3D.DAT file can be introduced into CALMET in three different ways;-as a replacement for the initial guess wind field-as a replacement for the Step 1 field-as observations in the objective analysis procedureThe preferred choice is to use gridded prognostic meteorological data as the initial guess wind field. These options are discussed in detail below.2.3 Methodologies for Running CALMETThe CALPUFF modeling system can be run in several modes requiring different types of meteorological data. The following lists three modes available to run CALMET and a fourth mode using other meteorological processors.1.CALMET No-Observations (No-Obs) Mode. CALMET using gridded numerical modeloutput (e.g., from the MM5, WRF, RAMS, RUC, Eta or TAPM models). No surface, upper air or buoy observations are used in No-Obs mode.2.CALMET Hybrid Mode. CALMET run using a combination of gridded numericalmeteorological data supplemented by surface and optional overwater buoy data.3.CALMET Observations-Only (Obs) Mode. – CALMET using observed surface andupper air data, plus optional buoy data.4.Single meteorological station dataset. CALMET is not used but rather single stationmeteorological data is passed directly into CALPUFF from a steady-state plume processor. Examples of single station datasets are those used to drive the AERMOD, AUSPLUME, CTDMPLUS or ISCST3 models. CALPUFF can be driven with any of these meteorological datasets.If good quality gridded prognostic meteorological data are available, CALMET No-Obs mode is recommended as the preferred method for regulatory screening modeling. This recommendation is based on the following factors: (a) No-Obs mode allows the important benefits of the non-steady-state approach in CALPUFF to be included in the dispersion modeling (e.g., spatially varying meteorology and dispersion, causality, recirculation, stagnation, pollutant build-up, fumigation, etc.); (b) No-Obs mode makes use of three-dimensional, hourly prognostic meteorological data often available at high resolution to drive CALMET and CALPUFF; (c) No-Obs mode greatly simplifies the preparation of the CALMET inputs because a large number of input variables dealing with observational data are not required and the difficulties of dealingwith potentially incomplete observational datasets are eliminated; (d) No-Obs mode provides a relatively straightforward approach that facilitates agency review and approval of theCALMET/CALPUFF simulations. The level of effort to run CALMET in No-Obs mode is similar to that required to run the AERMOD terrain and meteorological processors (although the output files will be much larger with CALMET). Depending on the results of the initial No-Obs simulations, additional refinements can be made to the meteorological fields by adding meteorological observations to CALMET.Table 2-1 shows the differences in important CALMET model option switches between the “no-observations” (No-Obs) simulation, vs. the hybrid prognostic observation approach, vs. the observation-only approach. The variables in bold are site specific and care is needed in their