导数的概念及几何意义
高考复习-导数的概念及几何意义
导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。
导数的概念及几何意义_基础
导数的概念及几何意义【要点梳理】要点一:导数的概念 1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim= 要点诠释:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数.(4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示. 要点二:导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示: ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.要点诠释:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.如图1.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.如图2,无论点P 在曲线上还是曲线外, 过点P 都可以作两条直线1l 、2l 与曲线相切.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.要点三:导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. 【典型例题】类型一:导数定义的应用例1. 用导数的定义,求函数()y f x x==x =1处的导数. 【思路点拨】三步法求函数在某点处的导数值. 【解析】先求增量:(1)(1)11y f x f x∆=+∆-=-+∆===再求平均变化率:y x ∆=∆ 求极限,得导数:01'(1)lim2x y f x ∆→∆==-∆.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.举一反三:【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - . 【解析】 ∵ )1()1(22x x y ∆+-+∆+--=∆+-,∴ 2(1)(1)23y x x x x x∆--+∆+-+∆+==-∆∆∆, ∴()'1=f -()00'(1)limlim 3=3x x yf x x ∆→∆→∆==-∆∆.【变式2】求函数 2()3f x x =在x =1处的导数.【解析】 ∵22(1)(1)3(1)363()y f x f x x x ∆=+∆-=+∆-=∆+∆,∴263()63y x x x x x∆∆+∆==+∆∆∆, 0lim(63)6x x ∆→+∆=,即(1)6f '=. ∴函数2()3f x x =在1x =处的导数为6 .【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.【解析】∵2200()()(1)(1)23()y f x x f x x x x x ∆=+∆-=--+∆+-+∆-=∆-∆,∴23()3y x x x x x∆∆-∆==-∆∆∆, ∴00(1)limlim(3)3x x yf x x ∆→∆→∆'-==-∆=∆.例2. 已知函数()24f x x=,求()f x '. 【解析】先求增量:2222444(2)()()x x x y x x x x x x ∆+∆∆=-=-+∆+∆, 再求平均变化率:224(2)()y x x x x x x ∆+∆=-∆+∆. 求极限,得导数:23004(2)8'limlim ()x x y x x y x x x x x∆→∆→∆+∆==-=-∆++∆.【总结升华】求导数的步骤和求导数值的步骤一样,叫三步法求导.举一反三:【变式1】求函数y=在(0,)+∞内的导函数.【解析】∵y∆==,∴y x ∆==∆==∴321lim2x y x -∆→'===-.【变式2】已知()f x =,求'()f x ,'(2)f .【解析】∵y ∆=∴yx ∆=∆==∴'()limx f x y ∆→'==.当2x =时,1'(2)4f ==.例3. 若0'()2f x =,则000()()lim2k f x k f x k→--=________.【思路点拨】【解析】根据导数定义:0000[()]()'()limk f x k f x f x k→+--=-(这时增量x k ∆=-),所以000()()lim2k f x k f x k →--000[()]()1lim 2k f x k f x k →+--⎧⎫=-⋅⎨⎬-⎩⎭000[()]()1lim21221.k f x k f x k →+--=-⋅-=-⨯=-【思路点拨】(1)有一种错误的解法:根据导数的定义:0000()()'()limk f x k f x f x k→--=(这时增量x k ∆=),所以 000000()()()()11limlim 21222k k f x k f x f x k f x k k →→----==⨯=.(2)在导数的定义中,增量x ∆的形式是多种多样的,但不论x ∆选择哪种形式,y ∆也必须选择与之相对应的形式.利用函数()f x 在0x x =处可导的条件,可以将已给定的极限式恒等变形为导数定义的形式.概念是解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题.举一反三:【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时, (1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【答案】(1)00(1)(1)1(1)(1)1lim lim '(1)1222x x f x f f x f f x x →→+-+-===(2)00(12)(1)(12)(1)lim 2lim 2'(1)42x x f x f f x f f x x→→+-+-===【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【答案】()()()()()()[]00000000000000000()()lim()()lim()()lim21lim 2lim 1()2'()22'()2x x x x x f x x f x x xf x x f x x f x x f x x xf x x f x xf x x f x x x x f x af x a∆→∆→∆→∆→∆→+∆--∆∆+∆--∆+∆--∆∆-∆-∆-∆-=-=-∆∆--∆=-==-==【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.