2014年自主招生卓越数学(文科)试题及解析(含评分标准)
2014年普通高等学校招生全国统一考试(天津卷)数学试题(文科)解析版

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. [2014•天津文卷]i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C. i 25312517+ D. i 725717+- 【答案】A 【解析】()()()()()()i i i i i i i i-=+⨯+⨯-+⨯+⨯=-+-+=++14313474137434343743722.2. [2014•天津文卷]设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A.2B. 3C. 4D. 5【答案】B【解析】可行域如图x当目标函数线过可行域内A 点时,目标函数有最小值31211=⨯+⨯=z .3. [2014•天津文卷]已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:( ) A.1)1(,0000≤+≤∃x e x x 使得 B. 1)1(,0000≤+>∃x e x x 使得C.1)1(,0000≤+>∃x ex x 总有 D.1)1(,0000≤+≤∃x e x x 总有【答案】B【解析】含量词的命题的否定先改变量词的形式再对命题的结论进行否定.4. [2014•天津文卷] 设,,log ,log 2212-===πππc b a 则( )A .c b a >> B.c a b >> C.b c a >> D.a b c >> 【答案】C【解析】∵1log 2>=πa ,0log 21<=πb ,112<=πc ,∴a c b <<.5. [2014•天津文卷]设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .-21【答案】D【解析】∵()6412344114-=-⨯⨯+=a a S ,又∵,,,421S S S 成等比数列, ∴()()64121121-=-a a a ,解之得211-=a .6. [2014•天津文卷]已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y xB.152022=-y xC.1100325322=-y xD.1253100322=-y x 【答案】A 【解析】∵1020,2+-==c ab,∴5=c ,52=a ,202=b , ∴120522=-y x .7. [2014•天津文卷]如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④ 【答案】D 【解析】∵31∠=∠,42∠=∠,∴21∠=∠,34∠=∠, ∴BD 平分CBF ∠,∴ABF ∆∽BDF ∆,∴BF BDAF AB =,∴BD AF BF AB ⋅=⋅, ∴DFBF BF AF =, DF AF BF ⋅=2.8. [2014•天津文卷]已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A.2πB.23πC.πD.2π 【答案】C【解析】∵()16sin 2=⎪⎭⎫⎝⎛+=πωx x f ,∴216sin =⎪⎭⎫ ⎝⎛+πωx ,∴Zk k x ∈+=+111,266πππω或Z k k x ∈+=+222,2656πππω,则()()ππω1212232k k x x -+=-,又∵相邻交点距离的最小值为3π,∴2=ω,π=T .二、填空题9. [2014•天津文卷]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生. 【答案】60【解析】由分层抽样方法可得一年级抽取人数为6065544300=+++⨯.10. [2014•天津文卷]一个几何体的三视图如图所示(单位:m ),一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.俯视图侧视图正视图【答案】320π【解析】由三视图可得该几何体为圆柱与圆锥的组合体,其体积32022314122πππ=⨯⨯+⨯⨯=V .11.[2014•天津文卷]阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】-4【解析】()()42223-=-+-=S .12. [2014•天津文卷]函数()2lg x x f =的单调递减区间是________.【答案】()0,∞-【解析】()2lg x x f =的单调递减区间需满足02>x 且2x y =递减.13. [2014•天津文卷]已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.【答案】2【解析】建立如图所示坐标系,且()0,1-A 、()3,0-B 、()0,1C 、()3,0D ,设()11,y x E ,()22,y x F ,由3BC BE =得()()3,33,111+=y x ,解之得⎪⎪⎭⎫⎝⎛-332,31E ,由DC DF λ=得()()3,3,122-=-yx λ,解之得⎪⎪⎭⎫⎝⎛-λλ33,1F , 又∵13231033,11332,34=-=⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-=⋅λλλAF AE , ∴2=λ.14. [2014•天津文卷]已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______.分别作出函数()y f x =与||y a x =的图像,由图知,0a <时,函数()y f x =与||y a x =无交点,0a =时,函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点,当0x <时,若y ax =-与254,(41)y x x x =----<<-相切,则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点,当0x <,1a =时,函数()y f x =与||y a x =有三个交点,当0x <,01a <<时,函数()y f x =与||y a x =有四个交点,所以学科网当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.考点:函数图像ABCD15. [2014•天津文卷]某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16.C7、C8[2012•天津文卷]在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1)求A cos 的值; (2)求)62cos(π-A 的值.PFEDCBA17.G4、G11[2014•天津文卷]如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==,2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点.(Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60 ,(ⅰ)证明 平面PBC ^平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.18.H5、H8[2014•天津文卷]设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知AB =(Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M ,2MF =,求椭圆的方程.【答案】(1) e = (2) 22163x y += 【解析】试题分析:(1)求椭圆离心率,就是列出关于a,b,c 的一个等量关系. 由12|||AB F F =,可得2223a b c +=,又222b ac =-,则221.2c a =所以椭圆离心率为e =(2) 由(1)知22222,,a cbc ==所以求椭圆方程只需再确定一个独立条件即可.由切线长=可列出所需的等量关系.先确定圆心:设(,)P x y ,由1(,0),(0,).F c B c -,有11(,),(,).F P x c y F B c c =+=由已知,有110F P F B ⋅=即()0x c c cy ++= ,故有19.(本19. B11、B12 [2014•天津文卷] 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.A1、D3、E7[2014•天津文卷] 已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中 ,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.。
2014年普通高等学校招生全国统一考试数学文试题(天津卷, 解析版)

