第三章圆复习课

合集下载

1.垂径定理复习

1.垂径定理复习

在Rt △AOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米
3.如图,一条公路的转弯处是一段圆弧,(即图中 CD,点O是CD的圆心),其中CD =600m,E为CD上一 点,且OE⊥CD,垂足为F,EF=90m。求这段弯路的 半径。 C E
O
.
F
D
设弯路的半径为Rm,则OF =(R-90)m 1 OE⊥CD, CF CD 300(m) 2 根据勾股定理得: 解得:R 545 所以,这段弯路的半径为545m.
已知:⊙O中弦AB∥CD. C A
M
.O
D B
N 证明:作直径MN⊥AB. ∵AB∥CD,∴MN⊥CD. 则AM=BM,CM=DM (垂直平分弦的直径平分弦所对的弦) AM-CM = BM -DM ∴AC=BD
⌒ ⌒
⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒
求证:AC=BD


圆的两条平行弦所夹的弧相等
O
A
C
N
B
①直线MN过圆心 ③ AC=BC
②MN⊥AB ④弧AM=弧BM ⑤弧AN=弧BN
推论1.
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧。
推论1. (1)平分弦(不是直径) 的直径垂直于弦,并且平分 弦所对的两条弧。 A
M
一个圆的任意两 C 条直径总是互相平分, 但是它们不一定互相 垂直。因此这里的弦 如果是直径,结论就 不一定成立。
九年级数学(下) 第三章 圆
垂径定理复习课
圆的轴对称性
M A D
圆是轴对称图形,
经过圆心的每一 条直线都是它的对称轴。
O
C
B
N
推论
在同圆或等圆中,如果两个圆心角,两条弧, 两条弦,两条弦的弦心距中,有一组量相等,那么它们所 对应的其余各组量都分别相等.

中考专题九年级下册第三章圆视图与投影复习课件

中考专题九年级下册第三章圆视图与投影复习课件
∵ △AMG∽△DEF


=


解得AG=4
∴AB=4+2=6米
解法多样, G
D
E
M
本质相同
B
C
F
知识点二----平行投影
平行投影测物高
建立类似三角形
模型
物高、光线、影长
遇障碍,两次类似
解直角三角形
类似比,列比例式
解方程

例1 一根垂直于地面的标杆长为1米,它在地面上的影长为2米,
(3)同一时刻,小明想测量一棵树的高度,已知树的影子落在地
G
H
F
知识点二----中心投影
例2
中心投影测物高
身高1.6米的小明站在D处,测得他在路灯A下的影长
DE=1.5米,小明与路灯距离BD=4.5米,
小明前方5.5米处有棵小树,若测得小树影长FH=4米,且F、H在BE直线
上,则树高为

两次投影,两次类似
G
H
F
中心投影测物高
中心
投影
灯高
光线
物高
影长

物高
地上和斜坡上,如图所示。测得地面上的影长为8米,坡面上的影
3
长为2米.已知斜坡的坡角为30°,则树高为 5+

2
解法2:过点M作MH垂直BC于H,MG垂
直AB于G,则四边形BHMG是矩形
A
在Rt△MCH中 ∠MCH=30°,M=2
G
解法多样,
∴MH=1,CH= 3
本质相同
∴BG=MH=1,MG=8 + 3
上和斜坡上,如图所示。测得地面上的影长为8米,坡面上的影长
3
为2米.已知斜坡的坡角为30°,则树高为