【答案】 原式0000()()()()lim2h f x h f x f x f x h h→+-+--=000000()()()()1lim lim 2h h f x h f x f x h f x h h →→+---⎡⎤=+⎢⎥-⎣⎦ 0000()()1'()lim 2h f x h f x f x h -→--⎡⎤=+⎢⎥-⎣⎦[]0001'()'()'()2f x f x f x =+=. 类型二:求曲线的切线方程例4.求曲线21y x =+在点()12P ,处的切线方程.【思路点拨】利用导数的几何意义,曲线在点P (1,2)处的切线的斜率等于函数21y x =+在1x =处的导数值,再利用直线的点斜式方程写出切线方程. 【解析】先求切线的斜率()'1f :()()22001+111lim lim x x x y x x∆→∆→⎡⎤∆++∆⎣⎦=-∆∆ ()0lim +2=2x x ∆→=∆,由条件可知()1=2f ,由点斜式可得,过点P 的切线方程为:22(1)y x -=-,即2y x =.【总结升华】求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 举一反三:【变式】求曲线215y x x=++上一点2x =处的切线方程. 【答案】先求2'|x y =:∵22211(2)2+4222(2)x y x x x x x -∆⎛⎫∆=+∆+-=∆+∆+ ⎪+∆+∆⎝⎭,∴142(2)y x x x ∆-=+∆+∆+∆, ∴001115limlim(4)4=2(2)44x x y y x x x ∆→∆→∆-'==+∆+=-∆+∆.再求2|x y =:22119|=25=22x y =++.由点斜式得切线方程:()915--224y x =,即15480x y -+=. 【高清课堂:导数的几何意义 385147 例2】 例5.求曲线()3f x x =经过点(1,1)P 的切线方程.【思路点拨】本题要分点(1,1)P 是切点和(1,1)P 不是切点两类进行求解. 【解析】第一步:先求导函数.00()()limlimx x f x x f x xy y x ∆→∆→+∆-∆∆'==∆ ()()33322330222()lim3+3+=lim=lim 3+3+3=3x x x x x xxx xx x x x x x x x x x x ∆→∆→∆→+∆-∆-∆=+∆∆∆∆∆g g g第二步:验证点(1,1)P 是否在曲线上. 由于()11f =,所以P 在曲线上. 第三步:分类讨论. ①若点P 是切点,则切线的斜率为()'13f =,于是切线方程为13(1)y x -=-,即32y x =-; ②若点P 不是切点,设切点为()()3000,1x x x≠.则切线的斜率为()200'3f x x =,于是切线方程为:320003()y x x x x -=- . 由于切线经过点(1,1)P ,于是有3200013(1)x x x -=-,整理得:()()()()()()32322322200000000000023+1=22++1=221=21+11x x x x x x x x x x x x ()()2000=121x x x ()()200=12+1=0x x ,解得012x =-或01x =(舍去). 所以切线方程是131+(+)842y x =,即3144y x =+. 综上所述,所求切线方程为32y x =-或3144y x =+. 【思路点拨】求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程. 举一反三:【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程. 【解析】先求导函数:20()lim33x yf x x x∆→∆'==-∆.再验证:3(2)232=2f =-⨯,所以点(2,2)在函数()f x 图象上.最后讨论:(1)当点(2,2)是切点时,切线的斜率为(2)9f '=,则切线方程为:9160x y --=.(2)当点(2,2)不是切点时,设切点坐标为3000(,3)x x x -.则切线的斜率为200()33f x x '=-(02x ≠),所以切线方程为()320000(3)=33()y x x x x x ----. 代入点(2,2)得:()3200002(3)=33(2)x x x x ----整理得:0432030=+-x x ⇒0)2)(1(200=-+x x ⇒10-=x ,此时切线方程为2=y .综上所述,所求的切线方程为9160x y --=或2y =.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【解析】()200()()11'=limlim =x x f x x f x y x x x x x∆→∆→+∆--=-∆+∆ (1)由于点A 不在曲线上,设切点坐标为1,a a ⎛⎫ ⎪⎝⎭, 则切线的斜率为21'|=x a y a =-,切线方程为211()y x a a a -=--, 将()10A ,代入,得12a =.所以所求的切线方程为44y x =+ .(2)令2113x -=-,解得x = 所以斜率为13-的切线的切点为⎭或⎛ ⎝⎭.所以所求的切线方程为133y x =-+或133y x =--. 【高清课堂:导数的几何意义 385147 例3】【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.【答案】 0(2+)(2)'(2)lim x f x f f x∆→∆=∆ 3230(2)2(2)(2)(282)=lim x x a x b x a a b a x∆→+∆++∆++∆+-+++∆ 20lim 1286()128x a b x x a b ∆→⎡⎤=+++∆+∆=++⎣⎦ 0g(2+)g(2)g '(2)lim x x x ∆→∆=∆220(2)3(2)2(2322)=lim x x x x∆→+∆-+∆+--⨯+∆ 0lim(1)1x x ∆→=+∆= 由条件可知:(2)0f =且'(2)'(2)f g =⇒2,5a b =-=,所以切线l 的方程:2y x =-.