重力坝设计
本科毕业设计任务书重力坝设计
本科毕业设计任务书-重力坝设计一、题目重力坝设计二、任务背景水资源是人们生产和生活的重要基础,水利工程是保障人们生产生活水资源的重要措施。
重力坝是工程建造中广泛使用的一种坝型,与拱坝和引水隧洞构成了三大工程体系。
重力坝以其结构牢固、可靠性高、施工简单等特点受到了广泛的应用和青睐。
因此对重力坝的设计和施工研究不仅具有实际意义,而且在学术层面上也有重大的价值。
三、任务目的本次毕业设计的主要目的是通过对重力坝设计过程的全面理解,全面掌握坝体结构设计的基本原理和方法,以及重力坝建设的基本技术要求和施工流程。
同时,通过实践掌握建筑材料的使用以及建筑工程的基本原理和方法。
四、任务要求1.设计一座高度在50米以上的重力坝,设计包括:坝体型式、坝顶宽度与高度、坝坡比、坝底宽度、坝体的横纵向及强度设计以及坝体底部渗漏分析等。
2.建立坝体二维结构模型,并通过ANSYS软件仿真分析,在不同地震、温度作用下坝体的性能。
3.根据国家相关标准和规范,编制重力坝设计施工图纸,并进行指导设计与施工。
4.根据设计结果,对重力坝的性能进行评估,包括稳定性、安全性、经济性等方面的评估。
五、研究内容1.重力坝的设计原理、技术要求、基本构造形式等研究;2.岩土力学、抗震设计、渗流计算、水工结构等基础理论知识的研究;3.重力坝结构的实际建设情况调查和技术分析研究;4.设计仿真分析软件的操作方法和仿真结果分析。
六、进度计划1.第一阶段:研究重力坝的设计理论,掌握坝体结构的构造原理和方法,了解相关规范和标准,花费2周时间完成。
2.第二阶段:建立坝体二维结构模型,并进行仿真分析,掌握。
毕业设计 重力坝设计
毕业设计重力坝设计
1. 引言
重力坝是水利工程中常用的一种坝型,其主要特点是坝体厚重且体积大,具有重力作
用稳固坝体的特点。
在设计重力坝时,需要考虑到多种因素,如水文条件、地质条件、工
程造价等因素,以确保设计的坝体结构具有充分的安全性和经济性。
2. 水文条件
水文条件是设计重力坝时需要考虑的重要因素之一。
主要包括水文特征、水文历时和
频率以及预测值。
在设计重力坝时需要充分考虑降雨涝、暴雨及洪水等水文条件,预计出
各种水位的出现频率,并采用适当的控制水位高度的设计措施。
3. 地质条件
地质条件也是设计重力坝时需要充分考虑的一个因素。
主要包括地质构造、物理性质、地质力学性质和地质灾害等因素。
在设计重力坝时,需要对地质条件进行全面的地质勘测
及分析,并采取适当的加强坝体和基础的设计措施。
4. 坝体及基础的设计
重力坝的坝体具有良好的稳定性,是因为其坝体体积庞大且较宽厚,具有良好的抗滑性。
在设计坝体时需要注意选择坝体的材料及其强度,且坝体中的混凝土应加强措施,以
增强坝体的稳定性。
在基础设计方面,需要以地质灾害为基础,采取适当的加固措施以确
保重力坝的基础稳定性。
5. 结论
设计重力坝需要全面考虑水文条件、地质条件、坝体设计以及基础设计等多个因素。
仅仅注重单一因素,难以达到坝体的最佳安全和经济设计。
除上述因素外,设计过程中还
需要考虑成本和材料等多个因素,以确保设计出具有良好稳定性且经济性较高的坝体结
构。
[学士]重力坝毕业设计
第一部分重力坝毕业设计第一章基本资料设计洪水位(P = 5 %)上游:510.15m下游:480.12m校核洪水位(P = 1 %)上游:510.64m下游:481.10m正常蓄水位上游:509m死水位:488m可利用河底高程478.5m混凝土容重:24 KN/m3坝前淤沙高程:486m泥沙浮容重 10 KN/m3,内摩擦角为20°混凝土与基岩间抗剪断参数值:f `= 0.6c `= 0.3Mpa坝基基岩承载力:[f]=1000Kpa坝基垫层混凝土:C15坝体混凝土:C15= 22m/s50年一遇最大风速为:v`= 16m/s多年平均最大风速为:v吹程 D =1000m第二章重力坝的断面选取与荷载计算第一节流量-水位关系曲线计算流量-水位关系曲线计算表注:流量-水位关系曲线河谷断面图第二节重力坝坝体断面1.坝顶高程的确定①. 正常水位时gD/v2=9.81×1000/222=20.279.81h/222=0.0076×22-1/12×(9.81×1000/222)1/3h=0.79m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.98m9.81Lm/222=0.331×22-1/2.15×(9.81×1000/222)1/3.75Lm=8.65mh z =π×0.982/8.65×cth(2πH/ Lm)hz=0.35m△h=h1%+h z+h c=0.98+0.35+0.4=1.73m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δsεmB(2g)1/2]}2/3={66.18/[1×1×0.502×24×(2×9.81) 1/2]}2/3 =1.15m设计洪水位=509+1.15=510.15m坝顶高程=509+1.73=510.73m②校核洪水位时gD/v2=9.81×1000/162=38.329.81h/162=0.0076×16-1/12×(9.81×1000/162)1/3h=0.53m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.66m9.81Lm/162=0.331×16-1/2.15×(9.81×1000/162)1/3.75Lm=6.29mh z =π×0.662/6.29×cth(2πH/ Lm)hz=0.22m△h=h1%+hz+hc=0.66+0.22+0.3=1.18m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δεmB(2g)1/2]}2/3={112.56/[1×1×0.502×24×(2×9.81) 1/2]}2/3s=1.64m校核洪水位=509+1.64=510.64m坝顶高程=510.64+1.18=511.82m,故取坝顶高程为512m而该坝的开挖深度为1.5m ∴坝高=512-478.5=33.5m2.坝顶宽度的确定坝顶宽度取坝高的9%,则坝顶宽度=33.5×9%=3.015m,故坝顶宽度取3.5m3.