浙教版九年级上第三章圆复习(1)课件ppt

浙教版九年级上第三章圆复习(1)课件ppt

.
C B O F A D E
D
O A C B E
8.已知:如图,AB,CD是⊙O直径,D是弧AE中点,AE与CD交于F, OF=3,则BE= .
9.如图,DE ⊙O的直径,弦AB⊥DE,垂足为C,若AB=6,CE=1,则 CD= ,OC= .
10.已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16, 则弦AB与 CD的距离为 .
L2
L1
A
C
O E C B D
A O
F
E B
D
4.已知⊙O半径为2cm,弦CD长为 2 3 cm,则这条弦的中点到 这条弦所对的劣弧中点的距离为( ) A.1cm B.2cm C.
2 cm
D.
3 cm
.
6.在半径为2cm的圆中,垂直平分半径的弦长为 7.如图,⊙O直径AB和弦CD相交于点E,已知 AE=6cm,BE=2cm,∠CEA=30°,则CD长为
C
2, 3
O
A
F
B
7、如图, ⊙O中,直径为MN,正方形ABCD的 四个顶点分别在半径OM、OP以及⊙O上,并且 ∠POM=45° ,若AB=1,求该圆的半径。
P A M B D C O N
例2.已知:如图,AB是⊙O直径,AB=10,弦AC=8,D是弧AC 中点,求CD的长.
B
O
5
A
3 E 4 2
C
D2
5
1.已知:如图,⊙0直径是8cm,C是弧AB中点,弦AB,CD相交于 P,CD=
4 3 cm 求∠APC的度数
D O
E
A C P
F
B
2.已知:如图,⊙O半径OA=1,弦AB,AC的长分别是 求∠BAC的度数 D

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。

圆的认识教案

圆的认识教案

圆的认识教案.doc教案第一章:圆的基础概念1.1 教学目标:让学生了解圆的定义和基本属性。

学会用圆规和直尺画圆。

1.2 教学内容:圆的定义:一个平面上所有点到一个固定点的距离相等的点的集合。

圆心:圆的中心点,所有直径都相交于圆心。

半径:从圆心到圆上任意一点的距离。

直径:通过圆心,两端都在圆上的线段。

1.3 教学步骤:1. 引入圆的概念,展示圆的实物图片,引导学生思考什么是圆。

2. 讲解圆的定义和基本属性,让学生理解圆的特点。

3. 演示如何用圆规和直尺画圆,并让学生亲自动手实践。

4. 讲解圆心、半径和直径的概念,并展示图示。

5. 进行课堂练习,让学生运用所学知识。

教案第二章:圆的周长和面积2.1 教学目标:让学生学会计算圆的周长和面积。

2.2 教学内容:圆的周长公式:C = 2πr,其中C表示周长,r表示半径,π表示圆周率(约等于3.14)。

圆的面积公式:A = πr²,其中A表示面积,r表示半径,π表示圆周率(约等于3.14)。

2.3 教学步骤:1. 回顾圆的定义和基本属性,引导学生思考圆的周长和面积的计算方法。

2. 讲解圆的周长公式和面积公式,让学生理解公式的含义。

3. 进行课堂练习,让学生运用所学知识计算圆的周长和面积。

教案第三章:圆的弧和扇形3.1 教学目标:让学生了解圆的弧和扇形的概念。

3.2 教学内容:圆的弧:圆上任意两点之间的部分。

圆心角:以圆心为顶点的角,其两边分别是圆的弧。

扇形:由圆心角和与圆心角的两边相交的圆弧所围成的图形。

3.3 教学步骤:1. 引入圆的弧和扇形的概念,展示图示,引导学生思考它们的特点。

2. 讲解圆的弧和扇形的定义,让学生理解它们的关系。

3. 进行课堂练习,让学生运用所学知识。

教案第四章:圆的位置和运动4.1 教学目标:让学生了解圆的位置和运动。

4.2 教学内容:圆的位置:圆心在平面上确定圆的位置。

圆的运动:圆可以沿平面上的直线平移,也可以绕圆心旋转。

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合,是初中九年级的数学学习重点内容,下面店铺为你整理了北师大版初中数学九下第三章圆教案,希望对你有帮助。

北师大版数学九下圆教案:圆的有关性质教学过程:一、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。

并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?二、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O2、进一步观察,体会圆的形成,结合园的定义,分析得出:① 圆上各点到定点(圆心)的距离等于定长(半径)② 到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。