类型三:导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【思路点拨】【解析】()0(2)(2)'2lim t T t T T t∆→+∆=∆ ()0012012015152+57=lim 120=lim 77+120=49t t t tt ∆→∆→⎛⎫⎛⎫++ ⎪ ⎪∆+⎝⎭⎝⎭∆∆ ()()1202=C /min 49T '︒ 表示太阳落山后2分钟蜥蜴的体温以()120C /min 49︒ 的速度下降. 【总结升华】解释导学的实际意义要结合题目中变化的事物(指自变量),它反映事物变化的快慢.举一反三:【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率). 【解析】00()()s t t s t s t t+∆-∆=∆∆ 220000000011[()()][]2212v t t a t t v t at tv at a t +∆++∆-+=∆=++∆ 2s t ∴=的瞬时速度是02v a +.【变式2】质点按规律()21s t at =+做直线运动(位移单位:m ,时间单位:s ).若质点在 2 s t =时的瞬时速度为8 m / s ,求常数a 的值.【答案】质点 2 s t =时的瞬时速度为()'28s =.∵()222(2)2(2)1214()s s t ―s a t ―a a t a t ∆=+∆=+∆+⨯=∆+∆-, ∴4s a a t t∆=+∆∆. ∴()0'2lim4t s s a t ∆→∆==∆, 所以48a =,即a =2.。
导数的概念和几何意义
导数的概念和几何意义导数是数学分析中的一个重要概念,广泛应用于各个学科领域中。
它不仅有着重要的理论意义,也具有丰富的几何意义。
首先,我们来了解导数的概念。
在数学上,导数可以理解为函数在其中一点上的变化率。
具体而言,设函数$y=f(x)$在其中一点$x_0$的邻近有定义,那么函数在此点的导数可以定义为:$$f'(x_0)=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中,$\Delta x$ 表示自变量 $x$ 在 $x_0$ 处的增量。
这个极限值即为导数。
在几何意义上,导数可以理解为函数图像上其中一点切线的斜率。
具体而言,设函数$y=f(x)$在点$x_0$处的导数为$k$,那么在点$(x_0,f(x_0))$处的切线的斜率为$k$。
这意味着,切线的斜率描述了函数在该点的变化趋势。
如果导数为正,代表函数在该点上升;如果导数为负,代表函数在该点下降;如果导数为零,代表函数在该点取得极值。
以一个简单的例子来说明导数的几何意义。
考虑函数$y=x^2$,我们可以求得其在点$x_0$处的导数为$2x_0$。
这个导数可以看做是函数$y=x^2$在点$x_0$处的切线的斜率。
比如,在点$(1,1)$处,导数为$2$,那么切线的斜率为$2$。
我们可以绘制出函数曲线$y=x^2$,并在点$(1,1)$处绘制出斜率为$2$的切线。
通过这条切线,我们可以近似描述函数$y=x^2$在点$(1,1)$处的局部行为。
导数的几何意义还可以通过函数图像的凹凸性来解释。
如果函数在其中一区间上的导数始终为正(或始终为负),则函数在该区间上单调递增(或单调递减)。
如果函数在其中一区间上的导数变号,则函数在该区间上存在极值点。
此外,如果函数在其中一点的导数为$0$,则函数在该点可能存在极值点,或者函数在该点处具有水平切线。
另外,导数还可以用于判断函数的连续性。
导数的概念及其几何意义教案
导数的概念及其几何意义教案导数的概念及其几何意义导数是微积分学中的一个基本概念,它不仅具有重要的理论意义,而且在实际应用中也有着广泛的用途。
本文将通过深入的理论探讨和几何意义的解释,帮助读者全面理解导数的概念及其应用。
一、导数的概念导数是函数的一种基本性质,它描述了函数在某一点上的变化率。
具体地说,设函数y=f(x),在某一点x=a处有定义,若存在极限lim_[h→0] (f(a+h)-f(a))/h ,那么这个极限就称为函数f(x)在点a处的导数,记作f'(a)或dy/dx|_(x=a)。
从定义中可以看出,导数表示了函数在某一点上的瞬时变化率,也即函数的斜率。
导数的绝对值越大,表示函数在该点上的变化越剧烈;导数为零表示函数在该点上没有变化;导数为正表示函数在该点上单调递增;导数为负表示函数在该点上单调递减。
二、导数的几何意义导数的几何意义可以通过理解切线的概念来解释。
对于一个函数,取其中一点P(x,y),在这一点上作一条切线,使得切线与曲线只有一个公共点P。
那么这条切线的斜率就是函数在点P处的导数。
通过这种解释,我们可以把导数理解为函数曲线在某一点上的局部近似线性化描述。
切线的近似线性特征使得我们可以使用直线的性质来研究函数曲线的性质。
我们可以通过判断切线的斜率的正负来确定函数的单调性;通过判断切线与x轴的交点来确定函数的根的存在性等等。
三、导数的应用导数在实际应用中具有广泛的用途。
下面列举几个典型的应用场景:1. 曲线的拟合与插值:通过函数的导数可以获得曲线的斜率信息,进而进行曲线的拟合和插值,从而更好地描述和预测曲线的变化。
2. 最优化问题:很多最优化问题可以通过导数的求解来解决。
求函数在某一范围内的最大值或最小值,我们可以通过求解导数为零的位置来得到答案。
3. 物理学中的速度和加速度:在物理学中,速度和加速度是描述物体的运动的重要概念。
通过对位移和时间的关系进行导数运算,我们可以得到速度和加速度的函数表达式,从而更好地分析物体的运动规律。
导数的概念及其几何意义
O P
β
y=f(x) Q
Δy M x
Δx
斜 率!
16
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着 点P逐渐转动的情况 . y
y=f(x) Q
割 线 T 切线
P
x
o
17
我们发现,当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ 有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.
即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δt 逐渐变小时,平均速度就越接 s 近t0=2(s) 时的瞬时速度v=20(m/s).