x2014年普通高等学校招生全国统一考试(某某卷)数学(文史类)解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的某某、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•圆锥的体积公式13V Sh =. ()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =.h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i 解:73472525134343425i i i i i i i i,选(2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点1,1时,z 取得最小值3,选B. (3)已知命题p :0x,总有11xx e ,则p 为( )(A )00x ,使得011x x e (B )00x ,使得011x x e(C )0x ,总有11x x e (D )0x,总有11xx e解:依题意知p 为:00x ,使得0011x x e ,选B.(4)设2log a,12log b,2c,则( )(A )a b c (B )b a c (C )ac b (D )c b a解:因为1a,0b ,01c,所以acb ,选C.(5)设n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a ( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S ,所以21112146a a a ,解得112a ,选D. (6)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210yx,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x y解:依题意得22225ba cc a b ,所以25a,220b ,选A.(7)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BDAB BF .FED CBA 则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 解:由弦切角定理得FBD EAC BAE ,又BFD AFB ,所以BFD ∽AFB ,所以BF BDAFAB, 即AF BD AB BF ,排除A 、C. 又FBDEACDBC ,排除B ,选D.(8)已知函数3sin cos f x x x0,x R ,在曲线y f x 与直线1y 的交点中,若相邻交点距离的最小值为3,则f x 的最小正周期为( )(A )2(B )23(C ) (D )2 解:因为2sin6f x x,所以1f x得1sin 62x, 所以266xk或5266xk ,k Z .因为相邻交点距离的最小值为3,所以233,2,T,选C.第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
[精美版]2014年广东高考文科数学(逐题详解)
![[精美版]2014年广东高考文科数学(逐题详解)](https://img.taocdn.com/s3/m/f5b125f40242a8956bece4ac.png)
O xyA BCD2014 年广东高考文科数学逐题详解详解提供: 广东佛山市南海中学 钱耀周参考公式:椎体的体积公式 13V Sh = ,其中S 为椎体的底面积,h 为椎体的高.一组数据 12 ,,, nx x x L 的方差 ( ) ( ) ( )2222121 ns x x xxxx n éù =-+-++- êú ëûL ,其中x 表示这组数据的平均数.一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分,在每小题给出的四个选项中,只有一 项是符合题目要求的.1.已知集合 { } 2,3,4 M = , { } 0,2,3,5 N = ,则M N = I ( )A .{ }0,2 B .{ }2,3 C .{ }3,4 D .{ }3,5 【解析】B ;M N = I { } 2,3 ,选 B .2.已知复数z 满足( ) 34i 25 z -= ,则z =( )A . 34i --B . 34i-+ C .34i- D .34i+ 【解析】D ; ( ) ( )( )2534i 2534i 34i 34i 34i z + ===+ --+ ,选 D . 3.已知向量 ( ) 1,2 = a , ( ) 3,1 = b ,则 -= b a ( )A .( )2,1 - B .( )2,1 - C .( )2,0 D .( )4,3 【解析】B ; ( ) ( ) ( ) 3,11,22,1 -=-=- b a ,选 B .4.若变量 , x y 满足约束条件 28 04 03 x y x y +£ ì  í ï ££ î,且 2 z x y =+ 的最大值等于( )A .7B .8C .10D .11【解析】C ;画出可行域如图所示,为一个五边形OABCD 及其内部区域,当直线 2 y x z =-+ 过点 ( )4,2 B 时,z 取得最大值 24210 z =´+= ,选 C . 5.下列函数为奇函数的是( )A . 12 2x x y =-B . 3 sin y x x =C . 2cos 1 y x =+D . 2 2xy x =+ 【解析】A ;设 ( ) 1 2 2 xx f x =-,则 ( ) f x 的定义域为R ,且 ( ) ( ) 11 22 22x xx x f x f x - - -=-=-=- ,所以 ( ) 12 2x x f x =- 为奇函数,选A .6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段间隔为( )A .50B .40C .25D .20【解析】C ;分段间隔为 100025 40= ,选 C .7.在 ABC D 中,角 ,, A B C 所对应的边分别为 ,, a b c ,则“a b £ ”是“sin sin A B £ ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件1l 2l 3l 4 l 4l 【解析】A ;结合正弦定理知sin sin 2sin 2sin A B R A R B a b £Û£Û£ ,选 A .8.若实数k 满足05 k << ,则曲线 22 1 165 x y k -= - 与曲线 221 165x y k -= - 的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等【解析】D ;因为05 k << ,所以两条曲线均为双曲线,且 2c 均为21 k - ,故选 D .9.若空间中四条两两不同的直线 1 l , 2 l , 3 l , 4 l ,满足 12 l l ^ , 23 // l l , 34 l l ^ ,则则下列结论一定正确的是()A . 14l l ^ B . 14// l l C . 1 l 与 4 l 既不垂直也不平行 D . 1 l 与 4 l 的位置关系不确定 【解析】D ;弄个正方体一目了然!10. 对任意复数 1 w , 2 w 定义 1212 w w w w *= ,其中 2 w 是 2 w 的共轭复数,对任意复数 123 ,, z z z ,有如下四个命题:① ( ) ( ) ( ) 1231323 z z z z z z z +*=*+* ; ② ( ) ( ) ( ) 1231213 z z z z z z z *+=*+* ; ③ ( ) ( ) 123123 z z z z z z **=** ; ④ 1221 z z z z *=* ;则真命题的个数是( ) A .1B .2C .3D .4【解析】B ;①( ) ( ) ( ) ( ) 12312313231323 z z z z z z z z z z z z z z +*=+=+=*+* ,故①为真命题;② ( ) ( )( ) ( ) 12312312312131213 z z z z z z z z z z z z z z z z z *+=+=+=+=*+* ,故②为真命题; ③左边 123 z z z = ,右边 ( )( ) ( )123123123 * z z z z z z z z z === ,左边¹ 右边,故③为假命题; ④左边 12 z z = ,右边 21z z = ,左边¹ 右边,故④为假命题.故只有①②为真命题,选B . 二、填空题:本大共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分) (一)必做题(11~13 题)11.曲线 53 xy e =-+ 在点( ) 0,2 - 处的切线方程为.【解析】520 x y ++= ;由 5 xy e ¢=- 得 0 5 x y = ¢ =- ,故切线方程为 25 y x +=- ,即520 x y ++= .12. 从字母 ,,,, a b c d e 中任取两个不同的字母,则取到字母a 的概率为_______.【解析】 2 5 ; 142 5 42 105C P C === .13. 等比数列{ } n a 的各项均为正数,且 15 4 a a = ,则 2122232425log log log log log a a a a a ++++=______. (二)选做题(14~15 题,考生只需从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线 1 C 和 2 C 的方程分别为 22cos sinr q q = 和 cos 1 r q = . 以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线 1 C 和 2 C 交点的直 角坐标为______.【解析】( ) 1,1 ;由 2 2cos sin r q q = ,可得 ( ) 22cos sin r q r q = ,即 2 2 y x = .由 cos 1 r q = ,可得 1 x = .曲线 1 C 和 2 C 交点的直角坐标为() 1,2 . 15.(几何证明选讲选做题)如图 1,在平行四边形ABCD 中,点E 在 AB 上且2 EB AE = , AC 与DE 交于F ,则CDF AEF D =D 的面积的面积.【解析】9;考查相似三角形性质的应用.由题易知 CDF D ∽ AEF D 所以相似比为3:1 CD AE = ,故 CDF AEF D D 的面积的面积为相似比的平方,即为9. 三、解答题:本大题共 6 小题,满分 80 分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分 12分)已知函数 ( ) sin 3 f x A x p æö=+ ç÷ èø ,x ÎR ,且 532122f p æö =ç÷ èø . (1) 求A 的值; (2) 若 ( ) ( ) 3,0, 2 ff p q q q æö --=Î ç÷ èø ,求 6 f p q æö - ç÷ èø.