由此得出圆的定义:圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。

同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:⑴已知图形,找点的集合例如,如图,以O为圆心,半径为2cm的圆,则是以点O为圆心,2cm长为半径的点的集合;以O为圆心,半径为2cm的圆的内部是到圆心O的距离小于2cm的所有点的集合;以O为圆心,半径为2cm的圆的外部是到圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

【中考小复习配套课件】北师大九年级下第三章圆

【中考小复习配套课件】北师大九年级下第三章圆

周角的2倍,得∠O=2∠B=44°,又因为
AB∥CO,所以∠A=∠O=44°.
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
方法技巧 圆周角定理建立了圆心角与圆周角之间的关系, 因此, 最终实现 了圆中的角( 圆心角和圆周角) 的转化, 从而为研究圆的性质提供了有 力的工具和方法.当图形中含有直径时, 构造直径所对的圆周角是解 决问题的重要思路.在证明有关问题中注意 90°的圆周角的构造.
(3)圆锥侧面积为 πrl .
[点拨] 圆锥的侧面展开图的形状是扇形,它的半径等于圆 锥的母线长,它的弧长是圆锥底面圆的周长.
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
┃考点攻略┃
► 考点一
例1
确定圆的条件
如图X3-6,在5×5正方形网格中,一条圆弧经过A,
B,C三点,那么这条圆弧所在圆的圆心是(
“同弦或等弦”.
6.确定圆的条件 不在同一直线上的三个点确定一个圆. 7.三角形的外接圆
数学·新课标(BS)
下册第三章复习(二)┃ 知识归类 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接 圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角 形的 外心 . 8.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略 ► 考点二 垂径定理及其推论
例2 如图X3-7,AB是⊙O的弦,半径OC⊥AB于D点, 且AB=6 cm,OD=4 cm,则DC的长为( D )
A.5 cm
B.2.5 cm C.2 cm D.1 cm
数学·新课标(BS)
下册第三章复习(二)┃ 考点攻略
在Rt△ABC中,∠A=30°,直角边AC=6 cm,以C为圆 心,3 cm为半径作圆,则⊙C与AB的位置关系是________. 相切

九年级数学上册-第3章 对圆的进一步认识 复习课件-青岛版

九年级数学上册-第3章  对圆的进一步认识  复习课件-青岛版


l 2πR
=
n 360
,
S扇形 πR2
=
n 360
,
∴l
=
nπR 180
, S扇形
=
n 360
πR2
这样就不至于因死记硬背而出错。
将弧长公式代入扇形面积公式中,立即得到用弧长
和半径表示的扇形面积公式:
S扇形
=
1 2
lR
这一公式与三角形面积公式酷似。为了便于记忆, 只要把扇形看成一个曲边三角形,把弧长l看成底、R看
• 3、熟练掌握弧长和扇形面积公式及其它们的应用; 理解圆锥的侧面展开图并熟练掌握圆锥的侧面积 和全面积的计算。
【重难点】
重点
1、垂径定理; 2、与圆有关的位置关系; 3、弧长公式和扇形面积公式的应用。
难点
1、垂径定理; 2、切线的性质与判定。
【知识网络】
圆的基本性质
圆的对称性
轴对称 中心对称
与圆有关的角的性质
(2)若⊙O的半径为 3,DE 3,求AE。
A
23
O
E
B
D
6
方法总结: 1、如果已知直线与圆有 交点,常连接圆心与交 点,再证明连线垂直于 半径即可;
2、如果不明确直线 与圆的交点,往往要作 出圆心到直线的垂线段,
C 再证明这条垂线段等于
半径即可。
【巩固练习】
1、如图,AB是⊙O的直径,AB⊥CD于点E,则 在不添加辅助线的情况下,求出图中与∠CDB相 等的角 ∠CAB ∠BAD ∠BCD
B
O
A
【布置作业】
1、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则
⊙O的半径等于( B)
A.8

第三章圆1-10(1)

第三章圆1-10(1)