坝面坡度的确定下游面的坡度采用1:0.84.坝基防渗与排水设施的拟订距距坝踵5m处设一个帷幕灌浆断面图如下:第三节荷载计算摩檫系数f 'Γk 、粘聚力C 'ΓK 的材料性能分项系数分别为1.3、3.0, 则相应的设计值:摩檫系数f 'Γ=0.6/1.3=0.46 粘聚力C 'Γ=300/3=100 Kpa选用砼为C15,抗压强度性能分项系数为1.5,则设计值 fc=15000/1.5=10000 Kpa 扬压力系数α为0.2(查表得出) 1.设计洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.98+0.35+8.65/2)×8.65/2=119.97 KNP 2=1/2γL m 2/4=1/2×9.81×8.652/4=91.75 KNP n = P 1+P 2 =119.97-91.75=28.22 KN P=1.2×P n =1.2×28.22=33.86 KNM 1n =-P 1×[1/3×(h 1%+h z +L m /2)+H 1-L m ]=-119.97×[1/3×(0.98+0.35+8.65/2)+31.65-8.65/2]=-3504.32 KN ·NM1=1.2M1n=1.2×(-3504.32)=-4205.18 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=91.75×(1/3×8.65/2+31.65-8.65/2)=2639.34 KNM2=1.2M2n=1.2×2639.34=3167.21 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×1.62×1.62×0.8=10.30 KNW=W1+W2+W3=10960.66 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8136.36×(26.8/2-3.5-23.3/2)=17357.57 KN·NM3=-W3L3=-10.30×(26.8/2-1/3×1.62×0.8)=-133.57 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×31.652=4913.45 KNM1=-P1L1=-4913.45×1/3×31.65=-51836.90 KN·N下游:P2=1/2γH22=1/2×9.81×1.622=12.87 KNM2=P2L2=12.87×1/3×1.62=6.95 KN·N⑸.浮托力P浮=γH2LB=9.81×1.62×26.8=425.91 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[31.65-1.62-0.2×(31.65-1.62)=589.19 KNW2=γA2=9.81×5×0.2×(31.65-1.62)=294.59 KNW3=γA3=9.81×1/2×(26.8-5)×0.2×(31.65-1.62)=642.22 KNWK =W1+W2+W3=1526 KNW=1.2×1526=1831.2 KNM 1K =-W 1L 1=-589.19×(26.8/2-5/3)=-6913.17 KN ·N M 1=1.2 M 1K =8160.35 KN ·NM 2K =-W 2L 2=-1.2×294.59×(26.8/2-5/2)=-3211.03 KN ·N M 2=1.2 M 2K =-3853.24 KN ·NM 3K =-W 3L 3=-1.2×642.22×[26.8/2-5-(26.8-5)/3] =-727.85 KN M 3=1.2 M 3K =-873.42 KN ∑P=5099.91 KN ∑W=8284.51 KN∑M=-16296.96 KN ·N 2.校核洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.66+0.22+6.29/2)×6.29/2=62.09 KN P 2=1/2γL m 2/4=1/2×9.81×6.292/4=48.52 KNP n = P 1+P 2 =62.09-48.52=13.57 KN P=1.2×P n =1.2×13.57=48.52 KNM1n =-P1×[1/3×(h1%+hz+Lm/2)+H1-Lm]=-62.09×[1/3×(0.66+0.22+6.29/2)+32.14-6.29/2]=-1883.60 KN·NM1=1.2M1n=1.2×(-1883.60)=-2260.32 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=48.52×(1/3×6.29/2+32.14-6.29/2)=1457.70KNM2=1.2M2n=1.2×1457.70=1749.24 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×2.6×2.6×0.8=26.53 KNW=W1+W2+W3=10976.89 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8555.4×(26.8/2-3.5-23.3/3)=17357.57 KN·NM3=-W3L3=-26.53×(26.8/2-1/3×2.6×0.8)=-337.11 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×32.142=5066.76 KNM1=-P1L1=-5066.76×1/3×32.14=-54281.89 KN·N下游:P2=1/2γH22=1/2×9.81×2.62=33.16 KNM2=P2L2=33.16×1/3×2.6=28.74 KN·N⑸.