【解析】(1) 依题意 553232 sin sin 12123422 f A A A pp p p æöæö=+=== ç÷ç÷èøèø ,解得 3 A = ; (2) 由(1)知, ( ) 3sin 3 f x x p æö=+ ç÷ èø,又 ( ) ( ) 3 ff q q --=,所以3sin 3sin 3 33 p p q q æöæö +--+= ç÷ç÷ èøèø ,展开化简得 3 sin 3 q = ,又 0, 2 p q æö Î ç÷ èø,所以 26cos 1sin 3q q =-= , 所以 3sin 3sin 3cos 6632 f p p p p q q q q æöæöæö-=-+=-= ç÷ç÷ç÷ èøèøèø6 = .17.(本题满分 13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191 28 3 29 3 30 5 31 4 323 401 合计20(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.【解析】(1) 这20名工人年龄的众数为30,极差为401921 -= ;(2) 作出这20名工人年龄的茎叶图如下:D ABCEF 图 11 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 2 4(3) 这20名工人年龄的平均数 192832933053143234030 20x +´+´+´+´+´+ = = ,方差 222222221 (11)3(2)3(1)50413210 20 s éù -+´-+´-+´+´+ =+´ ëû 1 (121123412100) 20 =+++++ 1 252 20=´ 12.6 = . 18.(本题满分 13分)如图 2 ,四边形 ABCD 为矩形, PD ^ 平面 ABCD , 1 AB = , 2 BC PC == ,作如图3 折叠,折痕// EF DC ,其中点 , E F 分别在线段 , PD PC 上,沿 EF 折叠后点 P 落在线段 AD 上的点记为M ,并且 MF CF ^ .(1) 证明:CF ^ 平面MDF ; (2) 求三棱锥M CDE - 的体积.【解析】(1) 因为PD ^平面 ABCD ,PD Ì 平面PCD ,所以平面PCD ^平面ABCD ,又平面PCD I 平面ABCD CD = ,MD Ì平面 ABCD ,MD CD ^ ,所以MD ^ 平面PCD , 又CF Ì平面PCD ,所以CF MD ^ ,又CF MF ^ ,MD MF M = I ,所以CF ^ 平面MDF . (2) 因为CF ^ 平面MDF ,DF Ì 平面MDF ,所以CF DF ^ , 又易知 060 PCD Ð= ,所以 030 CDF Ð= ,从而 11 22 CF CD == ,因为 // EF DC ,所以 DE CFDP CP= , 即 12 = 2 3DE ,所以 3 4 DE = ,所以 334 PE = , 13 28 CDE S CD DE D =×= ,222222 3336()() 442MD ME DE PE DE =-=-=-= , 所以 11362338216M CDE CDE V S MD - D =×=××= . 19.(本题满分 14分)设各项均为正数的数列{ } n a 的前n 项和为 n S ,且 n S 满足 ( ) ( )222 330 n n S n n S n n -+--+= , *n ÎN .(1) 求 1 a 的值;(2) 求数列{ }n a 的通项公式; ABCDP图 2PCBA DEF M 图 3(3) 证明:对一切正整数n ,有( ) ( ) ( ) 1122 11111113n n a a a a a a +++< +++ L .【解析】(1) 令 1 n = 得 211 60 S S +-= ,因为 1 0 S > ,所以 1 2 S = ,即 1 2 a = .(2) 由 () ()222330 n n S n n S n n -+--+= 得 2(3)()0 n n S S n n éù +-+= ëû ,因为 0 n a > ,所以 0 n S > ,从而 30 n S +> ,所以 2n S n n =+ ,当 2 n ³ 时, 221 (1)(1)2 n n n a S S n n n n n - éù =-=+--+-= ëû , 又 1 221 a ==´ ,所以 2 n a n = ,即数列{ } n a 的通项公式为 2 n a n = . (3) 当 2 n ³ 时,( ) ( ) ( )( ) 111111 1221212122121 n n a a n n n n n n æö=<=-ç÷ ++-+-+ èø所以( ) ( ) ( ) 1122 111 111 n n a a a a a a +++ +++ L 11111111 23235572121 n n æö <+-+-++- ç÷´-+ èøL 11111111 623216233n æö =+-<+´=ç÷ + èø 当 1 n = 时,( ) 11 11 13 a a < + ,故对一切正整数n ,有 ( ) ( ) ( ) 1122 11111113 n n a a a a a a +++< +++L .20.(本题满分 14分)已知椭圆C : 22 22 1 x y a b += ( 0 a b >> )的一个焦点为 ( )5,0 ,离心率为 53.(1) 求椭圆C 的标准方程;(2) 若动点 ( ) 00 , P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【解析】(1)由 5 c = 及 5 3 c e a == ,可得 3,952 a b ==-= ,故椭圆C 的标准方程为 22 1 94x y += .(2) 不妨设点P 引椭圆C 的两条切线对应的切点分别是 , A B ,且( ) ( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Ï---- ,设直线PA 为 ( ) 00 y y k x x -=- ,则PB 为 ( ) 00 1y y x x k-=-- . 由 ( ) 00 22 1 94y y k x x x x ì-=- ï í += ï î 消去 y 整理得( ) ( ) ( ) 2 220000 49189360 k x k y kx x y kx ++-+--= , 则 ()220000 9240x k x y k y D =-++-= 同理可得( )22 0000 11 9240 x x y y k k æöæö --+-+-= ç÷ç÷ èøèø.可知k 和 1 k- 是方程()220000 9240 x x x y x y -++-= 的两个实数根,则有20 4 1 1 9 y k k x - æö ×-=-= ç÷ - èø,整理得 22 00 13 x y += , 易知( )( ) ( ) ( ) ( ) { } 00 ,3,2,3,2,3,2,3,2 x y Î---- 也符合,故点P 的轨迹方程为 22 00 13xy += .21.(本题满分 14分)已知函数 ( ) 32 1 1 3f x x x ax =+++ ,其中a ÎR . (1) 求函数 ( ) f x 的单调区间;(2) 当 0 a < 时,试讨论是否存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèøU ,使得 ( ) 0 1 2 f x f æö = ç÷ èø. 【解析】(1)求导得 2()2 f x x x a ¢ =++ ,方程 220 x x a ++= 的判别式 44a D =- ,当 0 D £ 即 1 a ³ 时, ()0 f x ¢ ³ ,此时 ( ) f x 在( ) , -¥+¥ 上递增;当 1 a < 时,方程 220 x x a ++= 的两不等实根分别为 1 11 x a =--- , 2 11 x a =-+- , 由 ()0 f x ¢ > 得 11 x a <--- 或 11 x a >-+- ; 由 ()0 f x ¢ < 得 1 1 1 1 a x a ---< -+- < . 综上,当 1 a ³ 时, ( ) f x 的递增区间为( ) , -¥+¥ ;当 1 a < 时, ( ) f x 的递增区间为 ( ) ( ),11,11, a a -¥----+-+¥ , 递减区间为 ( )11,11 a a ----+- . (2) ( ) 3232 0000 111111 1()()()1 233222 f x f x x ax a æöéù -=+++-+++ ç÷ êú èøëû3322 000 1111()()() 3222x x a x éùéù =-+-+- êúêú ëûëû 2 0 00000 111111 ()()()()() 3224222x x x x x a x éù =-+++-++- êú ëû 2 00 00 111 ()() 236122 x x x x a =-+++++ 2 000 11 ()(414712) 122 x x x a =-+++ ,若存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø,必须 200 4147120 x x a +++= 在 11 0,,1 22 æöæö ç÷ç÷ èøèøU 上有解, 因为 0 a < ,所以 21416(712)4(2148)0 a a D =-+=-> , 方程 200 4147120 x x a +++= 的两根为 142214872148 84a a-±--±- = ,又 0 0 x > ,所以 0 72148 4 a x -+- =,依题意 7+2148 01 4a-- << ,即7214811 a <-< ,所以492148121 a <-< ,即 257 1212 a -<<- ,又由 7+21481 42 a -- = ,得 54a =- , 综上,当 257 1212 a -<<- 且 5 4 a ¹- 时,存在唯一的 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö= ç÷ èø, 当 2512 a <-或 7 12 a >- 或 5 4 a =- 时,不存在 0 11 0,,1 22 x æöæö Î ç÷ç÷ èøèø U ,使得 ( ) 0 1 2 f x f æö = ç÷ èø.。
2014年华约自主招生数学试题(精校word版,有答案)-历年自主招生考试数学试题大全

名师解读,权威剖析,独家奉献,打造不一样的教育!