第三章圆第1课时教学内容圆的有关概念.圆的对称性教学目标知识与技能:了解圆的有关概念,理解并掌握圆的对称性质,过程与方法:从感受圆在生活中大量存在到圆形及圆的形成过程,通过实际操作,理解圆的对称性。

情感与态度:通过实际操作体会,使学生感受圆形的美,感受知识来源于实际生活又应用于生活。

重难点:探索圆的对称性,了解圆的相关概念。

教学准备:圆形,细绳。

课型:新授教法学法:自主学习、操作实验、讲练结合教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知1、圆的定义从以上圆的形成过程,我们可以得出:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.定义2:学生四人一组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.圆的新定义:平面内到定点的距离等于定长的点所有点组成的图形,这个定点就是圆心,定长就是圆的半径。

2、概念,我们又把连接圆上任意两点的线段叫做弦,如图线段AC,AB;问:你能作出圆中最长的弦吗?这个最长的弦是什么?板书:经过圆心的弦叫做直径,如图线段AB;一个圆有多少条直径?试一试:分别作出两个半径为5cm的圆,剪下来试试它们能否完全重合,说明了这两个圆有什么关系?能够重合的两个圆叫做相等的圆(等圆)或半径相等的圆叫做等圆。

3、圆的对称性实际操作(学生活动)请同学们回答下面两个问题.(1.把一个圆旋转任意角度后,能否与自身重合?由此你想到圆有什么性质?(2.把一个圆沿直径对折后,你有什么发现?由此你又有什么结论?同学们把你的结论写下来:结论:三、课堂小结学生归纳后,老师点评,系统总结,四、巩固知识熟记圆的有关概念和性质五、作业1、你有几种方法可以画出一个圆?2、画圆时要确定什么?3、在我们学习的几何图形中,请总结一下它们的对称性,并加以比较。