浮托力P浮=γH2LB=9.81×2.6×26.8=683.56 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[32.14-2.6-0.2×(32.14-2.6)=579.57 KNW2=γA2=9.81×5×0.2×(32.14-2.6)=289.79 KNW3=γA3=9.81×1/2×(26.5-5)×0.2×(32.14-2.6)=631.74 KNWK =W1+W2+W3=1501.1 KNW=1.2×1501.1=1801.32 KNM1=-1.2W1L1=-1.2×579.57×(26.8/2-5/3)=-8160.35 KN·NM2=-1.2W2L2=-1.2×289.79×(26.8/2-5/2)=-3790.45 KN·NM3=-1.2W3L3=-1.2×631.74×[26.8-5-(26.8-5)/3] =-859.17 KN∑P=5215.35 KN∑W=8072.97 KN∑M=-18184.32 KN·N3. 抗滑稳定极限状态⑴基本组合时,取持久状况对应的设计状况系数ψ=1.0,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×1.0×5099.91 =5099.91 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8284.51+100×26.8) =5409.06 KN∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,取偶然状况对应的设计状况系数ψ=0.85,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×0.85×5215.35 =4433.05 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8911.05+100×26.8) =6837.38 KN∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求4. 坝址抗压强度极限状态⑴基本组合时,设计状况系数ψ=1.0,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×1.0×[8284.51/26.8-6×(-16296.96)/26.82] ×(1+0.82) =730.23 Kpa≈0.73 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,设计状况系数ψ=0.85,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×0.85×[8072.97/26.8-6×(-18184.32)/26.82] ×(1+0.82) =631.68 Kpa≈0.63 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求5.上游坝踵不出现拉应力极限状态因上游坝踵不出现拉应力极限状态属正常使用极限状态,故设计状况系数,作用分项系数和材料性能分项系数均采用1.0,扬压力系数直接用0.2代入计算,此处,结构功能的极限值C=0。
重力坝设计内容
第三部分枢纽布置(1)坝型的选择坝型根据:坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。
河床冲积层厚度一般为 2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为 0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。
且河床堆积块石、孤石和卵石,但是缺乏土料。
浆砌石重力坝虽然可以节约水泥用量,但不能实现机械化施工,施工质量难以控制,故本工程采用混凝土重力坝。
〔2〕坝轴线的选取坝址河段长 350m,河流方向为 N20E,其上、下游河流方向分别为 S70E和 S80E。
坝址河谷呈“V”型,两岸h山体较雄厚,地形基本对称,较1完整,两岸地形坡度为 30°-40°。
河床宽 20-30m,河底高程约 556-557m。
坝轴线取在峡谷出口处,此处坝轴线较短,主体工程量小,建库后可以有较大库容。
(3)地形地质坝址基岩岩性为燕山早期第三次侵入黑云母花岗岩,河岸边及冲沟底部见有弱风化基岩出露。
河床冲积层厚度一般为 2.0-2.5m,左岸覆盖层厚度为3-8m,右岸覆盖层厚度为 0.5-5.0m,覆盖层主要为坡残积含碎石粘土层。
(4)坝基参数坝址地质构造主要表现为断层、节理裂隙。
坝址发育 11 条断层。
建议开挖深度:河中 5m,左岸 6-12m,右岸 6-15m。
(5)基本参数干密度 2.61g/cm 3 ,饱和密度 2.62 g/cm 3 ,干抗压强度92-120MPa,饱和抗压强度 83-110MPa,软化系数 0.9,泊松比 0.22-0.23。
混凝土与基岩接触面抗剪断指标:Ⅲ类岩体,抗剪断摩擦系数 1.0-1.1,抗剪断凝聚力 09.-1.1MPa。
坝基高程为550m.(6)工程级别:本水利枢纽坝址林地溪与国宝溪汇合口下游约2.5km的峡谷中,坝址集水面积144.5km2,又知河底高程556-557m。
可算的水库容容量约为0.12亿立方米,大坝的工程级别为中型级别。
重力坝课程设计doc
重力坝课程设计doc
一.重力坝概述
重力坝是一种在河流中建设的大型水利工程,通常由一组拱形结构的混凝土或石头堆
砌而成,它的作用是把流过的河水向上压抑,以提高河流的稳定性,防止洪水,并利用流
过的水势将水压转化为电能供给公众使用。
二.重力坝的设计及施工
1.首先要进行地质勘探研究,以确定建造重力坝的最佳位置和材料。
2.重力坝的设计,要考虑重力坝的高度、深度等参数,还要确定其弯曲度、抗压强度
等技术要求,确定防洪排污设施等。
3.施工难度较大,要求施工人员具备较强的技术水平,建造时需要按照规划进行,尤
其是对混凝土施工要求严格,大坝结构要求较高。
4.建造完毕后,要经常进行检查和维护,以保证重力坝的安全运行。
三.重力坝的应用
1.重力坝的水利社会化应用在于控制洪水、改变河流水质,防止水库中的污染,提高
水生态环境等;
2.在水力发电方面,重力坝利用发电厂结构附属设备,从水势中提取能量而产生电能
供人们使用;
3.重力坝在航向规划中也得到了重要的应用,它可以改变河流的流向,从而改变其航向,有助于渡河船只的安全航行;