课前测练
5.已知物体运动的速度与时间的关系式v(t ) = t 2 + 2t + 2
4 Δt 则(1)在时间间隔[1,1 + Δt ] 内的平均加速度为_______;
1 x0 y . 1 x 0
例1:设f ( x) x 2 , 求f ' ( x), f ' (1), f ' (2)
思路:先根据导数的定义求f ' ( x), 再将自变量 的值代入求得导数值。 解:由导数的定义有
f ( x x) f ( x) ( x x) x f ' ( x)= lim lim x0 x0 x x x(2 x x) lim 2x x0 x
1.1.3导数的概念
回顾复习
1.平均速度近似反映了物体运动时的快慢程度,但要精 确地描述非匀速直线运动,就要知道物体在每一时刻运 动的快慢程度,要通过瞬时速度来反映. 设物体作直线运动的运动方程为s=s(t). 以 t0 为起 始时刻,物体在t时间内的平均速度为
数学知识点:导数的概念及其几何意义
数学知识点:导数的概念及其几何意义一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率上式中的值可正可负,但不为0.f(x)为常数函数时,瞬时速度:如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.函数y=f(x)在x=x0处的导数的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作或,即。
导函数:如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=切线及导数的几何意义:(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P 处的切线。
(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=。
瞬时速度特别提醒:①瞬时速度实质是平均速度当时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,函数y=f(x)在x=x0处的导数特别提醒:①当时,高考化学,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:导函数的特点:①导数的定义可变形为:②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,③可导的周期函数其导函数仍为周期函数,④并不是所有函数都有导函数.⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).导数的几何意义(即切线的斜率与方程)特别提醒:①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0=f′(x0)(x- x0).②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,④显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)。
导数的概念及运算、几何意义
导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。
导数的概念及几何意义
导数的概念及几何意义1. 平均变化率与瞬时变化率平均变化率:函数y=f(x)从x1到x2的平均变化率为,简记作:。
实例:①平均速度;②曲线割线的斜率。
瞬时变化率:函数y=f(x)在x=x0处的瞬时变化率是函数f(x)从x0到x0+Δx的平均变化率在Δx→0时的极限。
即=。
实例:① 瞬时速度;② 切线斜率。
2. 导数函数y=f(x)在x=x0处的瞬时变化率称为函数y=f(x)在x=x0处的导数。
记作f′(x0)或y′|x=x0,即f′(x0)=。
3. 割线斜率与切线斜率设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是=。
当点B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫作此曲线在点A处的切线。
于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,即k=f′(x0)=。
4. 导数的几何意义函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点A(x0,f(x0))处的切线的斜率。
相应地,切线方程为y-f(x0)=f′(x0)(x-x0)。
5. 过某点的曲线的切线方程的类型及求法(1)若已知点(x0,y0)为切点,则先求出函数y=f(x)在点x0处的导数,然后根据直线的点斜式方程,得切线方程y-y0=f′(x0)(x -x0)。
(2)若题中所给的点(x0,y0)不是切点,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程。
因此求曲线的切线方程一定要明确切点的位置,分清楚是“曲线在某点处的切线”还是“过某点的曲线的切线”。
例题求函数y=在x=1处的导数。
思路分析:先求该函数在区间[1,1+Δx]上的平均变化率,再求当Δx趋于0时的平均变化率的趋近值。
答案:∵Δy=-1,∴==,当Δx趋近于0时,=趋近于,∴函数y =在x=1处的导数为。
导数的定义及几何意义
导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时,称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
导数也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。
如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
导数的几何意义:函数y=f(x) 在x=x0处的导数f′(x0),表示曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
课件2:5.1.2 导数的概念及其几何意义
答案:(1)A
(2)曲线 f(x)=x3 在点(a,a3)(a≠0)处的切线与 x 轴,直线
x=a 围成的三角形的面积为16,则 a=________.
解析:(2)因为 f′(a)=lim Δx→0
a+ΔΔxx3-a3=3a2,
所以曲线在点(a,a3)处的切线方程为 y-a3=3a2(x-a).
令 y=0,得切线与 x 轴的交点为32a,0,
2.若函数 f(x)=-3x-1,则 f′(x)=( )
A.0
B.-3x
C.3
D.-3
解析:k= lim Δx→0
-3x+Δx-Δ1x--3x-1=-3.
答案:D
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点
M 的坐标为( )
A.(0,-2)
B.(1,0)
C.(0,0)
D.(1,1)
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
微点 2 与曲线的切点相关的问题 例 4 已知直线 l1 为曲线 y=x2+x-2 在(1,0)处的切线, l2 为该曲线的另一条切线,且 l1⊥l2. (1)求直线 l2 的方程; (2)求由直线 l1,l2 和 x 轴围成的三角形面积.
方法归纳 1.求曲线上某点切线方程的三个步骤
2.过曲线外的点 P(x1,y1)求曲线的切线方程的步骤 (1)设切点为 Q(x0,y0). (2)求出函数 y=f(x)在点 x0 处的导数 f′(x0). (3)利用 Q 在曲线上和 f′(x0)=kPQ,解出 x0,y0 及 f′(x0). (4)根据直线的点斜式方程,得切线方程为 y-y0=f′(x0)(x-x0).