圆的基本性质复习课教案

圆的基本性质复习课教案

圆的基本性质复习课教案seek; pursue; go/search/hanker after; crave; court; woo; go/run after第三章圆的性质1班级__________ 姓名___________复习内容:圆、圆的对称性、圆周角、确定圆的条件.复习要求:1.进一步理解圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系;2.探索圆的性质,了解圆心角与圆周角的关系、直径所对的圆周角的特征.复习重点:圆的有关性质的应用复习过程:一.梳理有关知识点:基本概念:弧、弦、圆心角、圆周角确定圆的条件:对称性:基本性质垂径定理:圆圆心角、弧、弦的关系定理:圆周角定理:同弧或等弧所对的圆心角是它所对的圆周角的推论:1同弧或等弧所的圆周角290°的圆周角所对弦是 ,二.基础练习训练:1. 小红的衣服被一个铁钉划了一个呈直角三角形的一个洞,其中三角形两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于 .2.⊙O的半径为6㎝,OA、OB、OC的长分别为5㎝、6㎝、7㎝,则点A、B、C 与⊙O的位置关系是:点A在⊙O_____,点B在⊙O_______.OACB3. 如图,△ABC 的三个顶点都在⊙O 上,∠ACB=40°,则∠AOB=____,∠OAB=_____.4. 如图,方格纸上一圆经过2,5、-2,2、2,-3、6,2四点,则该圆圆心的坐标为A .2,-1B .2,2C .2,1D .3,1 三、典型例:例1:如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C, 1用尺规作图法,找出弧ABC 所在圆的圆心O 保留作图痕迹,不写作法; 2设△ABC 是等腰三角形,底边BC = 10cm,腰AB = 6 cm,求圆片的半径R 结果保留根号;3若在2题中的R 的值满足n 〈R 〈mm 、n 为正整数,试估算m 和n 的值.例2 、1如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm,则弦AB 的长是_______ ; 弦AB 所对的圆心角的度数为___________. 2如图,在⊙O 中,弦AB =60,弓高CD =9,求圆的半径.3已知点P 是半径为5的⊙Ο内一定点,且PO=4,则过点P 的OA D BCOA D BCABC所有弦中,弦长可取到的整数值共有的条数是 . 例3 、如图所示,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F,•且AE=BF,请你找出弧AC 与弧BD 的数量关系,并给予证明.例4:如图,在⊙O 中,直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于点D.求BC 和AD 的长.例5 、如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 弧AB 上一点,延长DA 至点E ,使CE CD =.1求证:AE BD =;2若AC BC ⊥,求证:2AD BD CD +=.O ACEAOD B四、达标检:1.如图,BD 为⊙O 的直径,∠A=30°,则∠CBD 的度数为A .30°B .60°C .80°D .120°2.如图,AB 是⊙O 的直径,BC,CD,DA 是⊙O 的弦,且BC=CD=DA,则∠BCD 等于 A .100° B .110° C .120° D .130°3.如图,⊙O 的直径CD 过弦EF 的中点G,∠EOD=40°,则∠DCF 等于 A .80° B .50° C .40° D .20°4、如图,点A 、B 、C 是⊙O 上的三点,∠BAC=40°,则∠OBC 的度数是________5.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于____________º.OAC BAB O COBACO BA CE D6.在半径为2的⊙O 中,弦AB 的长为22,则弦AB 所对的圆心角∠AOB 的度数是__________7.如图,已知AB 是⊙O 的直径,点C,D 在⊙O 上,且AB=6,BC=3. 1求∠BAC 的度数;2如果OE ⊥AC,垂足为E,求OE 的长;3求∠ADC 的度数.课后作业: 一、选择题:1、半径为6的圆中,圆心角α为60°,则角α所对弦长等于• A .42 B .10 C .8 D .62、若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是B.10或4或83.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB 与CD 关系是 A .AB =2CD B .AB >CD C .AB <2CD D .不能确定 4.如图,⊙O 中,如果AB =2AC ,那么 .A .AB=2ACB .AB=AC C .AB<2ACD .AB>2AC 5.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE,若弦BE=3,则弦CE=________.二、填空1.⊙O 的直径为10,弦AB =8,P 是弦AB 上一动点,那么OP 长的取值范围是____.第四题第五题2.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB,垂足为D,OE ⊥AC,•垂足为E,•若DE=3,则BC=________.3.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G,B,F,E,GB=8cm,AG=1cm,DE=2cm,则EF=_______cm .4.如图,在⊙O 中,∠ACB=∠D=60°,AC=3,则△ABC 的周长为________. 5.在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为_______________.6. 如图,已知△ABC 的一个外角∠CAM =120°,AD 是∠CAM 的平分线,且AD 的反向延长线与△ABC 的外接圆交于点F ,连接FB 、FC ,且FC 与AB 交于E , 1判断△FBC 的形状,并说明理由;2请探索线段AB 、AC 与AF 之间满足条件的关系式并说明理由.7.已知:⊿ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于D,交AC 于E,1如图1,当∠A 为锐角时,连接BE,试判断∠BAC 与∠CBE 的关系,并证明你的结论;2如图1中的边AB 不动,边AC 绕点A 按逆时针旋转,当∠BAC 为钝角时,如图2CA 的延长线与⊙O 相交于E,请问:∠BAC 与∠CBE 的关系是否与1中你所得出的关系相同 若相同加以证明;若不同,请说明理由.FBCDMA E(2)(1)C。

七上数学课件第三章一元一次方程(复习课件)

七上数学课件第三章一元一次方程(复习课件)

x
2
4x 3
3
1
,去分母,得
3(
x
2)
(4x
3)
3
,故本选项错误,不合题意;
B,1 x 4 ,移项,得 x 4 1,故本选项正确,符合题意;
C, 2x (1 3x) 5 ,去括号,得 2x 13x 5 ,故本选项错误,不合题意;
D,
2x
3,两边都除以
2,得
x
3 2
,故本选项错误,不合题意;