4.此外,重力坝建设也是一种美化环境的手段,它不仅能使人们对河流的自然环境被
更好的保护,而且还可以利用湖面动态变化来丰富景观,使河流被点缀成一种美丽的风景。
四.总结
重力坝是水利工程建设中重要的一环,在水力发电、洪水防治、航航向规划及美化景
观等方面均有着重要作用。
但是,由于重力坝设计施工难度较大,施工需求较高,在建设
及运营中均需要考虑多方面的因素,以保证重力坝的安全可靠。
混凝土重力坝设计
混凝土重力坝设计
1.坝址选择与地质条件评价:选择坝址是重力坝设计的首要任务,需
要考虑坝型适应性、地质条件、地形地貌、坝地基稳定性等因素。
地质条
件评价包括勘察地质、地下水位、地震烈度等因素的分析。
2.坝型选择:重力坝的坝型有直坝、弧坝、斜坝等多种形式。
根据坝
址地质条件、水流情况、工程需求等选择最适合的坝型。
3.坝体结构设计:重力坝的坝体是通过其自重来抵抗水压力的,设计
时需要确定材料的体积、高度、宽度等参数。
坝体的断面形状、坝顶宽度、坝底宽度等也需要根据地质条件和工程需求来确定。
4.导流设施设计:重力坝施工期间需要设计导流隧道或导流渠道来控
制水流。
导流设施的设计需要考虑水流量、水流速度、压力等因素。
5.坝基与坝体接触界面处理:坝基与坝体的接触界面处理对重力坝的
稳定性非常重要。
需要考虑界面的摩擦力、过渡带的设置等。
6.抗震设计:重力坝施工后需要能够承受地震力的作用,因此需要进
行抗震设计,包括抗震设防烈度的确定、地震力计算等。
7.渗流分析与防渗设计:重力坝在长期运行中可能会出现渗漏问题,
需要进行渗流分析,确定渗流路径和渗流量,并设计相应的防渗措施。
8.安全监测与管理:为了保证重力坝的安全运行,需要进行定期的安
全监测与管理,包括监测坝体变形、渗流情况、地震活动等。
总之,混凝土重力坝设计需要综合考虑地质条件、水流情况、工程需
求等多个因素,确保坝体的稳定性和安全性。
通过科学合理的设计,可以
建造出坚固耐用的混凝土重力坝。
重力坝设计规范
重力坝设计规范
重力坝,也叫重力堤,是一种形式简单,抗压极大,间断性,顶高较小的水闸。
重力坝由横向悬索牵引拉出的钢板或钢筋混凝土组成,高低之间有档定度;两桩之间放置相应数量的横向连接杆,以及拉索牵引线,而其上部装配塑料板。
1、重力坝设计应遵循《水利水电工程水闸设计规范》(SL 331-2002)的规定。
2、重力坝的设计应综合考虑水力学要素、建筑结构要素、设备要素及环境要素,确定所有的设计参数及技术要求,使重力坝的耐久性和安全性满足设计要求。
3、重力坝的长度通常视水库大小而定,至少为10m ,高度一般为6-10m,应根据施工和使用需要,确定合理的高度和形状。
4、弹性材料材质选择应满足使用环境的需要,常用材料有钢板、钢格栅、钢筋混凝土和不锈钢板。
5、重力坝应对汛期有足够的安全系数同时具有较高的水密性能和较低的固结系数,防止水流穿透重力坝。
6、安全设计应充分考虑汛期的水位变化,重力坝的受力类型及变化规律。
7、水闸设计时,应以坝顶以上3m水深所有穿流形式及泄洪和灌溉需要为依据,设计合理的调节流量系统,保证重力坝的安全。
8、重力坝设计应考虑并结合增强坝体厚度、加强坝体固定、建立安全监控等措施,帮助改善坝体的运行,降低施工风险。
(完整word版)重力坝课程设计
目录一、基本资料................................... - 1 -1.1工程概况................................... - 1 -1。
2设计基本资料.............................. - 4 -1。
3水库特征表................................ - 6 -1。
4电站建筑物基本数据........................ - 7 -二、剖面设计..................................... - 8 -2。
1坝顶高程: ................................. - 8 -2。
2波浪要素.................................. - 8 -2.3坝顶宽度.................................. - 13 -2。
4坝坡的确定。
............................. - 13 -2。
5坝体的防渗排水。
......................... - 13 -2。
6拟定非溢流坝基本剖面如图所示............. - 14 -2.7荷载计算及组合............................ - 14 -三、挡水坝稳定计算.............................. - 16 -3.1荷载计算.................................. - 16 -3.2稳定计算.................................. - 20 -四、挡水坝应力计算:............................ - 21 -4。
1坝址抗压强度极限状态计算: ................ - 21 -4.2坝体上下游面拉应力正常使用极限状态计算.... - 24 -五、重力坝的地基处理............................ - 25 -5。
重力坝设计规范
重力坝设计规范重力坝是一种重力作用为主要原理的大坝,其稳定性和安全性是设计中的重要考虑因素。
下面是关于重力坝设计规范的一些指导原则。
1. 重力坝的基本要求重力坝需要具备足够的重力以抵抗水压力,并保持稳定。
为了满足这一要求,应考虑以下几个方面:- 选择合适的坝址位置,确保地质条件合适,基础坚固。
- 选择合适的坝体材料,如混凝土或石块,以满足设计要求。
- 设置足够的坝体宽度,以增加坝体重力,提高稳定性。
- 设计合适的坝体剖面,以保证坝体的充分控制和分散水压力。
2. 坝体结构设计- 坝体的高度应根据不同的水库情况确定,并进行合理的抗滑稳定性计算。
- 坝体的剖面设计应兼顾水压力分布和抗震要求。
- 坝体应增设防渗排水系统,以降低渗流对坝体的影响。
- 坝体的下部应设置泄洪孔和底孔,以控制洪水和泄洪。