高中数学知识点总结-导数的定义及几何意义
导数的定义及几何意义1.xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。
注:①函数应在点0x 的附近有定义,否那么导数不存在。
②在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0。
③xy ∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点〔0x ,)(0x f 〕及点〔0x +x ∆,)(00x x f ∆+〕的割线斜率。
④导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是曲线)(x f y =上点〔0x ,)(0x f 〕处的切线的斜率。
⑤假设极限xx f x x f x ∆-∆+→∆)()(lim 000不存在,那么称函数)(x f y =在点0x 处不可导。
⑥如果函数)(x f y =在开区间),(b a 内每一点都有导数,那么称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。
[举例1]假设2)(0/=x f ,那么kx f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2⇒kx f k x f k 2)()(lim 000--→=-1。
导数的概念及几何意义
(1)求物体在时间区间[t0 , t0 t] 上所经过的路程 :
S S(t0 t) S(t0 ) ,
(2)求物体在时间区间[t0 , t0 t] 上的平均速度:
v S S(t0 t) S(t0 ) ,
t
t
(3)求 t0
时刻 的速度: v(t0 )
lim v
t 0
lim
t 0
S(t0
x0 点的导数,记作
f ( x0 ) ,或 y xx0
,
或 dy dx
x x0
,即
f ( x0 )
lim y x0 x
lim
x0
f (x0
x) x
f ( x0 )
lim f ( x) f ( x0 )
x x0
x x0
7
1.1 导数的概念与导数的几何意义
若极限 lim y 不存在,则称函数 f x0 x
f( x0 )
lim
x0
y x
lim x0
f ( x0 x) x
f ( x0 )
lim f ( x) f ( x0 ) ;
x x0
x x0
9
1.1 导数的概念与导数的几何意义
若极限 lim y 存在,则称此极限为 f ( x) 在 x0 x
点 x0 处的右导数,记为 f( x0 ) ,即
f (t) f ( x0 ) 。 t x0
(2)由导数定义可得, v(t0 ) s(t0 ) (导数的物理意义);
k f ( x0 ) (导数的几何意义);
8
1.1 导数的概念与导数的几何意义
(2)单侧导数
定义 2 若极限 lim y 存在,则称此极限为 f ( x) x0 x
3.1 导数的概念及几何意义、导数的运算
∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x
'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导
导数的概念几何意义与运算
导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。
对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。
导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。
导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。
二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。
特定点处的切线斜率表示了函数在该点的变化速度。
2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。
导数的正负性能够直观地反映函数的增减趋势。
3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。
导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。
三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。
2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。
3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。
四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。
二次导数s''(t)则表示在时间t的瞬时加速度。
导数的概念及其几何意义六大核心素养培养目标三水平
导数的概念及其几何意义六大核心素养培养目标三水平摘要:1.导数的概念及其几何意义2.六大核心素养培养目标3.三水平概述正文:一、导数的概念及其几何意义导数是微积分学中的一个重要概念,它用于表示函数在某一点的变化率。
导数反映了函数在某一点的瞬时变化率,可以帮助我们了解函数在某一点的增减、曲率等性质。
从几何角度来看,导数可以表示为曲线在某一点的切线斜率。
因此,了解导数的概念和几何意义有助于我们更好地分析曲线的形状和变化。
二、六大核心素养培养目标1.逻辑思维能力:通过学习导数,培养学生的逻辑思维能力,使学生能够从变化的现象中找出规律,并用数学语言加以表达。
2.数据分析能力:导数是数据分析的重要工具,通过学习导数,培养学生运用数据分析问题的能力,以便更好地解决实际问题。
3.数学建模能力:导数在实际问题中的应用广泛,通过学习导数,培养学生建立数学模型解决实际问题的能力。
4.创新思维能力:导数的概念及其应用具有很强的抽象性和创新性,学习导数有助于培养学生的创新思维能力。
5.数学审美能力:导数的几何意义揭示了曲线的美学价值,通过学习导数,培养学生欣赏数学美的能力。
6.团队协作能力:导数的学习涉及多个知识领域的交叉,需要学生进行合作交流,培养团队协作能力。
三、三水平概述1.基础水平:掌握导数的基本概念、计算方法和几何意义,能够运用导数解决简单实际问题。
2.提高水平:理解导数与微分、微积分的关系,掌握导数在优化问题、变化率问题等方面的应用。