1 2014年华约自主招生数学试题
1.12345,,,,x x x x x 是正整数,任取四个其和组成的集合为{44,45,46,47},求这五个数.
2.乒乓球比赛,五局三胜制.任一局甲胜的概率是1()2p p >,甲赢得比赛的概率是q ,求p 为多少时,q p -取得最大值.
3.函数2()(cos sin )sin()2sin (0)24
f x x x x a x b a π=
-+-+>的最大值为1,最小值为4-,求,a b 的值.
4.(1)证明(())y f g x =的反函数为11(())y g f x --=;
(2)1()(),()()F x f x G x f x -=-=,若()G x 的反函数是()F x ,证明()f x 为奇函数.
5.已知椭圆22
221x y a b
+=与圆222x y b +=,过椭圆上一点M 作圆的两切线,切点分别为,P Q ,直线PQ 与,x y 轴分别交于点,E F ,求EOF S ∆的最小值.
6.已知数列{}n a 满足:110,n n n a a np qa +==+.(1)若1q =,求n a ;(2)若||1,||1p q <<,求证:数列{}n a 有界.
7.已知*,,n N x n ∈≤求证:2(1)n x x n n e x n
--≤.。
2014卓越大学自主招生数学真题答案

2
(15 分)
法二:令 h( x) x ax a ,其图像的对称轴为 x
a . 2
1 当 0
a 1 ,即 0 a 2 时,存在 x1 , x2 (0,1) ,且 x1 x2 ,使 h( x1 ) h( x2 ) , 2
三、解答题 9.【解析】 : (1) f ( x)
2 sin(2 x ) 2 cos(2 x ) cos 2sin(2 x ) cos . 4 因为 x [0, ] ,所以 2 x [0, ] , 2 x [ , ] . 4 2 4 4 4 又 [ , ] ,所以 [ , ] .因此 f ( x) 的最大值为 2 cos . (7 分) 4 2 2 4 4 (2)若 f ( x) 2sin(2 x ) cos 3 ,则 cos 1 且 sin(2 x ) 1 , 4 4
余弦值为
2 7 4 7 3 7 ,在 OME 中再次运用余弦定理,求得 ME ,故而 AM . 7 7 7
4.【解析】选 D. 由已知 可得 a
2sin 2 x , 由 于 1 sin x 1 , 求 a 右 边 关 系 式 的 取 值 范 围 即 可 。 令 sin x 2
2014 年卓越联盟自主选拔录取
文科数学参考答案
1.【解析】选 A. 法一:直接分 x 0, x 0 两种情况讨论,分别解出答案,在合并即可得到答案 A; 法二:将 x 2 看成 x ,这样就得到一个关于 x 的不等式,解之即可得到 A 答案。
2
2.【解析】选 A. 法一:已知 f x f x 1 和 f x 是 R 上的奇函数,令 x , 得 f f = f ,所以 f f 。 4 4 4 4 4 同理 f f 。由于函数在 0, 上为增函数, 5 5 2 所以有 f f f ,即 a b c . 3 4 5 法二,结合奇函数函数图像及周期性(此函数周期为 2) ,也可直观的得出答案。
返璞归真函数为本——2014年华约自主招生数学试题评析

霁霎誊粼翠析
(ii)当p≠1时,pa。--p2+劲3+..・+(n一1加“②, 由①一②得%_p%邓印2印3+..・印n l(n一1加“,
所以%= 显然成立;
,,
20]4年6月
当戈2<n时,由基本不等式e。≥l+x(x∈R)和贝努利不
4,i
o
旦玉j}=::旦一(n一1)p“一(n一1)p。。一印。印
“
一1)(证法1)或高等数学的一个重要极限lim(1+二1“=e(证法 m\
n/
0;当1≤戈≤n日寸,g’0戈)≥0.
2)解答此题则难度不是太大,若全部用中学数学的高考 知识来证明本题需要有较高的技巧. 从以上对试题的解答与评析中可以看出,2014年的 华约自主招生试题平实温和、清新自然.尽管难度不是 很大,但内涵丰富、绵里藏针,要做出准确规范完整的解 答需要考生具有熟练的推理运算、扎实的解题功底和较 高的数学素养,因此,试题具有较好的区分度.全套试卷 贴近中学教学实际,理性回归高考,以函数为本,对函数 这一数学之魂的有关知识和思想作了重点检测和考查 (除第1题和第5题外其余各题都涉及函数知识和思想), 而这正是后继高等数学学习的必备和基石,故试题又具 有较高的信度和效度,有效地达到了高校对优秀学生的
p取得最大值. 分析:根据五局三胜制的比赛规则,甲赢得比赛共 有三种情形.分类讨论得出甲赢得比赛的概率为q,再利 用导数求出q—p的最大值. 解:若比赛三局甲赢得比赛,则甲需三局全胜,其概 率为p3; 若比赛四局甲赢得比赛,则前面三局中甲两胜一 负,第四局甲胜,其概率为c如3(1-p); 若比赛五局甲赢得比赛,则前面四局中甲两胜两负, 第五局甲胜,其概率为c缅3(1-p)j 因此甲赢得比赛的概率为q邓3+c矛3(1-p)+c扣3(1一
2014年北约自主招生数学试题评析

所以底面半径为 1 , 底面面积为 π, 故圆锥的 表面积为 6 π + π = 7 π 2 排练 组 合 基 础 题 型,部 分 均 匀 的 分 组 题2 10 个人分成 3 组, 一组 4 人, 两组 问题 每组各 3 人, 求共有几种分法? 解: 部分均匀的分组问题: 分法为:
3 3 C4 10 C 6 C 3 = 2100 种 A2 2
2014 年第 2 期
河北理科教学研究
考试指导
2014 年北约自主招生 数学试题评析
山东省滕州市第一中学新校 试题综述: 2014 年高水平大学自主选拔学业能力 )、 2014 年综合大学自主 测试( 俗称“华约 ” )、 2014 选拔录取招生联合考试 ( 俗称“北约 ” 年卓越人才培养合作高校联合自主选择录取 ( 俗称 “卓越 ” ) 三大高校联盟自主招生考试 落下帷幕. 从 2002 年以来, 自招走过了十几 年的风雨, 三大联盟试题整体难度趋于稳定 , “三分之一高考, 维持着 三分之一边缘, 三分 之一略超纲" 的基本难度. 2014 年北约试卷的结构和 2013 年保持 都是 6 道选择加上 4 道解答. 选择题( 1 一致, ~ 6 题) 偏常规, 难度不高, 大致相当于高考 中等或稍难一点的题目难度. 只是在个别题 目上考查学生是否有开放的数学思想, 比如 关于反三角函数的认知 ( 第 6 题 ) . 其他的选 比如空间几何体 择题也基本属于高考难度, 的表面积问题( 第一题 ) , 排列组合中的分组 分配问题( 第二题 ) . 解答题 ( 7 ~ 10 题 ) 保持 了一定难度. 问题往往来源于一些很基本的 数学常识 ( 比如 tan3° 是无理数 ) , 要求学生 , 给出证明 实际上是对学生分析问题解决问 题能力的考查, 不强调复杂的计算, 但是要给 , 出合理证明 则要求学生有一定的数学素养. 考题详析: 1 考查空间几何体表面积问题, 难度很低, π 的扇形面积为 6 π, 求 3 有利于稳定考生情绪 题1 圆心角为 张 彬 277500
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45-3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B .36 C .13D .335.函数3ln(1)(1)y x x =+>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为23,则C的焦距等于( )A .2B .22C .4D .4212.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答)14.函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是111()(21)nnk k k k a a k +==-=-∑∑于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=13,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA, 所以3tanAcosC=2sinC.因为tanA=13,所以cosC=2sinC.tanC=1 2 .所以tanB=tan[180︒-(A+C)]=-tan(a+c)=tan tan1tan tanA CA C+--=-1,即B=135︒.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D⊂平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC⊂平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A13,因为A1C为∠ACC1的平分线,故A1D=A13作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB-C的平面角,由AD=1=,得D 为AC 的中点,DF=125AC BC AB ⨯⨯=,tan ∠A 1FD=1A DDF=,所以二面角A 1-AB-C 的大小为解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =2=,即2240a a c -+=,于是11AC BA ⋅=2240a a c -+=①,所以11AC BA ⊥.