3. 坝体材料选择和施工要求- 坝体的材料应具有良好的力学性能和耐久性,如抗压强度和抗冻性。
- 坝体的施工应符合相关的工程质量标准和施工规范,确保坝体的质量和稳定性。
- 坝体的施工过程中需要进行监测和检验,及时发现和处理问题。
- 坝体的维护和养护应按照相关规范进行,定期检查和修复。
4. 坝体的安全措施- 坝体应设置防洪堤和泄洪设施,以减少洪水对坝体的冲击。
- 坝体应设置疏导泄洪设施,以控制坝体的水位和排放流量,以保证安全。
- 坝体周围的环境应进行合理的保护和管理,以防止土壤侵蚀和滑坡等问题。
- 坝体应进行定期的安全评估和监测,以及时发现和处理潜在的问题。
综上所述,重力坝设计规范是确保重力坝稳定和安全的重要指导原则。
在设计过程中需要考虑坝体的重力和稳定性、抗震和防渗等因素,并符合相关工程质量标准和施工规范。
同时,还需要设置合适的安全措施和进行定期的监测和维护工作,以确保重力坝的安全运行。
水工建筑物课程设计(重力坝)
水工建筑物课程设计(重力坝)1000字一、前言重力坝是水利工程中广泛应用的水工建筑物之一,具有简单、稳定、可靠等特点。
为了能够更好地学习和理解重力坝的设计与施工,本文将结合实际工程案例,介绍重力坝的基本概念、设计要点、施工过程以及安全措施。
二、概述重力坝是指靠坝体自身的重力抵抗水压力,并使坝体能够保持在平衡状态的坝。
重力坝通常具有比较宽的顶宽、大坝底宽,以及垂直或近垂直的坝面。
三、设计要点1. 坝体稳定性重力坝的稳定性是设计的重点之一,因此坝体的自重和坝前水柱作用所产生的水压力必须能够平衡。
为了保证坝体的稳定性,需要进行相应的坝体截面优化和稳定分析。
2. 溢洪道设计溢洪道是重力坝防洪的主要措施之一,需要根据坝址洪水特征和设计洪水确定相应的溢洪道参数。
一般来说,溢洪道的设计应该充分考虑坝上游的泄洪需求,同时确保洪水能够安全地通过坝址,避免发生洪水冲毁等事故。
3. 切尾设计切尾是指将河床河岸的土质挖出,以便于坝底的施工和加强重力坝的水密性。
在切尾的设计中应该充分考虑河床河岸土质的稳定性,避免在切尾过程中发生坍塌和滑坡等不安全情况。
四、工程案例以南岸水库为例,该水库位于河南省某市,总库容为 3.3亿立方米,控制流域面积为1117.1平方千米,最大蓄水位为265.5米。
该水库为一座重力坝,具体参数如下:1. 坝址基础岩层接触深度: -76米2. 坝顶标高: 277.5米3. 坝顶长度: 534.75米4. 坝顶宽度: 10.5米5. 坝脚标高: 206米6. 坝脚长度: 342米7. 坝脚宽度: 42米8. 坝高: 71.5米五、施工过程1. 剥离坝址土层:将坝址表土和浮石剥离至基岩层,同时进行基岩凿打和清理。
2. 贴面铺垫:在坝址的基础岩层上进行界板定位和方案确认,贴面铺垫,同时进行模板安装。
3. 混凝土浇筑:进行混凝土浇筑之前,需要对混凝土原材料进行检测和质量监控,保证混凝土强度和性能符合设计要求。
重力坝毕业设计
重力坝毕业设计1000字重力坝是一种常见的水利工程结构,具有结构简单、运行稳定、建造方便等优点。
本文旨在探讨重力坝设计的主要问题,包括坝体型状设计、地基处理、坝面防渗等方面。
一、坝体型状设计重力坝的重要特征是坝体具有足够的重量来承担坝下水压力。
因此,在坝体型状设计过程中,必须确保坝高和筒体厚度足够承受水压和地震力同时作用的负荷。
通常,坝体的高度应该根据下游地区所需的水压力来确定。
如果水压力较高,建议选择一种高度充足的坝体型状设计,以确保坝体足够强度承担庞大的水压力。
在此基础上,可以针对不同的山体坝体特征,采用不同的坝体型状设计。
二、地基处理地基处理是设计重力坝的一个重要问题。
由于地基是承受坝体上推力的主要结构,而且地基的性质和质量对于坝体的稳定性有直接影响。
因此,在设计重力坝时,应该通过预测地基衬砌和充实地基来改善地基的机械性质和减小地基破坏。
地基处理应该分为两个阶段。
第一个阶段是对预计地基状况的探究和分析,以快速确定地基状况,成本和时间。
第二个阶段是对具体地基处理的选择和实施,包括挖掘、填充、衬砌、灌浆等方面的操作。
此外,地质资料的获取也是重要的,以便更准确地分析地基状况。
这些资料可以分为岩石力学、工程地质和水文地质,以便在选择地基处理方案时做出具体的决策。
三、坝面防渗坝面防渗是设计重力坝时需要考虑的另一个重要因素。
坝面防渗可以确保坝体内水的安全,防止渗漏和水损失。
设计坝面防渗方案应考虑以下因素:1. 坝体内的压力。
防止渗漏时应确保大坝的水压符合设计要求。
2. 坝面材料。
坝面材料应具有足够的密度和合适的渗透率,以确保没有任何渗漏。
3. 水位高度的选择。
在决定大坝的设计水位高度时,应考虑到可能的最高水位,以及水压力和水荷重的影响。
综上所述,在设计重力坝时,应严格遵守技术规范、结合地质特征和环境条件,从坝体型状设计、地基处理、坝面防渗等方面统筹考虑,确保大坝的稳定性和安全性。
非溢流重力坝设计
第三章 非溢流重力坝设计3.1基本剖面设计3.1.1剖面设计原则重力坝的设计断面应由基本荷载组合控制,并以特殊荷载组合复合。
设计断面要满足强度和强度要求。
非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量最小;③优选体形,运用方便;④便于施工,避免出现不利的应力状态。
3.1.2基本剖面拟定图3.1重力坝的基本剖面是指坝的基本剖面是指在自重、静水压力(水位与坝顶齐平)和扬压力三项主要荷载作用下,满足稳定和强度要求,并使工程量最小的三角形剖面,如图3.1。
在已知坝高H 、水压力P 、抗剪强度参数f 、c 和扬压力U 的条件下,根据抗滑稳定和强度要求,可以求的工程量最小的三角形剖面尺寸。
3.1.3实用剖面的拟定一、坝顶高程的拟定坝顶高程应高于校核洪水位,坝顶上游防浪墙顶高程应高于波浪顶高程。
坝顶高程由静水位+相应情况下的风浪涌高和安全超高定出。
即∇=静+h ∆式中:h ∆=l z c h h h ++。
式中:l h ----为波浪高度;z h ----为波浪中心线超出静水位的高度;c h ----为安全超高。
1、超高值h ∆的计算(1)基本公式坝顶应高于校核洪水位,坝顶上游防浪墙顶高程应高于波浪顶高程,h ∆可由式计算,应选择三者中防浪墙较高者作为选定高程。