choices. All these variables are detailed in Appendix A. Each of the approaches is discussed below.2.3.1 No-Observations ApproachWhen run this way, CALMET uses gridded wind fields generated by a numerical prognostic model such as MM5, WRF, RUC, RAMS, Eta and TAPM in the form of a three dimensional data file, known as a 3D.DAT file. The procedure permits the prognostic model to be run with a significantly larger horizontal grid spacing and different vertical grid resolution than that used in the diagnostic model. This option allows certain features of the flow field such as the sea breeze circulation with return flow aloft, which may not be captured in the surface observational data, to be introduced into the diagnostic wind field results.Existing 3D.DAT files are available (see below) or can be obtained by running one of the prognostic models. Existing 3D.DAT files can be used directly in CALMET. If new prognostic modeling is used, the CALMET-compatible 3D.DAT file is created by running independent modules, CALMM5, CALWRF, CALRUC, CALRAMS, CALETA or CALTAPM on the numerical model output in their individual model data format. The 3D.DAT file contains data of horizontal and vertical velocity components, pressure, temperature, relative humidity, vapor, cloud, rain, snow, ice and graupel mixing ratios. Depending on the base model used and also the configuration switch settings within that model, the output may also contain solar and long wave radiation, sea surface temperature, 2m air temperature, precipitation amount and other variables.There are many important significant advantages in running the model in No-Observations mode using gridded prognostic data. These are listed and described briefly below;Spatial Variability in the Horizontal and Vertical. The three-dimensional wind field reflects local terrain and mesoscale winds, temperature and stability variations and offer advantages in terms of representing horizontal and vertical spatial variability over point (observation) measurements.Simplicity of No-Obs Run. It is easy to load a 3D.DAT file into CALMET and execute. The only other input file required is the geophysical (terrain and land use) file and the control file with user switch settings. Three-dimensional MM5 (Fifth Generation NCAR/PENN State Mesoscale Model) data are currently available for all of New South Wales for three years (2006-2008) at 12-km horizontal resolution for 40 vertical levels at the official CALPUFF web site () or data can be generated with customized runs of any of the readily available prognostic models (MM5, WRF, TAPM, RAMS). Using existing data is generally much easier than running the prognostic models, which depending on the model may require significant effort.Fast and Efficient – By using an already prepared 3D.DAT file, no additional effort is required to prepare other observational data files or deal with missing data.No Additional Data Required – A big advantage of No-Obs mode is that no additional data files other than a geophysical data file is required. The 3D.DAT file contains three-dimensionalhourly profiles