3.高级水平:能够运用导数进行数学建模,解决复杂的实际问题,并对数学美感有一定的认识。
总之,导数作为数学中的重要概念,不仅有助于培养学生的核心素养,还能提高学生的实际应用能力。
导数的概念及几何意义
导数的概念及几何意义导数是微积分中的一个重要概念,它描述了函数在其中一点上的变化率。
导数的几何意义是一个函数在其中一点上的斜率或切线的斜率。
假设有一个函数y=f(x),表示自变量x与因变量y之间的关系。
在函数图像上,选取其中一个点P(x,f(x)),然后再选取另一个与点P非常接近的点Q(x+△x,f(x+△x))。
△x表示x的一个小的增量。
这两个点的连线被称为割线,割线的斜率可以表示为:斜率=(f(x+△x)-f(x))/△x当△x逐渐接近于0时,割线的斜率会趋近于一个特定的值,这个值就是函数在点P处的导数。
数学表达式可以表示为:f'(x) = lim(△x→0) (f(x + △x) - f(x)) / △x导数也可以用微分法的符号(dx / dx)表示。
导数可以表示函数的变化率,即在特定点上函数的斜率。
导数的值可以为正、负或零。
导数的几何意义是函数的图像在其中一点上的切线的斜率。
切线是函数图像上与这个点非常接近的直线。
切线的斜率与点的导数值相等。
当导数值大于0时,说明函数图像在该点上是递增的,切线是向上的。
当导数值小于0时,说明函数图像在该点上是递减的,切线是向下的。
当导数值等于0时,说明函数图像在该点上是平的,切线是水平的。
导数还可以提供其他有用的几何信息。
例如,函数在其中一点上的导数值越大,函数曲线在该点附近弯曲得越急。
函数的导数也可以帮助确定函数的拐点。
拐点是函数图像的曲线从凹向上凸或从凸向上凹的点。
导数的计算方法有很多种。
有些函数可以通过求导公式直接计算导数,这些被称为可导函数。
例如,如果函数是关于x的幂函数,如f(x) =x^n,其中n是一个常数,那么它的导数可以通过将指数降低1并将结果乘以原指数来计算,即f'(x) = nx^(n-1)。
还有一些常见的函数,如正弦函数、余弦函数和指数函数,它们也有特定的求导公式。
除了直接求导的公式之外,还可以使用导数的基本性质来求导。
导数及其几何意义
导数及其几何意义1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f x () 在a b (,) 中每一点处都可导,则称f x ()在a b (,)上可导,则可建立f x ()的导函数,简称导数,记为f x '() ;如果f x ()在a b (,)内可导,且在区间端点a 处的右导数和端点b 处的左导数都存在,则称f x ()在闭区间[]a b ,上可导,f x '()为区间[]a b , 上的导函数,简称导数.2、导数的几何意义函数f x () 在0x x = 处的导数就是切线的斜率k .例如:函数f x ()在0x 处的导数的几何意义:0k f x '切线=()=lim x→0f(x 0+△x)−f(x 0)△x =lim x→0△y △x.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线y =x 24−3lnx 的一条切线的斜率为12,则切点的横坐标为( ) 3? 2? 1? A B C D ....12解:设切点的横坐标为00x y (,)∵曲线y =x 24−3lnx 的一条切线的斜率为12, ∴y ' =x 02−3x 0=12,解得0032x x =或=﹣(舍去,不符合题意),即切点的横坐标为3 故选A .题型二:求切线方程典例2:已知函数f(x)={ax 2+bx +c ,x ≥−1f(−x −2),x <−1其图象在点11f (,())处的切线方程为21y x +=,则它在点33f (﹣,(﹣))处的切线方程为( )23? 23? 23? 23A y x B y x C y x D y x ++.=﹣﹣.=﹣.=﹣.=解:∵图象在点11f (,())处的切线方程为21y x += ∴1213f +()== ∵33213f f f (﹣)=(﹣)=()=∴33f (﹣,(﹣))即为33(﹣,)∴在点33f (﹣,(﹣)) 处的切线过33(﹣,)将33(﹣,) 代入选项通过排除法得到点33(﹣,)只满足A 故选A .【解题方法点拨】(1)利用导数求曲线的切线方程.求出y f x =() 在0x 处的导数f x '();利用直线方程的点斜式写出切线方程为000y y f x x x '﹣=()(﹣).(2)若函数在0x x =处可导,则图象在00x f x (,())处一定有切线,但若函数在0x x = 处不可导,则图象在00x f x (,())处也可能有切线,即若曲线y f x =() 在点00x f x (,())处的导数不存在,但有切线,则切线与x 轴垂直.(3)注意区分曲线在P 点处的切线和曲线过P 点的切线,前者P 点为切点;后者P 点不一定为切点,P 点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然00f x '()>,切线与x 轴正向的夹角为锐角00f x ';()<,切线与x 轴正向的夹角为钝角;00f x ()=,切线与x 轴平行;0f x '()不存在,切线与y 轴平行.。
导数的概念及其几何意义
4.导数的几何意义 导数的几何意义
在点x 函数 y=f(x)在点 0处的导数的几何意义,就是曲 在点 处的导数的几何意义, 在点P(x0 ,f(x0))处的切线的斜率,即曲线 处的切线的斜率, 线 y=f(x)在点 在点 处的切线的斜率 即曲线y= f(x)在点 在点P(x0 ,f(x0)) 处的切线的斜率是 f ′( x0 ). 在点 故曲线y=f(x)在点 曲线 在点P(x0 ,f(x0))处的切线方程是 处的切线方程是: 在点 处的切线方程是
导数的概念及其几何 意义
一、导数的概念 定义:设函数 在点x 定义:设函数y=f(x)在点 0处及其 在点 附近有定义,当自变量 在点x 当自变量x在点 附近有定义 当自变量 在点 0处有改 变量Δ 时函数有相应的改变量 变量Δx时函数有相应的改变量 如果当Δ → Δy=f(x0+ Δx)- f(x0).如果当Δx→0 如果当 的极限存在,这个极限就叫 时,Δy/Δx的极限存在 这个极限就叫 Δ Δ 的极限存在 做函数f(x)在点 0处的导数 或变化率) 在点x 或变化率 做函数 在点 处的导数(或变化 记作 f ′( x )或y′ | , 即:
2
求函数y = x 在点(−2, 4)处的切线.