(2)设平面BCC 1B 1的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ==-,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,(,0,2)m c a =-,点A到平面BCC 1B 1的距离为cos ,CA m CA m CA c mc ⋅⋅<>===,又依题设,点A 到平面BCC 1B 1的距c= .代入①得a=3(舍去)或a=1.于是1(1AA =-,设平面ABA 1的法向量(,,)n p q r =,则1,n AA n AB⊥⊥,即10,0n AA n AB ⋅=⋅=.0p-=且-2p +q =0,令p =,则q =2,r=1,(3,2n =,又(0,0,1)p =为平面ABC 的法向量,故cos 1,4n p n p n p⋅<>==,所以二面角A 1-AB-C 的大小为arccos 1420. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·CP(B)=0.6,P(C)=0.4,P(A i )=220.5,0,1,2i C i ⨯=.所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C )= P(A 1·B ·C)+P(A 2·B)+P(A 2·B ·C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p (B )·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:1211x x a a---==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数.若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(223422224(23,),m m MN y m m m+++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。
2014高中自主对外招生数学试卷和答案

高中自主招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,22小题,试卷共4页,另有答题卡;2.答案一律写在答题卡上,否则不能得分.一.选择题(本题有6个小题,每小题4分,共24分.每小题只有一个选项是正确的.) 1. 如果1-=ab ,那么两个实数a ,b 一定是( )A .互为倒数B .-1和+1C .互为相反数D .互为负倒数 2.下列运算正确的是( ) A .()b a ab 33= B .1-=+--ba ba C .326a a a =÷ D .222)(b a b a +=+3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .平均数是9B .中位数是9C .众数是5D .极差是5 4.长方体的主视图、俯视图如右图所示, 则其左视图面积为( )A .3B .4C .12D .16 5.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、双曲线、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( ) A .16 B .13 C .12 D .236.如图,已知⊙O 的半径为r ,C 、D 是直径AB 的同侧圆周上的两点,100AOC ∠=,D 是BC 的中点,动点P 在线段AB 上,则PC +PD 的最小值为 ( ) A .r Br CDr CPDO BA(第6题)二.填空题(本题有8个小题,每小题5分.共40分) 7. 实数b a ,满足0132=+-b a ,则ba 的值为 .9. 在同一坐标系中,图形a 是图形b 向上平移3个单位长度,再向左平移2个单位得到,如果图形a 中A 点的坐标为(4,-2),则图形b 中与A 点对应的A '点的坐标为___ ____. 10.如图,在四边形纸片ABCD 中,∠A =130°,∠C =40°,现将其右下角向内折出∆FGE ,折痕为EF ,恰使GF ∥AD ,GE ∥CD ,则∠B 的度数为 .11.对于实数a 、b ,定义运算⊗如下:=⊗b a ⎪⎩⎪⎨⎧≠≤≠>-)0,()0,(a b a a a b a a b b, 例如1612424==⊗-. 计算 [][]=⊗-⨯⊗2)3(23 .13.已知直线1y x =,213y x =+,633+-=x y 的图象如图所示,无论x 取何值,当y 总取1y 、2y 、3y 中的最小值时, y 的最大值为14. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩恰好有三个整数解,则关于x 的一次函数14y x a=- 的图像与反比例函数32a y x+=的图像的公共点的个数为 . (第12题)G FE DCBA(第10题)三、解答题(本题有8个小题,共86分,解答应写出文字说明,证明过程或推演步骤.) 15.(本题满分7分)计算01( 3.14)(sin30)4cos 45π︒-︒-++-16.(本题满分9分)已知2)2()]2()()[(22=-÷-++--y y x y y x y x .求228242x x y x y---的值.17.(本题满分10分) 如图,直线AB 交双曲线()y 0kx x=>于A ,B 两点, 交x 轴于点C (4,0)a , AB =2BC ,过点B 作BM ⊥x 轴于点M , 连结OA ,若OM =3MC ,S △OAC =8,则k 的值为多少?18. (本题满分10分)如图,在菱形ABCD 中,AB =23,∠A =60°,以点D 为圆心的⊙D 与AB 相切于点E ,与DC 相交于点F . (1)求证:⊙D 与BC 也相切;(2)求劣弧EF 的长(结果保留π).19.(本小题满分12分)某商家计划从厂家采购A ,B 两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)求A 产品的采购数量与采购单价的函数关系式;(2)该商家分别以1760元/件和1700元/件的销售单价出售A ,B 两种产品,且全部售完,在A 产品的采购数量不小于11且不大于15的条件下,求采购A 种 产品多少件时总利润最大,并求最大利润.(第18题)(第17题)ABCCDDEE FFA20.(本小题满分12分)如图,在△ABC 中,∠CAB =90°,D 是斜边BC 上的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF .(1)若AB =AC ,BE +CF =4,求四边形AEDF 的面积。
2014年高考数学(文科)试题及参考答案(新课标I卷)

2014年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(- (2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB A. AD B.21 C. 21D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203 B.72 C.165 D.15810.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk x F A 045=,则=x 0( )A. 1B. 2C. 4D. 8 (11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分 (13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. (14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年普通高等学校招生全国统一考试(广东卷)数学试题(文科)解析版

则真命题的个数是 A.1 B.2 C.3 D.4
答案 : B 提示:①(z1 z2 )*z3 =(z1 z2 )z3 =(z1 z3) (z2 z3)=(z1*z3)+(z2 *z3), 故①是真命题;
②z1*(z2 z3 ) z1(z2 z3 ) z1(z2 z3 ) (z1 z2 ) (z1 z3 ) (z1*z2 )+(z1*z3 ), ②对; ③左边=(z1*z2 )z3=z1 z2 z3, 右边 z1 *(z2 z3) z1(z2 z3) z1(z2 z3), 左边 右边, ③错; ④左边=z1*z2 z1 z2 , 右边=z2 *z1 z2 z1, 左边 右边, 故④不是真命题. 综上,只有①②是真命题,故选B.