故选:A.
C.
x
7 5
D.
x
2 3
【变式训练】
B 下列方程变形中,正确的是( )
A.
x
2
4x 3
3
1
,去分母,得
3(x
2)
(4
x
3)
1
B.1 x 4 ,移项,得 x 4 1
C. 2x (1 3x) 5 ,去括号,得 2x 13x 5
D.
2x
3,两边都除以
2,得
x
2 3
【解析】解:A,
知识点一 方程的相关概念
等式的性质1:等式两边加(或减)同一个数(或式子), 等式的性质 结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为 0的数,结果仍相等
注意事项
根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全 相同的变形;
等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么 变形后的等式不一定成。
A.若 x2 3x ,则 x 3
2x4
C.若 3 ,则 x 6
B.若 ax ay ,则 x y
D.若
x a
y a

北师大版九年级下册数学《确定圆的条件》圆培优说课教学复习课件

北师大版九年级下册数学《确定圆的条件》圆培优说课教学复习课件
(1)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
注 意
1、某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?
探究新知
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.
三角形外接圆的圆心叫做三角形的外心,
它是三角形三条边垂直平分线的交点..
画一画
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
●O
●O
●O
总结
锐角三角形的外心位于三角形内;直角三角形的外心位于直角三角形斜边的中点;钝角三角形的外心位于三角形外.
B
4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.
70°
课堂练习
5.如图,△ABC的高AD、BE相交于点H,延长AD交△ABC的外接圆于点G,连接BG.求证:HD=GD.
证明:∵∠C=∠G,△ABC的高AD、BE,
∴∠C+∠DAC=90°,∠AHE+∠DAC=90°,
3.5 确定圆的条件
课件
复习旧知
线段垂直平分线上的点有怎样的性质?
线段垂直平分线上的点和线段的两个端点的距离相等
2.怎样用尺规作一条线段的垂直平分线?
复习旧知
A
B

第三章圆回顾与思考(教案)

第三章圆回顾与思考(教案)
1.理论介绍:首先,我们要了解圆的基本概念。圆是由一组等距离于圆心的点构成的几何图形。它在生活中有着广泛的应用,如轮子的设计、建筑美学等。
2.案例分析:接下来,我们来看一个具体的案例。以车轮为例,探讨圆在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调圆的性质和圆的方程这两个重点。对于难点部分,如圆周角定理和圆的切线判定,我会通过举例和比较来帮助大家理解。
到性质,再到方程和应用,我希望通过这样的复习能够帮助学生巩固所学,深化对圆的理解。我发现,大部分学生对圆的基本性质掌握得还不错,但在将理论知识应用到实际问题解决时,还存在一些困难。
首先,圆周角定理和圆的切线判定是学生理解的难点。在讲解这些部分时,我尝试使用了图形和实际案例,但感觉效果并不如预期。我意识到,可能需要更多的时间让学生去操作、去实践,通过自己的探索来加深理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性质和方程。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点三:切线与割线的性质理解。举例:如何判定一条直线是否为圆的切线,以及如何利用割线定理求解问题;
-难点四:圆与圆位置关系的判断。举例:在给定两个圆的半径和圆心距离的情况下,如何判断它们的位置关系;
-难点五:弧、弦、圆心角的计算。举例:在给定圆的一部分信息时,如何计算未知的弧长、弦长或圆心角;

北师大版九年级下册数学《圆周角和圆心角的关系》圆说课教学课件复习提升

北师大版九年级下册数学《圆周角和圆心角的关系》圆说课教学课件复习提升

2.如右图,⊙O中,∠ACB = 130º,
1
则∠AOB=_1_0_0_º__.
O B
A
C
3.求圆中 的度数.
O
C 70°
A
B
α 350
D
C 120°
1
O
A
B
α 1200
A
4.如图,OA BC,AOB 500
C
B
则 CDA = 25°
O
D
5.在半径为R的圆内,长为R的 弦所对的圆周角为 30°或 150°
2
2
\ACB 1 AOD - BOD
2

A C
B
1 2
A
OB
C
C
C
O
O
O
A
A
B
A
B
D
DB
圆周角定理:在同圆或等圆中,同弧或等弧所
对的圆周角等于它所对的圆心角的一半.
D
C O