c z h h h h ++=∆%1 (2.1)式中h ∆—防浪墙顶与设计洪水位或校核洪水位的高差m ;%1h —累计频率为1%的波浪高度m ;z h —波浪中心线至设计洪水位或校和洪水位的高差m ;c h ——安全超高 ;c h 的取值,根据下表3.1表3.1故本设计坝的级别为2级,所以设计安全超高为0.5m ,校核安全超高为0.4m 。
对于h l%和h z 的计算采用官厅公式计算:3/14/500166.0D V h l =,0.810.4()c L h = 22l z h H h cth L Lππ= 式中: 0V ----计算风速,m/s, 在计算%1h 和z h 时,设计洪水位和校核洪水位采用不同的计算风速值。
重力坝设计
一、基本数据尺寸数据其中:H1—设计洪水位与正常高水位,h1为相应下游水位。
H2—较核洪水位,h2为相应下游水位。
H3—泥砂淤积高程。
H0—河床清基后高程。
其中:γ砂—泥砂干容重(KN/m3),空隙率ω,φ内摩擦角。
L1—坝基帷幕灌浆距上游坝踵,L2—排水孔幕距坝锺,α—剩余水头系数。
T—坝体计算断面沿上、下游方向的长度,m。
二、坝基面强度几抗滑稳定计算注:①a.重心位置于W1与W2之间。
b.重心位置于W3与W1之间。
(+)、负(-)④深水波、浅水波判波计算1、基本荷载组合(正常蓄水位)1(1)抗滑稳定计算(2)坝基面强度计算1.上下游边界垂直正应力计算σyu —上游边缘垂直正应力(不计扬压力时);σyd—下游边缘垂直正应力(不计扬压力时);σyu'—上游边缘垂直正应力(计扬压力时);σyd '—下游边缘正应力(计扬压力时);a.考虑扬压力时 (单位:KN ,KN/m 2)计算公式:b.不考虑扬压力时可见,上游面为压应力,下游面计和不计扬压力均小于坝基允许压应力。
考虑计与不计扬压力。
因为,扬压力是一种可能存在而不一定存在的荷载,而且扬压力不是一个准确计算得值。
(参阅《重力坝》潘家铮主编,P115)σ1u —上游边缘垂直正应力(计扬压力时);σ1d —下游边缘垂直正应力(计扬压力时);σ1u '—上游边缘垂直正应力(不计扬压力时);σ1d '—下游边缘正应力(不计扬压力时);a.计扬压力时,σ1u '=σyu (1+n 2)σ1d '=σyd (1+m 2)b.不计扬压力时,σ1u =σyu (1+n 2)-n 2p u2.主应力计算σ1d=σyd(1+m2)-m2p d 3坝体剖面拟定(计算设计工况)。
重力坝设计
重力坝设计重力坝是一种常用的大型水利工程,用于治理水资源、发电和防洪。
本文将针对重力坝的设计进行介绍。
重力坝的概念和作用重力坝是指利用坝体重量和坝底摩擦力抵抗水压,而稳定起水坝的一种坝型。
其主要作用包括:1.治理水资源。
重力坝可以控制水流,供给农业、工业和生活用水等,提高水资源的利用效率。
2.发电。
重力坝可以作为水力发电的设施,利用水能转化为电能。
3.防洪。
重力坝可以减少洪水对下游地区的威胁和损失。
重力坝的设计要点设计一座重力坝,需要考虑以下一些关键要点:1. 坝体的稳定性坝体的稳定性是重力坝设计的首要考虑因素。
一般来说,坝体稳定性需要考虑水压、地震、风等自然力对坝体的作用。
在满足以上自然因素的前提下,需要保证坝体的重量足够大,以此来抵抗水压,保证坝的稳定性。
2. 场地的选址与特征分析场地选址是重力坝设计的重要环节。
需要考虑地质条件、地形、气候和地水等因素,以确保设计出的坝体能够最大限度地发挥其河道防洪、蓄水、发电等多种功能。
此外,场地的土质特征也需要进行分析,以确定坝堆方案和基础设计。
3. 坝体形状和尺寸坝体形状和尺寸是影响重力坝性能的重要因素。
在坝体形状的确定时,需要研究坝体的倾斜角度、上游堆石体到坝顶的高度、坝顶宽度、坝面曲率等因素。
在坝体尺寸的确定中,要考虑地势、水流和地震等自然条件,以及坝体工程实践的经验,以确保设计出实用稳定的坝型。
4. 泄洪浸水口的设计重力坝一旦遭遇大洪水的袭击,坝体产生泄洪浸水的情况是不可避免的。
因此,坝体泄洪浸水口的设计是重要环节之一。
在设计中,需要考虑泄洪浸水口的数量、大小、位置等因素,如何在保证泄洪及防洪安全的前提下,实现泄洪浸水的目的。
重力坝的施工和管理重力坝建造需要采用大范围的土石方、钢筋混凝土浇筑和水利系统建设等多种复杂的施工工艺。
在施工过程中,必须按照合理的技术要求,在施工、验收、监测等各环节进行严格控制,避免施工过程中出现质量问题。
在日常管理中,还需要定期对坝体及其周围环境进行巡视和检查,以避免坝体出现裂缝和漏水等质量问题,确保重力坝长期带来的丰富水资源、发电和防洪的利益。
重力坝设计和施工
3.2混凝土入仓温度控制措施
为了减少混凝土在运输过程中的热量倒灌,保证混凝土入仓温度满足浇筑温度 ,严格要求承建单位加强施工管理,减少混凝土转运次数。 • 使各施工环节统一调度,紧密配合,提高运输车辆和缆机的利用率,缩短混 凝土运输时间,避免混凝土运输车辆在受料斗前长时间等候。 • 禁止采用尾气设于车厢的汽车运输混凝土,并要求运输车辆车厢冲洗时间间 隔不大于2小时。 • 在4~9月份运输混凝土时,要求吊罐、自卸车等混凝土的容器侧壁用隔热材 料进行保温,顶部设防晒棚,以有效控制混凝土在运输途中的温度回升。 • 控制混凝土温度从出机口至振捣密实温度回升不大于5℃。混凝土到达浇筑 地点快速入仓。
2.2质量管理
(1)坝体混凝土升层控制(夏天1.5m;冬天<3.0m)。(2) 间隙期控制 (夏天>8~10天;冬天<6~8天)。(3)分缝跳 仓浇筑合理安排,使高差在控制范围之内(9~12m) 。(4)砼生产、浇筑、养护、温控防裂等各个环节加强管理。
2.3信息、合同管理及现场重大事项协调
(三) 坝体混凝土温度控制
(4)树立质量和安全样板作业面
同台竞技 技术比武 劳动竞赛 考核奖励 创优争先 树立样板
溪洛渡坝肩槽开挖
向家坝地厂岩锚梁开挖
溪洛渡导流洞混凝土
溪洛渡地厂岩锚梁开挖 溪洛渡尾水支管交叉段开挖
4.2 控制的主要环节:
(1)对原材料质量控制 (2)混凝土配合比优化 (3)混凝土生产----满足最高强度及质量要求 (4)混凝土运输及浇筑 (5)大体积混凝土温控防裂、养护及保温 (6)混凝土半成品、成品质量检验 (7)坝体混凝土现场检测快速反应机制
(8) 重力坝体型及轮廓尺寸检测
谢谢大家!