10、 对任 意复 数 w1, w2 , 定义 w1 w2 w1 w2 , 其中 w2 是 w2 的 共轭 复数 .对 任意 复数 z1, z2 , z3 ,有如下四个命题:
① z1 z2 z3 z1 z3 z2 z3 ② z1 z2 z3 z1 z2 z1 z3 ③ z1 z2 z3 z1 z2 z3 ④ z1 z2 z2 z1
二、填空题:本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分. (一)必做题(11 13 题) 11.曲线 y 5ex 3 在点 (0, 2) 处的切线方程为
12.从字母 a,b,c, d ,e 中任取两个不同的字母,则取到字母 a 的概率为
13.等比数列 an 的各项均为正数,且 a1a5 4 ,则 log2 a1 log2 a2 log2 a3 log2 a4 log2 a5
2014 年普通高等学校招生全国统一考试(广东卷)
数学(文科)
参考公式:锥体的体积公式V 1 Sh ,其中 S 为锥体的底面面积, h 为锥体的高。 3
2014年乐清中学自主招生考试——数学(含参考答案)word版

2014年乐清中学自主招生考试——数学(考试时间:90分钟,总分:150分)一、选择题:(每小题6分,共48分)1、计算: 322)31()21(2----+-的值是( )A .222+B .224-C .232+-D .230--2、如果a ,b 为给定的实数,且1<a <b ,设2,a +1,2a +b ,a +b +1这四个数据的平均数为M ,这四个数据的中位数为N ,则M 、N 的大小关系是( )A .M >NB .M =NC .M <ND .M 、N 的大小不确定 3、如图是一个切去了一个角的正方体纸盒,切面与棱的交点A 、B 、C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .4、如图,把正△ABC 的外接圆对折,使点A 落在弧BC 的中点F 上,若BC =5,则折痕在△ABC 内的部分DE 长为( ) A .310 B .335 C .3310 D .255、如图, Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 反向延长线交y 轴负半轴于E ,双曲线xky =(x >0)的图象经过点A ,若S △BEC =8,则k 等于( ) A .8 B .16 C .20 D .106、用min {a ,b }表示a ,b 两数中的最小数,若函数}11min{22x x y -+=,,则y 的图象为( )AABCD第11题7、如图,三根音管被敲击时能依次发出“1”、“3”、“5”,两只音锤同时从“1”开始,以相同的节拍往复敲击这三根音管,不同的是:甲锤每拍移动一位(左中右中左中右…),乙锤则在两端各有一拍不移位(左中右右中左左中右…).在第2014拍时,你听到的是( )A .同样的音“1”B .同样的音“3”C .同样的音“5”D .不同的两个音第7题8、如图,AB 是半圆的直径,线段CA ⊥AB 于点A ,线段DB ⊥AB 于点B ,AB =2,AC =1,BD =3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( ) A .22+ B .21+ C .23+ D .23+二、填空题:(每小题6分,共42分)9、若k x x +-232有一个因式是x +1,则k =_____________. 10、若不等式043)2(<b a x b a -+-的解集是94>x , 则不等式032)4(>b a x b a -+-的解集是_____________.11、如图,E ,F 分别是□ABCD 的边AB ,CD 上的点,AF 与DE 相交于点BF 与CE 相交于点Q ,若210cm S APD =△,220cm S BQ C =△,则图中阴影部分的面积为_____________2cm .12、设0≤a ≤5 且a 为实数,整数b 满足3b =a (3a -8),则符合条件的整数b 有_____________个. 13、某建筑公司有甲乙两个工程队,如果从甲队调70人到乙队,则乙队人数为甲队人数的2倍;如果从乙队调若干人去甲队(至少调一人),则甲队人数为乙队人数的3倍.那么甲队原来至少有_____________人.14、如图,OA 与OB 是⊙O 的两条互相垂直的半径,点C 在OA 上,OC =1,CA =2,连接BC 并延长交⊙O 于点D ,则△DOC 的面积是_____________. 15、已知二次函数)>(02a c bx ax y ++=经过点M (-1,2)和 点N (1,-2),交x 轴于A ,B 两点,交y 轴于点C , 以下说法正确的有_____________(填序号). ①b =-2;②该二次函数图像与y 轴交于负半轴;③ 存在这样一个a ,使得M ,A ,C 三点在同一条直线上; ④若a =1,则2OC OB OA =⋅.135右中左DCABA三、解答题(共4小题,12+14+16+18共60分)16、(1)化简:1814121111842+-+-+-+--a a a a a .(2)解关于x ,y ,z 的方程组:⎪⎩⎪⎨⎧=-+=--=-030102yz x z x y x .17、如图,△ABC 内接于⊙O ,AC =BC ,D 为弧AB 上一点,延长DA 至E ,使CE =CD . (1)求证:∠ACE =∠BCD . (2)若CD BD AD 3=+,求∠ACD 的大小.18、如图,长方形ABCD 中,点P 沿着四边按B →C →D →A 方向运动,开始以每秒m 个单位匀速运动,a 秒后变为每秒2个单位匀速运动,b 秒后恢复原速匀速运动.在运动过程中,△ABP 的面积S 与运动时间t 的函数关系如图所示.(1)求长方形的长和宽.(2)求m ,a ,b 的值.(3)当P 点在AD 边上时,求S 与t 的函数解析式.ED 第17题B A19、如图,已知一次函数41042+-+=m m x y 与二次函数4842+-+-=m mx x y 相交于点A ,B (A 在B 的右侧),点C 为抛物线上的点,且BC 平行于x 轴. (1)证明:当m 为整数时,点A ,B 横坐标均为整数. (2) 求△ABC 的面积.(3)若抛物线4842+-+-=m mx x y 与直线y =7交点的横坐标均为整数,求整数m 的值.第19题2014年乐清中学自主招生考试——数学参考答案一、选择题:(每小题6分,共48分)二、填空题:(每小题6分,共42分) 三、解答题(共4小题,12+14+16+18共60分)16、解:(1)11616-=a 原式.(2)⎪⎩⎪⎨⎧-=-=-=221z y x 或⎪⎪⎩⎪⎪⎨⎧===21323z y x .17、解:(1)AC =BC ,CE =CD ⇒∠CAB =∠CBA =∠CDE =∠CED ⇒∠ACB =∠ECD ⇒∠ACE =∠BCD . (2)AC =BC ,CE =CD ,∠ACE =∠BCD ⇒△ACE ≌△BCD ⇒AE =BD ⇒AD +BD =AD +AE =DE =3CD⇒∠ECD =120°⇒∠ACB =120°.18、解:(1)6~8秒点P 以2单位/秒的速度从点C 到点D ,∴CD =4,AD =8.(2)⎪⎩⎪⎨⎧=-=---=2)13(2)(2204b m a b m a m a ,解得⎪⎩⎪⎨⎧===1141b a m .(3)⎩⎨⎧≤+-≤≤+-=)<()(1311262118484t t t t S19、解:(1)证明:⎪⎩⎪⎨⎧+-+-=+-+=484410422m m x x y m m x y ,解得m x A 2=,12-=m x B ∴当m 为整数时,点A ,B 横坐标均为整数.(2)A (2m ,4842+-m m ),B (2m -1,3842+-m m ),二次函数484)2(22+-+--=m m m x y∴A 为抛物线顶点,∴C (2m +1,3842+-m m ),∴S △ABC =1.(3)令74842=+-+-m mx x ,解得38422)38(416422--±=+-±=m m m m m m x要使x 为整数,3842--m m 应为完全平方数,设22384n m m =--(n 为正整数)⇒227)22(n m =--⇒7)22(22=--n m ⇒7)22)(22(=--+-n m n m ∴⎩⎨⎧=--=+-122722n m n m 或⎩⎨⎧-=---=+-722122n m n m ,解得⎩⎨⎧==33n m 或⎩⎨⎧=-=31n m∴m =3或-1.。