A

仅从射门角度 大小考虑,谁 相对于球门的 角度更好?
B乙
1.下列命题中是真命题的是( D ) (A)顶点在圆周上的角叫做圆周角 (B)60º的圆周角所对的弧的度数是30º (C)一弧所对的圆周角等于它所对的圆心角 (D)120º的弧所对的圆周角是60º
即 ACB 2BAC
A
O C
B
2.如图,点A,B,C,D,E均在⊙0上,则
A + B + C + D + E 等于多少度?
为什么?
B
分析:A,B,C,D,E这 五个圆周角所对的的弧之 A
C
和正好是一个圆,一个圆
所对的圆心角为 360°

第三章 《圆》复习课

第三章  《圆》复习课

已知货车的噪声污染半径为130m,那么学校是否在该
货车噪声污染范围内?若在,则学校受该货车噪声污染
的时间有几秒?结果精确到1s)
复习题34..gsp
35.如图,点A表示一个半径为300m的圆形森林公园的中
心,在森林公园附近有B,C两个村庄,且∠B=45ᵒ,
∠C=30ᵒ.如果在B,C两村庄之间修一条长500m的笔直公路
A B
17.如图,⨀O的直径为10cm,弦AB=8cm,P是弦AB上的 一个动点,求OP的长度范围.
O A P B
18.四边形ABCD内接于圆,并有 ⏜⏜⏜⏜ AB:BC:CD:DA =2:3:5:5:,求∠B的度数.
A B O C D
19.半径为5的⨀O中,点A与圆心O的距离为2,直线l
与点A的距离为3,且直线OA与l垂直,则直线l与⨀O
5.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于D, 以D为圆心,CD为半径作半圆. 求证:直线AB是半圆的切线.
A
B
D
C
切线的判定方法:(1)有交点,连半径,证垂直;
(2)没交点,作垂直,证半径.
1.观察下面四个图形,哪个既是轴对称图形又是中 心对称图形?
2.如图,已知AB是⨀O的弦,半径OA=20cm,∠O=120ᵒ,
求贴纸部分的面积(纸扇有两面,结果精确到0.1cm²)
26.铅球比赛要求运动员在一固定圆圈内投掷.推出的铅 球必须落在40°角的扇形区域内(以投掷圈的中心为圆 心),这一区域为危险区域.如果运动员最多可投7m, 那么这一比赛的危险区域的面积至少是多少?(结果 精确到0.1㎡)
26.如图,相距40km的两个城镇A,B之间有一个圆形湖泊, 它的圆心落在AB连线的中点O,半径为10km.现要修建一 最短路线(其中AA´,BB´都与⨀O相切). 你能计算出这段公路的长度吗? (结果精确到0.1km)

第三章圆复习课

第三章圆复习课

第三章 圆——知识小结【一、基础知识】(一)圆的有关概念和性质1.圆是轴对称图形, 是它的一条对称轴; 2.顶点在 的角叫做圆周角.3.顶点在 ,并且两边都和圆 的角叫做圆周角. 4.经过圆外一点作圆的切线, 的长叫做这点到圆的切线长. 5.三角形的三个顶点可以确定一个圆,这个圆叫做 ,外接圆的圆心叫做三角形的 ,它到三角形 都相等,是 的交点. 6.与三角形三边都 的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的 ;它到三角形 都相等,是 的交点. (二)位置关系78(三)重要定理9.垂径定理:垂直于弦的直径 弦且平分弦所对的 。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧此定理中共5个结论即:10、圆心角定理:在 圆中,相等的圆心角所对的 相等,所对的 相等。

上述三组量,只要知道其中1组相等,则可以推出其它两组量也相等。

即:①AOB DOE ∠=∠;②AB DE =;③ 弧BA =弧BDA11、圆周角定理:同弧或等弧所对的圆周角等于它所对的 角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 。