of wind speed, wind direction, temperature, humidity and pressure, and usually contains precipitation, solar and long wave radiation, sea surface temperature and cloud information (ceiling height and cloud amount are derived variables in CALMET in No-Obs mode). Issues related to the use of observational data such as collecting surface, upper air, precipitation and buoy station data, running the various processor programs and dealing with missing data are all eliminated in No-Obs mode making the CALMET runs straightforward.Most Decision Making by the User is Eliminated - By using existing 3D.DAT files in No-Obs mode, the number of decisions required of the user when preparing the CALMET control file is substantially reduced. The value of TERRAD and a few other fairly straightforward variables need to be specified by the user. No-Obs mode eliminates the need for decisions on 6 of the 7‘critical variables’ because observational data are not used. See Section 3.2.3 for a description on how to compute TERRAD.No Overwater Data Required – For model domains over coastal regions, meteorological data over the water is very important when considering plume transport across the sea/land interface. Sea surface temperature and air-sea temperature differences over the water will usually be embedded in the 3D.DAT file (depending on the prognostic model).When good quality prognostic fields are available, the No-Obs simulation should be a reasonable predictor of the results of a refined simulation (e.g., hybrid mode or obs-only mode) where good quality observational data are added to the prognostic data. The quality of the prognostic simulation can be assessed by quantitative and qualitative tools provided as part of the CALPUFF software system.2.3.2 Hybrid ModeRunning CALMET in Hybrid mode can be considered an ‘advanced model simulation’, or,‘refined model run’ since it combines the numerical prognostic model data in a 3D.DAT file along with surface and overwater observational data. More work is required by the user as preparation is required in the collection and formatting of the surface observational data, upper air data and optional overwater stations and precipitation stations. Plus careful consideration needs to be given with respect to the Seven Critical CALMET parameters discussed in 2.4, below.Table 2-1. Table shows the difference in effort required by the user to run CALMET in three different modes, (1) the most simple a No-Obs mode, (2) a Hybridapproach which combines observations with prognostic model data, and (3) anObservations only approach – which requires the most decisions and effort by theuser.Description No-ObservationsMode(No-Obs)Hybrid Mode -Prognostic ModelData +ObservationsObservations OnlyModeData Preparation Low Medium HighEase of Use Most Simple Requires more effort Requires significantlymore effortCALMET Variables (variables that are in bold require site specific decision making )NM3DNOOBSICLOUDIPROGTERRADNOOBSNOWSTA (opt)NSSTANPSTA (opt)NM3DICLOUDIEXTRPIPROGRMAX1RMAX2RMAX3TERRADR1R2NOOBSNUSTANOWSTA (opt)NSSTANPSTA (opt)ICLOUDIEXTRPBIASIPROGRMAX1RMAX2RMAX3TERRADR1R2Input Files CALMET.INP CALMET.INP CALMET.INP GEO.DATGEO.DATGEO.DAT 3D.DAT 3D.DATUP.DATSURF.DATSURF.DATPRECIP.DAT (optional) PRECIP.DAT (optional)SEA.DAT (optional) SEA.DAT (optional)There are two ways to introduce 3-D prognostic wind data into CALMET when using prognostic data combined with observations. The first and preferred option is prognostic data as the initial guess field. In this approach the coarse grid scale prognostic data are interpolated to the CALMET fine-scale grid. The diagnostic module in CALMET will then adjust the initial guess field for kinematic effects for terrain, slope flows and terrain blocking effects using fine-scale CALMET terrain data to produce a Step 1 wind field. Observations are then introduced into the Step 2 wind field. The second approach is to use prognostic wind data directly as the Step 1 wind field. This field is then adjusted using observational data, but additional terrain adjustments at the scale of the CALMET grid resolution are not made. The second approach is not normally recommended.All the advantages are the same as for the No-Obs run detailed above, but with additional complications such as preparing the observational data, optimizing model input to blend the observations properly with the prognostic data, replacing missing data and making careful site specific choices with respect to several parameters in the CALMET control file. Relevant useful references are; Wu et al (1998), Scire and Robe (1977) and Robe and Scire (1998).Only2.3.3 ObservationsThis approach ‘Observations only’ relies on standard hourly surface and twice-daily upper air data and optional hourly precipitation and overwater data to provide the necessary requirements for the computations of the micrometeorological modules for overwater and overland boundary layers.Computation of the wind field in Obs-only mode is a two-step approach in CALMET which uses the observations twice, once to create the initial guess wind field which is then adjusted for kinematic effects of terrain, slope flows and terrain blocking effects to produce the Step 1 wind field. The second step consists of an objective analysis procedure to introduce observational data, ‘more formally’ into the Step 1 wind field to produce a final wind field.As a minimum CALMET must be provided surface hourly data from one or many stations as well as radiosonde upper air data at intervals no more than 14 hours apart. Overwater stations and precipitation data are optional. This modeling approach is advantageous in regions where there is good representative surface and upper air data near to the facility and the expected area of impact is nearby, i.e., within a few to several kilometres. However, some complicated choices need to be made, especially with respect to the radiosonde station which may suffer from missing data both in-between levels and missing profiles altogether. Further, unless the upper air station is near to the facility (within 10 – 50km depending on topography) it is not likely to be representative. As a result the user is left