好好学习
四、质量控制
重力坝课程设计指南详解
重力坝课程设计指南重力坝Leabharlann 程设计指南重力坝课程设计指南
3、消能防冲设计 (1)方式选择(建议用挑流消能),并说明理由。 2 确定挑角及挑坎高程。 3 确定反弧半径。 4 估算冲坑位置及深度,并判断是否危及大坝安全。 4、溢流坝顶布置 包括闸墩、门槽、工作桥、交通桥、闸门等安排。
重力坝课程设计指南
(5)堰顶高程的确定
由
,初拟时 取0.95,m取0.502,则
忽略行进流速水头,即 ,故堰顶高程即为计算水位减去相 应的堰上水头H0。
(6)闸门高度的确定 应保证门顶在正常蓄水位以上至少0.2m的超高,闸门孔口 尺寸按规范推荐的孔口尺寸取用,表中标有“0”者为推荐的孔 口尺寸。
重力坝课程设计指南
3、计算部分应列举原始数据,及常用符号,列出计算公式, 然后用数字代入,计算结果应尽可能列表表示。
重力坝课程设计指南
4、根据地基开挖情况,确定最大坝高处建基面高程,则可 算出最大坝高及底宽。
5、抗滑稳定分析 (1)基本组合和偶然组合,基本组合有正常蓄水位情况和 设计洪水情况,偶然组合有校核洪水情况和地震情况。考虑的 主要荷载有自重、水压力、浪压力、淤沙压力及扬压力。可以 从以上荷载组合中分别选一种基本组合(如设计洪水位情况) 和一种偶然组合(如校核洪水位情况)计算。绘出荷载分布图, 分别计算荷载。
地震的设计烈度为6度。
重力坝课程设计指南
2、水文 本枢纽属中型二等工程。永久性重要建筑物为2级,按规范 要求,采用100年一遇洪水设计,1000年一遇洪水校核。
经水文水利计算,有关数据如表1所示:
《重力坝模型设计》课件
总结
1 优缺点
重力坝的优点是结构简单、耐用性强,但是缺点是对土地资源利用率较低、占用土地范 围较大。
2 应用领域
重力坝主要应用于拦截河流、蓄水,以及防洪、发电等等领域。
3 未来重力坝的发展前景
未来重力坝的发展趋势是在保证安全的前提下提升重力坝智能化水平,提高坝体运行稳 定性,以更好的服务于人民生活。
重力坝的特点是坝体整体性较 强、抗震性好、但是需要占用 较多土地并且施工难度较大。
重力坝的设计
基本设计要求
针对设计重力坝,需要考虑坝的高度、坝型、坝址、水流量、堆石场地等因 素。
案例分析
为了更好的学习重力坝设计知识,需要对经典的重力坝设计案例进行学习和 研究,例如安格斯二号重力坝。
重力坝的施工
1ห้องสมุดไป่ตู้
2
维护管理措施
采取定期检查、添加边坡护坡、拦截垃圾等措施。
3
维护评价指标
维护指标包括坝体稳定性、泄洪能力。定期检知坝体形变、沉降及渗漏情况。
重力坝的未来发展
新技术的应用
例如新型建筑材料、数字建模技术等都可以被应用在重力坝的建设中。
研究方向与展望
将大力研究重力坝的结构、稳定性和运行安全等,并将着重于突破耐久性等 核心技术水平。
重力坝的监测
监测目的和方法
监测的目的是发现重力坝是否存在问题,方法包括常规监测方法和现代的远程监测技术等。
监测评价指标
监测评价指标分为密集监测指标和重点监测指标两种。
监测周期和要求
监测周期需要根据重力坝的年龄、型式、结构、地质条件以及特殊情况的考虑
重力坝维护与管理
1
维护目的
重力坝的维护目的是确保坝体运行的安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力坝课程设计一、目的1、学会初拟重力坝尺寸的方法;2、掌握重力坝抗滑稳定计算和应力计算;3、进一步认识重力坝的结构特点。
二、基本资料(一)、水文、气象及泥沙资料通过对区域内水文气象资料的调查和分析计算,设计中所采用的水文、气象及泥沙参数见下表1。
(二)、地质资料1、坝址地质资料选定坝址河谷呈基本对称的“V”形谷,左岸山体坡角48°,右岸山体坡角46°,两岸地貌主要为侵蚀切割形成的平缓脊状山岭地貌,河谷地貌为侵蚀-构造类型。
坝址处出露地层为峨嵋山玄武岩(P2β),岩层无产状,岩层倾向总体倾向河床下游偏右岸。
坝址处左右岸坡残坡积层厚度为0~2m,局部地段深达7m以上,河床上第四纪冲积覆盖层厚度为5m 左右。
地表裸露的玄武岩呈强风化状,玄武岩地层上部强风化层在河床部位厚3.6m,在河床左岸坡厚7.5m,在河床右岸坡厚8m,下部呈弱风化状,弱风化层在河床部位厚3m,在河床左岸坡厚4m,在河床右岸坡厚3.5m。
再往下为微风化和新鲜岩石。
经取样试验,结合有关工程经验类比,参考有关设计规范,地质专业提出了岩石(体)物理、力学参数,见表5-2~表5-4。
表5-2 岩土质物理力学性质建议指标表5-3 坝基岩体力学参数(三)特征水位(四)坝址处地形图三、要求1、拟定坝体尺寸,进行重力坝稳定计算及应力计算;2、提交成果(1)重力坝非溢流坝段剖面图,溢流坝段剖面图;(2)重力坝平面布置图。
1.坝基开挖深度的确定初步确定坝高在50~100m 的范围内,可建在微风化至弱风化的上部基岩上。
由地质资料,坝址处左右岸坡残坡积层厚度为0~2m ,局部地段深达7m 以上,河床上第四纪冲积覆盖层厚度为5m 左右。
地表裸露的玄武岩呈强风化状,玄武岩地层上部强风化层在河床部位厚3.6m ,在河床左岸坡厚7.5m ,在河床右岸坡厚8m ,下部呈弱风化状,弱风化层在河床部位厚3m ,在河床左岸坡厚4m ,在河床右岸坡厚3.5m 。
再往下为微风化和新鲜岩石。
综合考虑工程量、工程造价、坝的稳定决定开挖12m 相对比较合理,由地质图可知开挖高程为1328m 。
2.校核洪水位,设计洪水位的确定设计洪水流量s m Q /4003= 校核洪水流量s m Q /6003= 一般软弱岩石单宽流量q=s m s m /50/3033- 设计洪水流量下溢流坝宽L=8~12m 校核洪水流量下溢流坝宽L=12~20m 取L=20mm=0.5,ξ=1,L=20m 正常蓄水位 1388m2/302H g mnb Q ξ= 得 =设计0H 4.338m =校核0H 5.684m设计H =1388+4.338=1392.338m 校核H =1388+5.684=1393.684m3.累计频率为1%时的波浪高度和波浪中心线高于静水位的计算官厅公式 波高h ,当20V gD=20~250 时,为累计频率5%的波高h5%; 当20V gD=250~1000 时,为累计频率10%的波高h10%。