2014年普通高等学校招生全国统一考试数学卷(天津.文)含详解

2014天津文第Ⅰ卷本卷共8小题,每小题5分,共40分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(同理1)i 是虚数单位,复数13i1i-=-( ). 啊.2i - 不.2i + 才.12i -- D .12i -+【解】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选A . 2.设变量,x y ,满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为( ).A .4-B .0C .43的.4 【解】画出可行域为图中的ABC ∆的区域,直线3y x z =-经过()2,2A 时,4z =最大.故选D .3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4-,则输出y 的值为( ).A .0.5B .1C .2D .4【解】运算过程依次为:输入4x =-43⇒->437x ⇒=--=73⇒>734x =-=43⇒> 431x ⇒=-=13⇒<122y ⇒==⇒输出2. 故选C.4.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈ ”是“x C ∈”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【解】{}02A B x x x =∈<>R 或,(){}{}2002C x x x x x x =∈->∈<>R R 或所以A B C = .所以“x A B ∈ ”是“x C ∈”的充分必要条件.故选C. 5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ). A .a b c >> B .a c b >> C .b a c >> D .c a b >>【解】因为224log 3.6log 3.6a ==,而23.6 3.6 3.2>>,又函数4log y x =是()0,+∞上的增函数,则2444log 3.6log 3.6log 3.2>>.所以a c b >>.故选B.6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .【解】因为双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则22p-=-,所以4p =.又因为双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,则42pa +=,所以2a =. 因为点()2,1--在双曲线的一条渐近线上,则()12ba-=-,即2a b =,所以1,b c ==,焦距2c =7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,ππϕ-<≤.若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数 C .()f x 在区间[]3π,5π上是减函数D .()f x 在区间[]4π,6π上是减函数【解】由题设得ππ,222π6π,ωϕω⎧⋅+=⎪⎪⎨⎪=⎪⎩解得13ω=,π3ϕ=.所以已知函数为()π2sin 33x f x ⎛⎫=+ ⎪⎝⎭. 其增区间满足π222332x k k ππππ-+≤+≤+,k ∈Z . 解得5π6ππ6π2k x k -+≤≤+,k ∈Z . 取0k =得5ππ2x -≤≤,所以5π,π2⎡⎤-⎢⎥⎣⎦为一个增区间,因为[]5π2π,0,π2⎡⎤-⊆-⎢⎥⎣⎦, 所以()f x 在区间[]2π,0-上是增函数.故选A.8.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1--【解】由题设()22,12,1,12x x f x x x x ⎧--≤≤=⎨-<->⎩或画出函数的图象,函数图象的四个端点(如图)为()2,1A ,,()2,B ,()1,1C --,()1,2D --.从图象中可以看出,直线y c =穿过点B ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点C ,点D 时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(](]2,11,2-- .故选B.第Ⅱ卷二、填空题:本答题共6小题,每小题5分,共30分.9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .【解】3.解集合A 得13x -<<,则{}0,1,2A =Z ,所有元素的和等于0123++=. 10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为3m .【解】4.几何体是由两个长方体组合的.体积为 1211124V =⨯⨯+⨯⨯=.11.已知{}n a 是等差数列,n S 为其前n 项和,n +∈N .若316a =,2020S =,则10S 的值为 .【解】110.设公差为d ,由题设31201216,2019020.a a d S a d =+=⎧⎨=+=⎩解得2d =-,120a =.()10110451020452110S a d =+=⨯+⨯-=.12.已知22log log 1a b +≥,则39ab+的最小值为 . 【解】18.因为22log log 1a b +≥,则2log 1ab ≥,2ab ≥,24a b ⋅≥3918a b +≥=≥≥=,当且仅当39,2,a b a b ⎧=⎨=⎩即2a b =时,等号成立,所以39a b+的最小值为18.13.(同理12)如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==,::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .【解.因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =. 由相交弦定理,242DF CF AF FB a a ⋅=⋅==⋅, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE =⋅=⋅=.所以CE =. 14.(同理14) 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【解】5.解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.35PA PB += ,当且仅当34c y =时,等号成立,于是,当34cy =时,3PA PB + 有最小值5.解法2 . 以相互垂直的向量DP ,DA 为基底表示PB PA 3+,得()533332P A P B D A D P P C C B D AP CD P +=-++=+-. 又P 是腰DC 上的动点,即与共线,于是可设λ=,有)13(253-+=+λ. 所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⋅⎣⎦即[]213(25)13(DP -+=-+=+λλ.由于P 是腰DC 上的动点,显然当31=λ,即DP PC 31=时,所以3PA PB +有最小值5.解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB的F中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①因为PB PQ PE += ,PB PQ QB -= .则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,于是()22252544PE a b =+-≥ ,于是25PE ≥ ,当且仅当a b =时,等号成立.由式①,325PA PB PE +=≥, 所以3PA PB +有最小值5.三、解答题:本大题共6小题,共80分。