with several critical choices to make which can significantly affect the final outcome of the model runs.2.3.4 Single Station MeteorologyIt is recommended to run CALPUFF with a full 3-Dimensional wind field and temperature field, as well as two-dimensional fields of mixing heights and other meteorological variables. However, in some near-field applications, when spatial variability of the meteorological fields may not be significant (e.g., uniform terrain and land use); the single station data file may be used. CALPUFF supports the following single station file formats; AUSPLUME, ISCST3, CTDMPLUS and AERMOD. CALPUFF assigns the single value of each variable read from the single station file to all grid points, resulting in a spatially uniform field.Even when using single station meteorological data, some (but not all) benefits of the non-steady-state approach over steady-state models can be realized. For example, the time required for plume material to reach a receptor (the causality effect) is accounted for in the puff transport, and curved trajectories and variable dispersion and stability conditions over multiple hours of transport. . Secondly, the CALPUFF model has ‘memory’, in that each hour’s emissions is retained and may impact concentrations during a subsequent hour. As a result, pollutant build-up during light wind speed and calm conditions can be accounted for in the non-steady-state approach. Also, plume fumigation associated with inversion break-up can be simulated as a result of pollutant memory effect. What is lost when using single station meteorological data is the spatially variability of winds, stability and turbulence fields as may occur due to changes in land use type (especially land vs. water), terrain channeled flow, and mesoscale features such as a land-sea breeze circulation.This option is only recommended for those near field applications where spatial variability in the winds and dispersion characteristics are not considered significant. Some of the advanced terrain options of CALPUFF cannot be used with this approach. Other options may require additional meteorological parameters be added to the standard single station files as ‘extended data records’. For instance precipitation is needed for wet deposition modeling, and, solar radiation and relative humidity data are needed to use the chemical transformation calculations of SO2 and NO x in CALPUFF.runsModel2.3.5 ScreeningIn summary, the No-Obs approach using ready prepared three dimensional data files is recommended for screening runs due to the benefits of using 3-D meteorological fields, ability to perform dispersion calculations within a non-steady-state framework, and ease of use considerations. The results of a No-Obs mode simulation of CALMET/ CALPUFF when used with good quality prognostic data is expected to give a good estimate of a refined run.。
地平线报告
⌛️
教育与科技创新的相互促进
• 人才培养:教育改革培养创新人才
• 科技创新:人才推动科技发展和创新
谢谢观看
THANK YOU FOR WATCHING
Docs
02
大数据挖掘的技术方法
• 数据清洗:去除噪声和异常数据
• 数据集成:整合多源数据的一致性
• 数据分析:挖掘数据中的关联和规律
03
大数据应用的实际案例
• 金融风控:信用评估、欺诈检测
• 医疗诊断:疾病预测、治疗方案优化