设计洪水位情况下:20V gD=9.8×1.2×103/15.72=47.709 波浪高度 h l%=1.240×0.0166V5/4D 1/3 =1.240×0.0166×15.75/4×1.21/3=0.684m波浪长度 L=10.4×h l%0.8=10.4×0.6840.8=6.456m 波浪中心线到静水面的高度h z =πh l 2/ L ×cth2πH/ L =3.14×0.6842/6.456=0.191m校核洪水位情况下:20V gD=9.8×1.2×103/15.72=47.709 波浪高度 h l%=1.240×0.0166V5/4D 1/3 =1.240×0.0166×15.75/4×1.21/3=0.684m波浪长度 L=10.4×h l%0.8=10.4×0.6840.8=6.456m 波浪中心线到静水面的高度H z =πh l 2/ L ×cth2πH/ L =3.14×0.6842/6.456=0.191m安全超高3级建筑物取值 设计情况h c =0.4m 校核情况h c =0.4m4.坝顶高程的确定 H=设计H +h l%+ h c +h z =1393.613mH=校核H +h l%+ h c +h z =1394.859m 取较大值 H=1394.859m初步拟定坝体的剖面尺寸坝顶宽度的确定一般取坝高的8%~10%,坝高为66.859m,取6m。
坝坡坡率的确定经过试算上游坝坡坡率采用0.2,下游坝坡坡率采用0.75.坝底宽度的确定B=0.2×(1368-1328)﹢(1388-1328)×0.5=53m坝体的基本尺寸坝的稳定和应力验算计算简图坝体自重和水重的计算取单位宽度1m砼的容重γC =25 KN/m3 水的容重γW=9.8KN/m3坝体自重W1=0.5γCB1H1= 4000 KN/m3 力臂L=21.167m 力矩M= L W1=84666.667 KN/m3W2=0.5γCB1H3= 10028.850 KN/m3 力臂L=15.5m力矩M= L W1=155447.175 KN/m3W3=0.5γCB3H4=25350 KN/m3 力臂L=-0.5m力矩M= L W1=-12675 KN/m3水重W水1=0.5γB1H1= 1568 KN/m3 力臂L=23.833m W力矩M= L W水1 =37370.667 KN.m设计情况B1H2=1908.009 KN/m3 力臂L=22.5mW水2==0.5γW力矩M= L W水2 =42932.232 KN.m校核情况B1H2=2013.626 KN/m3 力臂L=22.5mW水2==0.5γW力矩M= L W水2 =45306.567 KN.m设计情况B4H5= 1673.579KN/m3 力臂L=-21.165m W水3==0.5γW力矩M= L W水2 =-35421.296KN.m校核情况B4H5= 1920.480KN/m3 力臂L=-21.165m W水3==0.5γW力矩M= L W水2 = -40646.960KN.m上游水平静水压力设计情况P1=0.5γH2=20282.953 KN/m3 力臂L=-21.446 m W力矩M= LP1=-434988.219 KN.m校核情况P1=0.5γH2=21140.500 KN/m3 力臂L=-21.895 mW力矩M= LP2=-462864.211 KN.m下游水平静水压力设计情况P1=0.5γWH2=20282.953 KN/m3 力臂L=7.113 m力矩M= LP1=15872.965 KN.m校核情况P2=0.5γW(H5)2=2231.438KN/m3 力臂L=7.620 m力矩M= LP2=19512.007 KN.m浮托力水平淤沙压力淤沙浮容重9KN/m3 淤沙内摩擦角30°水平淤沙压力Ps=0.5γs h s2tan2(45°-0.5s )=2397.059KN力臂L=-13.333m 力矩M= LPs=-31960.785 KN.m扬压力排水管幕距离上游面的距离一般不小于坝前水深的1/10~1/12取L1=7m 设计情况U1=γW αγWHL1=737.416KN 力臂L=-23m力矩M= LU1=-16960.561KN.m 校核情况U1=γW αγWHL1=734.432KN 力臂L=-23m力矩M= LU1=-16891.927KN.m设计情况U2=0.5γW αγW H (B-L1)=2264.920KN 力臂 L=-4.167m 力矩 M= LU2=-10095.572KN.m 校核情况U2=0.5γW αγW H (B-L1)=2422.937KN 力臂 L=-4.1677m 力矩 M= LU2=-10054.718KN.m 设计情况U3=0.5γW αγW HL1=1106.124KN 力臂 L=-24.167m 力矩 M= LU2=-26731.319KN.m 校核情况U3=0.5γW αγW HL1=1101.647KN 力臂 L=-24.167m 力矩 M= LU2=-26623.146KN.m浮托力 设计情况U4=γW BH2=11083.996KN 力臂 L=0m 力矩 M= LU4=0KN.m 校核情况U4=0γW BH2=11873.484KN 力臂 L=0m 力矩 M= LU2=0KN.m抗滑稳定分析f ’=0.9 c ’=0.75Mpa A=50m∑'+-'='AC U W f s K )(满足稳定要求。
σyu =B M B W 26∑∑+ σyd =BM B W 26∑∑-两种情况下坝踵均不出现拉应力满足要求。
溢流坝段的设计孔口形式:开敞溢流式 采用WES 型溢流堰顶部曲线上部曲线段x85.1=2.0H d 85.0yH d 定型设计水头,一般为校核洪水位时堰顶水头的75%~95%。
校核洪水位时 =校核0H 5.684m , H d =4.398m ~5.339m 取H d =5.0m 。
X 与y 的关系如下表校核洪水位时 =校核0H 5.684m , H d =4.398m ~5.339m 取H d =5.0m 。
对堰面曲线求一阶导数=dd xy Hx d85.085.0285.1下游坡率为0.75=dd xy Hx d85.085.0285.1=75.01Xa= 7.688m Ya=5.541m中间直线段 坡率与非溢流坝段的坡率相同为0.75 下游反弧段校核情况反弧段最低点水流速1V 的计算 1V =gS 2ϕ 长江流域规划办公室流速系数 ϕ的经验公式 35.0055.01kE-=ϕ流能比gqsk E 5.1=单宽流量q=30s m /3代入公式得 1V =27.78 m/s Q A Bh νν== , 所以鼻坝平均水深为:BvQh =Q —下泄流量 B —鼻坎处水面宽度 设计情况mh 1.082027.78006=⨯=反弧半径 6(2=R ~ 6.32)10=h ~10.8m 但是实际工程中远远超过此值。
用经验公式8.531.0881.9/27.78/=⨯==gh v Fr mm h Fr R 17.941.088.533232232/3=⨯⨯==取R=15m同理可计算出 设计情况下的流速 V= 24.76 m/s反弧段曲线如图所示:反弧段的上端与直线AB相切于B点,下端与河床相切于C点。