2
例3求函数y = x 在x0 = 1处的切线.
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:(1)函数在一点处的导数,就是在该点的函数改变量与 自变量的改变量的比值的极限,它是一个数值,不是变数. (2)Δx是自变量x在x0处的改变量,Δx≠0,当Δx>0时,Δx→0表 示x0+Δx从x0右边趋近于x0,反之,当Δx<0时,Δx→0表示x0 +Δx从x0左边趋近于x0,Δy是相应函数的改变量,Δy可正、可 负,也可以为0.
2
规范解答
求过某点的曲线的切线方程
(本题满分12分)已知曲线f(x)=2x3-3x,过点M(0,32) 作曲线f(x)的切线,求切线的方程.
[解 ] 经检验知点 M(0,32)不在曲线上, 1 1 分 设切点坐标为 N(x0,2x3 0- 3x0), 3 3 Δy 2 x0+ Δx - 3x0+ Δx- 2x0+ 3x0 = Δx Δx 2 2 3 3 2x3 + 6 x Δ x + 6 x Δ x + 2 Δ x - 3 x - 3Δ x - 2 x 0 0 0 0 0 + 3x0 = Δx
[错因与防范] 本题易错选 D.错因是忽视了分子与分母相应的 符号的一致性,在利用导数的定义求函数在某一点的导数时, Δy 中 Δx 是分子中被减数的自变量减去减数的自变量的差,要 Δx 深刻理解以防出错.
4.设函数 f(x)在点 x0 处可导,且 f′(x0)已知,求下列各式的 极限值. f x0-Δx- fx0 (1)lim ; Δx → 0 Δx f x0+h-fx0- h (2)lim . h→ 0 2h f x0-Δx- fx0 解:(1)lim Δx → 0 Δx f x0-f x0-Δx =- lim =-f′(x0). Δx → 0 Δx f x0+ h-fx0-h (2)lim =f′(x0). h→ 0 2h
2.已知直线l:y=4x+a和曲线y=x3-2x2+3相切 ,求切点坐标及a的值.
Δy 解 : 设 直 线 l 与 曲 线 相 切 于 点 P(x0 , y0) , 则 = Δx x+ Δx 3- 2x+ Δx 2+ 3-x3- 2x2+ 3 Δx x3+3x2Δx+3x Δx 2+ Δx3- 2x2-4xΔx-2 Δx2-x3+ 2x2- 3 = Δx = 3x2+ 3xΔx+(Δx)2- 4x- 2Δx. Δy 当 Δx 趋于 0 时, 趋于 3x2- 4x. Δx
由导数的几何意义,得: k= f′ (x0)=3x2 0- 4x0= 4, 2 解得:x0=- 或 x0=2. 3 2 49 ∴切点坐标为 -3, 27 或 (2,3). 2 49 2 49 当切点为 -3, 27 时,有 = 4× -3 + a, 27 121 ∴ a= . 27 当切点为 (2,3)时,有 3= 4×2+a, ∴ a=- 5. 121 2 49 因此,当 a= 时,切点为(- , ); 27 3 27 当 a=- 5 时,切点为 (2,3).
2.曲线f(x)=-3x2+2在点(1,2)处的切线的斜率为
________.
利用导数求切线的方程
1 4 已知曲线 C:y= x 3 + . 3 3 (1)求曲线 C 在横坐标为 2 的点处的切线方程. (2)在第(1)小题中的切线与曲线 C 是否还有其他的公共点?
[解 ] (1)将 x= 2 代入曲线 C 的方程得 y= 4. ∴切点 P(2,4). 1 1 3 4 3 4 ∵ Δy= (2+ Δx) + - × 2 - 3 3 3 3 2 1 = 4Δx+ 2(Δx) + (Δx)3, 3 Δy 1 ∴ = 4+ 2Δx+ (Δx)2, 3 Δx 1 当 Δx 趋于 0 时,4+2Δx+ (Δx)2 趋于 4,所以曲线在 x= 2 处 3 的导数等于 4. 即切线的斜率为 4,故所求切线方程为 y-4= 4(x-2),即 4x - y- 4= 0.
[规范与警示]
(1) 1 是“某点处”还是“过某点”要分清,验
证是关键.
2 3
本步计算量大,是解本题的易错点(失分点). 将 N 点代入切线方程,解高次方程求出 x0 的值是正确求解
的保障,因想不到不会做造成失分.
(2)求曲线的切线时,注意区分“求曲线 y=f(x)上过点 M的切 线”与“求曲线 y = f(x) 上在点 M 处的切线”,前者只要求切
§2 导数的概念及其几何意义 2.1 导数的概念
2.2 导数的几何意义
1.导数的概念 (1)定义:设函数 y= f(x),当自变量 x1 趋于 x0 时,即 Δx 趋于 0 Δy f x1-f x0 f x0+ Δx- fx0 时, 如果平均变化率 = = 趋于一个 Δx Δx x1-x0 瞬时变化率 , 固定的值,那么这个值就是函数 y=f(x)在 x0 点的___________ 导数 . 也称为 y= f(x)在 x0 点的 ________ (2)记法:函数 y= f(x)在 x0 点的导数,通常用符号 f′ (x0)表示, f x1-f x0 f x0+Δx-fx0 lim lim x →x Δ x→ 0 x - x Δx 记作 f′ (x0)=_______________ =____________________. 1 0
与导数有关的问题及导数的应用
已知 f(x)= x +2,(1)求 f′(x);(2)求 f(2).