• 市场分析:消费者行为、市场趋势预测
02
新兴科技领域的突破性发展
5G通信技术的快速普及与应用
在线教育的发展趋势
• 市场规模:用户数量和市场价值的增长
• 技术创新:虚拟现实、人工智能等应用
• 教育内容:多元化、个性化的课程
在线教育的发展挑战
• 教育质量:教学效果和学习体验
• 教育公平:资源分配和机会均等
• 法规监管:行业规范和法律责任
在线教育的实践与探索
• 平台模式:MOOC、在线教育平台等
地平线报告:未来科技趋势分析
DOCS SMART CREATE
CREATE TOGETHER
DOCS
01
全球科技发展趋势概述
人工智能与机器学习的技术进步
人工智能技术的发展阶段
• 专家系统:20世纪60年代至80年代,基于知识和规则的解决方案
• 机器学习:20世纪80年代至90年代,基于数据的算法改进
数据隐私保护的法律法规
• 欧盟GDPR:数据保护的基本法规
• 美国CCPA:加州消费者隐私法案
• 中国网络安全法:数据保护和网络安全的法规
2023地平线报告(基础教育版)1500字
2023地平线报告(基础教育版)1500字根据2023年地平线报告,以下是有关基础教育的一些重要发现和建议。
发现:1. 学生参与度的提高:根据调查结果,学生参与度在过去几年中有所提高。
这可能是由于更多的互动教学方法被采用,以及学校和家庭之间的合作更加紧密。
2. 提高学生创造力:由于未来的工作环境变化迅速,对学生创造力的需求也日益增长。
教育环境应该鼓励学生独立思考、解决问题和创新。
3. 数字化教育的普及:数字化教育在过去几年中得到了广泛的应用,学校需要继续加强对数字技术的整合和利用,以增加学生的数字素养和技术能力。
建议:1. 提供多样化的学习体验:学校应该采用多种教学方法,包括实践、合作学习和项目制学习,以满足不同学生的需求。
此外,学校应该鼓励学生参与课外活动和社区服务,以培养他们的领导和团队合作能力。
2. 培养创造力和创新能力:学校应该鼓励学生发展创造力和创新意识。
教师可以使用课堂讨论、问题解决任务和实践项目来激发学生的创造力。
学校还可以与企业和社区合作,提供实践机会,鼓励学生将所学知识应用于实际情境中。
3. 整合数字技术:学校应该加强对数字技术的教学和应用。
教师应该接受相关的培训,以提高他们的数字素养和教学技能。
学校应该提供必要的设备和资源,支持学生在课堂上使用数字工具进行学习和创造。
4. 促进社会情感学习:学校应该注重培养学生的社会情感学习能力,包括情商、人际关系和公民责任。
学校可以开设相关课程或提供相关活动,帮助学生了解和处理情绪,提高他们的合作和沟通能力,培养他们的公民意识和社会责任感。
5. 改善评估方法:学校应该采用综合的评估方法,以评价学生的综合能力和发展潜力,而不仅仅是基于标准化考试成绩。
评估应该包括学生的学术能力、创造力、合作能力和社会情感能力。
总之,地平线报告强调了基础教育需要关注学生的主动参与和创造力的培养,加强数字化教育的应用,培养学生的社会情感学习能力,并改善评估方法。
这些建议旨在为学生提供更加丰富、灵活和有意义的学习体验,以适应未来的社会和职业需求。
2011地平线报告
2011地平线报告自2005年以来,地平线年度报告成为了ELl与NMC这两大组织最引人关注的合作项目,来自两个组织的成员参与了该研究报告的撰写和发布。
新媒体联盟(NMC)是一个非营利性机构,在全球范围内集中致力于开发和利用新媒体和新技术。
它的成员单位是全世界近300个最受认可的高校、博物馆、学习中心、基金会等教育及学习机构。
近20年来,联盟和它的成员致力于探索和开发在学习、研究和创造性探究方面的应用程序的新兴技术。
ELl是一家致力于通过信息技术革新来提高人们的学习水平的高等教育研究机构,是美国高校教育信息化协会(EDUCAUSE)项目的开创者。
当EDUCAUSE对用技术的手段来促进高等教育萌发兴趣之时,ELl专门为此开发了创新性的技术,并将其运用到提高学习水平和促进教学改革的实践中。
综述地平线年度报告是一份新媒体联盟(NMC)基于地平线项目的持续工作报告。
全面的投入研究开始于2002年,描述了新兴科技可能会在未来5年左右的时间里对全球各种大型企业产生的各种重大影响。
本卷,2011年的地平线报告,探讨新兴技术的潜在影响,并在教学、学习和创造性的调查中使用。
这也是第八个在高等教育环境中以关注新出现的技术为核心的年度系列报告。
为了撰写这个报告,地平线项目的咨询委员会邀请在教育、科技、商业和其他领域的专家参与讨论。
这个讨论对话吸收新媒体联盟和董事会的专业技术,以获得更大范围的有关资源、研究现状和实践。
这些咨询委员会的交流是地平线研究报告的焦点,本报告会详细介绍这些领域非常重要的专家。
每一期的地平线报告会介绍六个在未来的一到五年期间、三个使用阶段内,在以教育为主的组织机构里可能成为主流的新兴技术或实践。
同时展示的还有在相同时问段内即将改变我们教育工作方法的挑战和趋势。
在短短的几个星期中,NMC 经过对这些资源的仔细推敲,依据他们可能对教育产生的影响选择了本报告中的六个主题。
每个主题都提供了切实可行的模型,以及获得更加详细的信息的途径。
地平线报告模板制作
地平线报告模板制作背景与目的地平线是一家专注于人工智能技术的企业,每年定期发布技术报告,以展示公司的技术水平和发展情况。
这些报告需要一个统一的模板,以确保视觉上的一致性和易读性。
因此,制作一个地平线报告模板对于公司非常重要。
本文的目的是介绍如何制作一个地平线报告模板,以确保报告的一致性和美观性。
步骤与方法步骤1:确定报告样式在制作报告模板之前,我们需要确定报告的样式。
样式决定了报告在视觉上的表现形式,如字体、颜色、排版等。
在地平线的技术报告中,我们通常使用简洁明了、大方得体的样式,以便于读者理解和阅读。
步骤2:设计报告页面使用设计软件(例如Adobe Indesign、Sketch等)设计报告页面。
在设计页面时,要注重以下几点:1.页面布局要合理,让报告易于阅读。
2.使用字体要统一并保证易读性,尤其是报告标题、正文字体的选择。
3.在页面中添加必要的元素,如图表、统计数据等。
4.考虑到不同应用场景,设计报告的形式要兼顾打印和电子阅读两种情况。
步骤3:代码实现在完成设计之后,需要将设计转换成代码实现。
这种实现方式通常使用HTML、CSS和JavaScript等前端技术来实现。
在实现代码时,需要考虑到以下几点:1.代码要应用到不同的报告页上,保证各个页面之间的一致性和连贯性。
2.需要考虑浏览器兼容性和稳定性。
3.尽量使用已经编写好的库和框架,以简化代码编写和提高代码可读性。
4.对于一些特殊效果,需要考虑到它们在不同的屏幕和设备上的适配问题。
步骤4:测试和调试在完成代码实现之后,需要对代码进行测试和调试,以保证模板在各种不同环境下的正确性和稳定性。
需要测试的内容包括模板的视觉效果、响应式布局、交互效果、页面加载速度、报告生成效率等等。
步骤5:完成模板在测试和调试通过后,就可以将模板交给相关部门使用了。
需要注意的是,在交付模板之前,需要对整个模板进行一次全面的审查。
这将帮助我们发现并解决可能存在的问题,确保模板能够完美地呈现在各种不同的场景中。
2017地平线报告(基础教育版)
2017地平线报告(基础教育版)《2017地平线报告(基础教育版)》由美国新媒体联盟正式授权北京开放大学地平线报告项目组翻译并发布。