BA圆周角定理的推论:推论1:同弧或等弧所对的圆周角 ;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 ∴ 90C ∠=︒ 。

(∵90C ∠=︒∴AB 是 ) 12、圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角 。

即:在⊙O 中, ∵四边形ABCD 是内接四边形 ∴ B D ∠+∠=︒ = 。

13、切线的性质与判定定理(1)切线的判定定理:过半径 且 于半径的直线是圆的切线;即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过 点的半径(如右图) 即:∵MN 是⊙O 的切线,切点为A ∴MN OA ⊥14、切线长定理:从圆外一点引圆的 条切线,它们的切线长 ,这点和圆心的连线 两条切线的夹角。

初三上学期圆知识点和典型基础例题复习

初三上学期圆知识点和典型基础例题复习

第三章:圆一、圆的概念集合形式的概念:1、圆可以看作是到徒点的距离等于立长的点的集合(平而上到泄点的距离等于立长的所有点组成的图像叫做圆;2、圆的外部:可以看作是到泄点的距离大于左长的点的集合:3、圆的内部:可以看作是到泄点的距离小于左长的点的集合轨迹形式的概念:圆:到左点的距离等于眾长的点的轨迹就是以定点为圆心,定长为半径的圆;圆的对称性:圆是轴对称图形,英对称轴是任意一条过圆心的直线圆弧(简称:弧):圆上任意两点的部分弦:连接圆上任意两点的线段(经过圆心的弦叫做直径)如图所示,以A, B为端点的狐记做AB,读作:“圆弧AB”或者“弧AB”;线段AB是00的一条弦,弦CD是。

O的一条直径:【典型例题】例1.有下列四个命题:①直径是弦;②经过三个点一左可以作圆;③三角形的外心到三角形各顶点的距离都相等:④半径相等的两个半圆是等弧.其中正确的有().A. 4个B. 3个C. 2个D. 1个例2.点P到00上的最近距离为3cm ,最远距离为5CM,则0O的半径为二、点及圆的位置关系1、点在圆内=> d<r =>点C在圆内:2、点在圆上=> d = r =>点3在圆上:3、点在圆外=> d>r =>点A在圆外:三、直线及圆的位置关系1、直线及圆相离=> d>r=>无交点:2、直线及圆相切 n d = r=>有一个交点;3、直线及圆相交=> d<r=>有两个交点;四.圆及圆的位置关系考查形式:考査两圆的位程关系及数量关系(圆心距及两圆的半径)的对应,常以填空题或选择题的形式出现.题目常及图案、方程、坐标等进行综合外离(图1)=>无交点=> d>R + rx外切(图2)=>有一个交点=> d = R + r x相交(图3)=>有两个交点=> R-r <d <R + r \内切(图4)=>有一个交点=> d = R-r:内含(图5)=>无交点=> d <R-r:圆心距为也且斤+/—£=2斤d,则两圆的位置关系是(3・若半径分别为6和4的两圆相切,贝IJ两圆的圆心距d的值是【变式训练】1、O a和Oo的半径分别为1和4,圆心距aa=5,那么两圆的位置关系是()A.外离B.内含 c.外切 D.外离或内含2、如果半径分别为lcm和2cm的两圆外切,那么及这两个圆都相切,且半径为3皿的圆的个数有()A. 2个B. 3个C. 4个D. 5个3、已知:00’和O0:的半径是方程x2-5x+6=0的两个根,且两圆的圆心距等于5则00:和00:的位置关系是()A.相交B.外离C.外切D.内切例.1、若两圆相切,且两圆的半径分別是2, 3,则这两个圆的圆心距是(B. 1 C・1或5 D・1或4A.内切B.外切C.内切或外切D.相交2、若两圆半径分别为*和r二.填空题4・(1)0Q 和相切,0Q 的半径为4cm,圆心距为60/2?,则的半径为 _____________________ ;(2)0a 和相切.0Q 的半径为6血 圆心距为4皿 则€>Q 的半径为 __________________5.OQ 、oa 和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档