[解 ] ∵ Δy= x+ Δx+ 2- x+2, x+ Δx+ 2- x+2 Δy ∴ = Δx Δx = Δx x+ Δx+ 2+ x+2 x+ Δx+2- x+2
=
, x+ Δx+ 2+ x+2 Δy 1 ∴ f′ (x)= lim = lim Δx→ 0 Δx Δx → 0 x+ Δx+ 2+ x+2 1 = , 2 x+2 1 1 ∴ f′ (2)= = . 2 2 +2 4
2 = 6x2 + 6 x Δ x + 2(Δ x ) -3. 2 5 分 0 0 Δy 当 Δx 趋于 0 时, 趋于 6x2 0- 3, Δx
∴切线的斜率 k= f′ (x0)=6x2 0- 3, 7 分 切线方程为 y= (6x2 0- 3)x+ 32,
2 3 9分 又点 N 在切线上,所以 2x3 0- 3x0= (6x0- 3)x0+ 32, 解得 x0=-2,故切线方程为 y=21x+32.12 分
就是当物体的运动速度方程为 v=v(t)时,物体在时刻t=t0时
的瞬时加速度a,即a=v′(t0).
3.切线的意义 如图,当Δx趋于零时,点B将沿着曲线y=f(x)趋向于点A,割
线AB将绕点A转动,最后趋于直线l,直线l和曲线y=f(x)在点
A处“相切”,称直线l为曲线y=f(x)在点A处的切线.该切线 的斜率就是函数y=f(x)在x0处的导数f′(x0).
方法归纳 (1)利用导数的几何意义求曲线的切线方程的步骤: ①求出函数 f(x)在点 x0 处的导数 f′ (x0); ②写出切线方程,即 y- y0= f′ (x0)· (x-x0). π 特别注意:若在点(x0,y0)处切线的倾斜角为 ,此时所求的切 2 线平行于 y 轴,所以直线的切线方程为 x= x0. (2)曲线的切线与曲线的交点可能不止一个.
方法归纳 求函数y=f(x)在点x0处的导数的三个步骤
1.求函数f(x)=x2+3在x=2处的导数.
Δy f a+Δx -f a 解:因为 = Δx Δx a+Δx 2 +3- a2 +3 = =2a+Δx , Δx 当Δx 趋于 0 时, 2a+Δx 趋于 2a, 所以 f(x )在 x =a 处的导数等于 2a.
利用导数的定义求函数在某点处的导数 求函数y=3x2在x=1处的导数. (链接教材P32例1)
[解 ] ∵ Δy= f(1+ Δx)-f(1)=3(1+ Δx)2-3= 6Δx+ 3(Δx)2,∴ Δy =6+3Δx, Δx 当 Δx 趋于 0 时,6+3Δx 趋于 6,所以 f(x)在 x=1 处的导数等 于 6.
1
方法归纳
(1)f′(2)即求函数f(x)在x=2处的导数. (2)运用定义法求导数,在解题时要注意运算技巧,遇到根式
时,常常需要进行分子(或分母)有理化.
3.已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x值.
解:由导数的定义知, x+ Δx 2- x2 Δfx f′ (x)= lim = lim = 2x, Δx→ 0 Δx Δx → 0 Δx x+ Δx 3- x3 Δgx 2 g′ (x)= lim = lim = 3 x . Δx → 0 Δx → 0 Δx Δx ∵ f′ (x)+2= g′ (x),∴2x+ 2= 3x2. 1- 7 1+ 7 即 3x -2x- 2= 0,解得 x= 或 . 3 3
y= 4x-4, (2)由 1 3 4 可得 (x- 2)(x2+ 2x- 8)= 0. y= x + , 3 3 解得 x1= 2, x2=- 4. 从而求得公共点 P(2,4)或 M(- 4,-20), 即切线与曲线 C 的公共点除了切点外,还有另一公共点(- 4, - 20)切点坐标;
而后者则很明确,切点就是M点.
1 已知曲线 y x , 1 处的切线方程; (1)求曲线在点 P1
, 0处的切线方程; (2)求曲线过点Q1 1 (3)求满足斜率为 的曲线的切线方程. 3
易错警示
忽视导数定义中Δx与Δy的对应关系致误
2.导数的几何意义
(x0,f(x0)) 函数y=f(x)在x0处的导数,是曲线y=f(x)在点_____________ 斜率 .函数y=f(x)在点(x0,f(x0))处切线的斜 处的切线的________
率反映了导数的几何意义. 注意:导数的物理意义:函数S=S(t)在点t0处的导数S′(t0), 就是当物体的运动方程为 S= S(t)时,物体在时刻 t= t0时的瞬 时速度v,即v=S′(t0);函数v=v(t)在点t0处的导数v′(t0),
f x0- 3Δx- fx0 设函数 y=f(x)在 x= x0 处可导, 且 lim Δx → 0 Δx = 1,则 f′(x0)等于 ( C ) A. 1 1 C.- 3 B.- 1 1 D. 3