2017地平线报告(基础教育版)聚焦最有可能影响今后五年(2017-2021)技术规划和决策制定的六项主要趋势、可能阻碍新技术采用的六个关键挑战、基础教育应用的六项重要技术进展—创客空间、分析技术、人工智能、机器人、虚拟现实、物联网。
多年来,地平线系列报告对于我国基础教育信息化发展,尤其是推动技术在教育领域的应用具有重要参考价值。
基础教育的发展动向对地平线报告的六大趋势、六个挑战和六项技术进行元分类,从六个方面反映出基础教育的发展动向:1、增加学习机会和便捷性。
人们希望能够随处学习和工作,不断地获取学习资料,彼此之间建立联系。
学校为教职员工、学生创建更多的学习方法和平台方面取得了很大进步,师生可以随时随地进行合作,提高了工作效率。
实时联网设备的出现,为随时随地的学习提供了更大的灵活性,许多学校也相应升级了他们的IT基础设施。
虽然移动和数字学习策略现在有了很大的发展,但是高速宽带接入的不同情况,以及不同学生群体(社会经济地位、性别等)之间的差距促使学校领导者不断评估其学习内容和产品的成本、机会与质量。
2、激励教学创新。
如果教育被视为推动全球经济发展的工具,那么它必须要像北极星一样引领社会进入下一个大事件,照亮新的思想,以解决当前紧迫的挑战,创造机会,塑造美好未来。
从这个意义上来说,基础教育机构也可以成为培养发明和发展的孵化器,不仅可以促成积极趋势的形成,更重要的是为所有人形成最重要的影响:毕业生不仅为上大学做好准备,还满足了不断发展的就业市场需求,而且重新定义和提高了他们即将进入的环境。
基础教育中拓展创新的领域很多,推进创业思维文化和设计新形式的人工智能只是其中两个方面。
3、开展实景体验学习。
无论是基于项目的学习、基于挑战的学习,还是基于能力的学习,这些教学法上的发展趋势为学生创造了更丰富、更具有实操性、更接近真实世界的体验。
地平线车辆解决方案
地平线车辆解决方案地平线是一家致力于自动驾驶技术的企业,提供了一系列车辆解决方案,包括自动驾驶系统、独立车辆控制单元、车载计算机等。
此处将介绍地平线车辆解决方案的优势、特点和应用场景。
优势地平线车辆解决方案的优势包括:自动驾驶地平线自动驾驶系统基于深度学习和感知技术,能够实现高度自动化驾驶。
该系统具有高精度、高安全性、高适应性和高实时性等特点,可以在各种复杂道路条件下实现自动驾驶。
独立车辆控制单元地平线独立车辆控制单元具有高性能、低功耗、易于集成和可靠性强等特点。
它可以与各种传感器和执行器进行快速、准确的通信和数据交换,并提供实时的控制功能,保障车辆在行驶过程中的安全与稳定。
车载计算机地平线车载计算机具有高性能、多功能、易于扩展和低功耗等特点。
它可以对车辆的感知和控制等各种数据进行实时处理和分析,并支持各种通信接口和软件框架,为车辆的智能化提供有力的技术支持。
特点地平线车辆解决方案的特点包括:智能化地平线车辆解决方案基于深度学习和感知技术,可以对车辆的周围环境进行精确的感知和识别,实现车辆的智能化决策和控制。
它可以自主完成各种操作,实现自动驾驶和智能运输等功能。
稳定性地平线车辆解决方案具有良好的稳定性和可靠性,能够在各种复杂环境下运行,并保证车辆在行驶过程中的安全。
它具有数据处理能力强、算法优化高、车辆控制精度高等特点,为车辆的稳定运行提供重要保障。
可靠性地平线车辆解决方案采用高品质的零部件和先进的技术,具有良好的可靠性和耐用性。
它可以在各种极端情况下运作,保证车辆在行驶过程中的安全。
它还提供完善的技术支持和售后服务,最大程度上保证车辆的稳定性和可靠性。
应用场景地平线车辆解决方案的应用场景包括:自动驾驶出租车地平线车辆解决方案可以实现出租车的自动驾驶功能,为乘客提供更加智能化、方便、快捷、安全的交通服务。
它还可以提高租车公司的运营效率,降低运营成本,提升竞争力。
物流运输地平线车辆解决方案可以为物流公司提供快速、准确、高效的交通运输服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017地平线报告(基础教育版)《2017地平线报告(基础教育版)》由美国新媒体联盟正式授权北京开放大学地平线报告项目组翻译并发布。
2017地平线报告(基础教育版)聚焦最有可能影响今后五年(2017-2021)技术规划和决策制定的六项主要趋势、可能阻碍新技术采用的六个关键挑战、基础教育应用的六项重要技术进展—创客空间、分析技术、人工智能、机器人、虚拟现实、物联网。
多年来,地平线系列报告对于我国基础教育信息化发展,尤其是推动技术在教育领域的应用具有重要参考价值。
基础教育的发展动向对地平线报告的六大趋势、六个挑战和六项技术进行元分类,从六个方面反映出基础教育的发展动向:1、增加学习机会和便捷性。
人们希望能够随处学习和工作,不断地获取学习资料,彼此之间建立联系。
学校为教职员工、学生创建更多的学习方法和平台方面取得了很大进步,师生可以随时随地进行合作,提高了工作效率。
实时联网设备的出现,为随时随地的学习提供了更大的灵活性,许多学校也相应升级了他们的IT基础设施。
虽然移动和数字学习策略现在有了很大的发展,但是高速宽带接入的不同情况,以及不同学生群体(社会经济地位、性别等)之间的差距促使学校领导者不断评估其学习内容和产品的成本、机会与质量。
2、激励教学创新。
如果教育被视为推动全球经济发展的工具,那么它必须要像北极星一样引领社会进入下一个大事件,照亮新的思想,以解决当前紧迫的挑战,创造机会,塑造美好未来。
从这个意义上来说,基础教育机构也可以成为培养发明和发展的孵化器,不仅可以促成积极趋势的形成,更重要的是为所有人形成最重要的影响:毕业生不仅为上大学做好准备,还满足了不断发展的就业市场需求,而且重新定义和提高了他们即将进入的环境。
基础教育中拓展创新的领域很多,推进创业思维文化和设计新形式的人工智能只是其中两个方面。
3、开展实景体验学习。
无论是基于项目的学习、基于挑战的学习,还是基于能力的学习,这些教学法上的发展趋势为学生创造了更丰富、更具有实操性、更接近真实世界的体验。
当学校把主动学习置于死记硬背之上时,学生们自身的作用也得到了重新认识。
学生曾经被认为只是知识学习的参与者和消费者,而创客文化在基础教育中的应用使他们成为知识生态系统的积极贡献者。
他们通过体验、实践和创造进行学习,以更具体和创造性的方式展示新获得的技能。
学生不必等到毕业才去改变世界。
然而,要在传统实践所形成的空间和范式上创造这些机会,教育机构将持续面临挑战。
4、跟踪和评估学业进展数据。
如果结果没有经过仔细的测量和分析,也未能根据结果来调整教育教学,新方法或技术的推广还有什么意义?教育机构越来越擅长撷取程序化数据。
这一原则已被应用于跟踪学生的成就、参与情况和行为,并利用这些数据为基础教育机构各部门、各校园的决策提供信息。
这些信息还通过自适应学习工具促进更加个性化的学习体验,分析需要改进的领域,并相应地为每个学生提供定制化内容。
随着这种数据驱动的话题在基础教育中激增,领导者必须考虑如何分析利用数据,以更全面的方式展现学生的成就,打破数据孤岛,拥抱共享文化,同时坚持道德和隐私标准,是利用数据中最重要的原则。
5、促进教学专业化。
更多地强调亲身实践、技术增强的学习已经影响了校园生活的方方面面,而教学是其中的核心推动力。
随着学生们能够经常开展创新、迭代和协作,教师的角色已经发生了改变,从“讲台上的圣人”转换成了“身边的向导”。
学生在解决复杂问题,探索新领域和获得具体技能时需要相应的辅导和指导。
从以学生为主体的课堂讨论深入到学习内容时,教师必须采用巧妙有效的方法来平衡以学生为中心的的教学模式。
学校有必要启动相应项目对积极的教学实践进行认可和大规模推广。
此外,正如需要提高学生的数字素养,教师也必须在教育机构的支持下参与持续的专业发展。
6、普及数字化素养。
技术和数字工具已经变得无处不在,但是当它们没有以有意义的方式被纳入学习过程时,可能会起反作用。
高等教育和当代职场需要精通数字化技术的职工,他们可以很容易地将新出现的各类媒体和技术应用到工作中。
促进这种高级素养的一个主要因素是人们认识到仅仅了解如何使用设备或某些软件是不够的;教职工和学生必须能够在工具和预期成果之间建立联系,以创新的方式利用技术,能够根据各种不同环境使用合适的技术。
这项举措必须由教育机构的各个部门协同开展与支持,因为数字化素养是贯穿教和学各个方面的主线。
在接下来的报告中,开始的前两部分着重分析了驱动技术决策和规划的关键趋势,以及可能阻碍新技术采用的挑战。
每一部分都明确讨论了趋势或挑战对基础教育组织的政策、领导力和实践的影响。
将政策、领导力以及实践这三个要素纳入进来意味着将管理、愿景和行动结合起来,从而促进积极的趋势和克服紧迫的挑战。
报告的第三部分重点介绍了消费者技术、数字化策略、使能技术、互联网技术、学习技术、社交媒体技术和可视化技术的重大进展,这些技术将在未来五年内影响基础教育。
加速基础教育采用技术的主要趋势1.长期趋势未来五年乃至更长时间,推动基础教育采用技术的关键要素。
(1)推进创新文化目前,学校已经被视为推动创新和创业的场所。
这一趋势的焦点已经从理解培养创新思想的价值转变为寻找方法以便复制到不同的、独特的学习机构中去。
过去一年的研究让我们能更好地了解学校是如何培育不同类型文化来促进改革的。
其中推进这一改革进程的关键点是要求基础教育改变其现状,接受把失败作为学习过程中的重要组成部分。
而将创业精神融入基础教育的行动也进一步承认,每一个伟大的想法都有开始的地方,学生和教育工作者们都可以配备需要的工具来激发真正的进步。
为了跟上改革的步伐,学校必须严格评估课程,并改革评估方法来消除阻碍新思想发展的障碍。
(2)深度学习策略在基础教育中,越来越多的人重视深度学习策略,威廉和弗洛拉·休利特基金会(William and Flora Hewlett Foundation)把它定义为在学生掌握学习内容的同时,培养其批判性思维、解决问题的能力以及协作学习和自主学习的能力。
为了保持学习的积极性,学生们需要了解现实世界,以及新的知识和技能带给他们的影响。
教学法将从被动学习转向主动学习,允许学生从新资讯中拓展思路,并学会怎样管控他们建立的主题活动。
具体方法包括基于问题的学习、项目式学习、挑战式学习以及探究性学习等,这些方法都在鼓励学生创造性地解决问题和主动实施解决方案。
2.中期趋势在未来三到五年内,推动基础教育采用技术的关键要素。
(1)对量化学习的日趋关注人们越来越多地对量化学习这种新的评价方式感兴趣。
这种方式需要教育工作者使用多种方法和工具来对学生在学业准备、学习过程、技能获取以及其他教育需求阶段,进行评估、量化和记录。
由于社会和经济因素重新定义了当今职业所需人才的能力,学校必须重新思考如何去界定、测量和证明学生掌握的学科知识和软技能(如创造力和协作能力)。
数据挖掘软件逐步融入到在线教育、移动学习和学习管理系统中,形成了新的学习环境。
这类环境利用数据分析和可视化软件能多维度、便利地描绘学习的相关数据。
在线上和混合课程中,数据可以展示出学生的行为是如何促进他们的进步以及影响学习效果的。
(2)重构学习空间传统教育依赖于以教师为中心的教学方式,讲座是知识传递的主要来源。
如今,人们正在拥抱以学生为中心的教学,这让学习者能更好地为未来职场做准备。
同时,教室设计的新方法正在支持这种转变。
此外,在建筑和空间规划方面的创新思维正在影响新学校基础设施的设计和建设,进而有可能对课堂实践和学生学习产生重大影响。
3.短期趋势在未来一到两年内,推动基础教育采用技术的关键要素。
(1)编程素养编程是指计算机能理解的一组规则,可以采用多种语言的形式,如HTML语言、JavaScript语言和PHP语言。
许多教育工作者认为,编程是一种激发计算思维的方式,这项技能需要将计算机科学知识与创造力、问题解决能力深度结合起来。
知名编程教学网站最近预测,到2020年,美国将有140万个计算机工作岗位,而只有40万计算机专业的学生来填补这一职位。
为了更好地让学生从较小的年纪开始学习,越来越多的学校领导和专家正将编程嵌入到基础教育课程中来。
世界各地的学校正在开设编程课,如让学生共同设计网站,开发教育游戏和APP,并通过建模和设计新产品来设计应对挑战的方案。
(2)增强STEAM学习近年来,人们越来越重视加强科学、技术、工程和数学(STEM)课程的学习,因为这些学科被广泛视为促进创新和促进国家经济增长的动力。
一些教育领导者认为,作为机构聚焦STEM学习的一种回应,有必要建立一个更加均衡的课程,如将艺术、设计和人文学科等整合到科学领域。
这一概念促进了STEAM教育的产生,在这里,A代表“艺术+”。
STEAM教育将这一定义扩展为一种基本理念,即所有学科都能且应该紧密地揉和在一起,以给学生提供一个如何把广泛的知识和技能在现实生活中相互联系的大图景。
换句话说,技术的使用不仅是与推进科学和工程技术的进步有关。
阻碍基础教育采用技术的重要挑战1.可解决的挑战(1)实景学习体验目前,带着学生接触现实问题和工作场景的实景学习体验在学校还没有普及。
实景学习被看作一些重要教学策略的支撑,它有着巨大的潜能让学习者沉浸在获得终身学习技能的环境中学习。
实景学习体验的方法包括职业培训、学徒制和某些科学调查。
实景学习强调以元认知反映和自我意识作为基础的重要性。
因而,越来越多的学校通过与更多的社区建立关系,与当地组织积极合作,让学习者可以体验到学校之外的未来生活和工作情境,并以此种方式来缩小学科知识与具体应用之间的差距。
(2)提高数字素养技术使用的生产性和创新性是21世纪实践的重要特征,这对在工作场所和其他领域取得成功是至关重要的。
数字素养超越了学习者所获得的孤立的技术技能,可使人产生对数字环境的更深理解,更能够直观地适应新环境,并与他人协作创建内容。
因此,学校应致力于发展学生的数字公民权,确保其能够负起掌握和使用技术的责任,包括混合式、在线学习环境和其他场合中的在线交流的礼仪、数字权利和责任等。
这类能力正在影响着课程设计、专业发展和面向学生的服务和资源。
由于数字素养牵涉众多因素,学校领导面临的挑战是获得更多公共机构的认可,并支持所有的利益相关者发展这些能力。
2.有难度的挑战(1)反思教师的角色教师越来越多地被期望能熟练掌握多种基于技术的方法,并用其来传递内容、支持学习者以及进行评价。
在有技术支持的课堂上,教师的主要责任从传递专业知识转变为构建学习环境,以帮助学生获得创造性探究能力和数字素养。
教育者现在扮演着指导者和教练的角色,为学生提供机会,引导他们自主规划学习路径,进而将其培养成为有责任的全球化公民,并激励他们树立终身学习的习惯。