数学_2014年福建省泉州市某校高中自主招生考试数学试卷(含答案)

2014年福建省泉州市某校高中自主招生考试数学试卷一、填空题(本大题共10小题;每小题5分,共50分)1. 某同学在使用计算器求30个数的平均值的时候,错将99误输入为9,那么由此求出的平均数与实际平均数的差的绝对值为________.2. 已知x=1是关于x不等式组{x≤2x>a的一个解,那么实数a的取值范围是________.3. 如果(m−√m3)0=1,则实数m的取值范围为________.4. 已知:x=√10−12,y=√10+12,则xxy−y2−yx2−xy的值为________.5. 某圆锥的侧面展开图是一个半径为4cm的半圆,则该圆锥的底面半径为________.6. 小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为________.7. 一束光线从y轴上的点A(0, m)出发,经过x轴上的点M(34,0)反射后恰好经过点B(3, 3),则m=________.8. 设点P是半径为5的⊙O内一定点,且OP=4,则过点P的所有弦中,弦长可能取到的所有整数值之和为________.9. 如图,已知⊙O过正方形ABCD的顶点A、D,且与BC边相切,若⊙O的半径为1,则正方形的边长为________.10. 将1,−2,3,−4,5,−6…按一定规律排列如图,则第10行从左到右第9个数是________.二、解答题(本大题共6小题;共70分)11. 如图,A、B、C、D、E是⊙O上的五个等分点,连接AC、BE相交于点F.(1)求证:AB2=AF⋅AC;(2)设AF=m,CF=n,求m:n的值.12. 已知函数y=−x2的图象向右平移2个单位,再向上平移n(n>0)个单位后得到的抛物线C恰好与直线y=−2x+8相切与点A.(1)求抛物线C得解析式;(2)若抛物线C的顶点为B,交y轴与点D,△ABD的外接圆交x轴与M、N两点,求MN的长.13. 为了探索代数式√x2+1+√(8−x)2+25的最小值,小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=√x2+1,CE=√(8−x)2+25则问题即转化成求AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得√x2+1+√(8−x)2+25的最小值等于________,此时x=________;(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?(选填:函数思想,分类讨论思想、类比思想、数形结合思想)(3)请你根据上述的方法和结论,试构图求出代数式√x2+4+√(12−x)2+9的最小值________.14. 已知关于x的方程(x−1)(x2−3x+m)=0,m为实数.(1)当m=4时,求方程的根;(2)若方程的三个实根中恰好有两个实根相等,求m的值;(3)若方程的三个实根恰好能成为一个三角形的三边长,求m的取值范围.15. 在等腰三角形中,建立边角之间的联系.我们定义:等腰三角形中底边与腰长的比叫做顶角的正对(符号为sad).如图1,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边÷腰=BC.容易知道一个角的大小,与这个角的正对值也是相互唯一确定AB的.根据上述角的正对定义,解决下列问题:(1)计算:sad60∘=________;sad90∘=________;sad120∘=________;(2)对于0∘<A<180∘,则∠A的正对值sadA的取值范围是________;(3)如图2在直角三角形ABC中AC⊥BC,已知sinA=3,试求sadA的值.516. 当−1≤x≤1时,函数y=−x2−2mx+2n+1的最小值是−4,最大值是0,求m、n 的值.2014年福建省泉州市某校高中自主招生考试数学试卷答案1. 32. a<13. m>0且m≠134. 4√1095. 2cm6. √39π7. 18. 409. 8510. −9011. 证明:A、B、C、D、E是⊙O上的五个等分点,∴ 五边形ABCDE为⊙O的内接正五边形,其每个内角为(5−2)×1805=108,∴ ∠ABF=∠BAF=∠ACB=36∘,∠CBF=∠CFB=72∘,∴ △ABF∽△ACB,AB=BC=CF,∴ ABAC =AFAB,∴ AB2=AF⋅AC;由(1)有AB=CF=n,由AB2=AF⋅AC=AF⋅(AF+CF),∴ n2=m(m+n),∴ m2+mn−n2=0,即(mn )2+(mn)−1=0,而mn>0,解得mn =√5−12.12. .由抛物线的解析式可知:B(2,.∵ 由((1)可知:当n=3时,直线与抛物线相切,∴ x2−6x+9=0,解得:x=3.∵ 将x=3代入y=−2x+8得:y=2,∴ A(3,(2).∵ 由两点间的距离公式可知AD2=(3−0)2+(−1−(3)2=18,BD2=(2−0)2+(−1−(4)2=20,AB2=(3−(5)2+(2−(6)2=2,∴ BD2=BA2+AD2.∴ 三角形ABD为直角三角形.∵ 圆E是△ABD的外接圆,∴ E是BD的中点.∴ E(1,(7).∴ ME =DE =12BD =12×2√5=√5,EF =1. ∵ EF ⊥MN ,∴ MF =FN ,∠EFM =90∘.在Rt △MEF 中,MF =√ME 2−EF 2=2.∴ MN =2MF =4.∴ MN 的长度为413. 10,43 数形结合的数学思想;1314. 解:(1)当m =4时,方程为(x −1)(x 2−3x +4)=0,得x −1=0或x 2−3x +4=0,由x −1=0得x =1,由x 2−3x +4=0,得Δ=9−16=−7<0,该方程无实数解,故方程的实根为x =1.(2)由x −1=0,得x 1=1.由x 2−3x +m =0,得Δ=9−4m ≥0,所以m ≤94,设方程两根为x 2,x 3,若x 2=1,则1−3+m =0,得m =2,方程为x 2−3x +2=0,解得x 2=1,x 3=2符合题意;若x 2=x 3时,Δ=9−4m =0,得m = 94, 方程为x 2−3x +94=0, 得x 2 = x 3 = 32,符合题意,综上,m =2或m = 94.(3)方程的三个实根满足x 1=1,由x 2−3x +m =0,得Δ=9−4m ≥0,设方程两根为x 2,x 3,则x 2+x 3=3,x 2⋅x 3=m >0,因为方程的三个实根恰好能成为一个三角形的三边长,则{x 2⋅x 3=m >0,Δ=9−4m ≥0,|x 2−x 3|<1,由|x 2−x 3| = √(x 2 + x 2)2 − 4x 2x 3 = √9 − 4m < 1,得m >2,解得2< m ≤ 94. 15. 1,√2,√30<sadA <2过B 作BD ⊥AC 于D ,如图3,∴ sinA =35=BD AB , 设BD =3x ,AB =5x ,由勾股定理得AD =4x ,∴ DC =5x −4x =x ,在Rt △BDC 中,BC =√BD 2+DC 2=√10x ,∴ sadA =BCAB =√10x 5x =√105.16. y =−x 2−2mx +2n +1=−(x +m)2+m 2+2n +1,其对称轴为直线x =−m ,①当−m ≤−1,即m ≥1时,{−1−2m +2n +1=−4−1+2m +2n +1=0, 解得{m =1n =−1, ②当−1<−m <0,即0<m <1时,{m 2+2n +1=0−1−2m +2n +1=−4, 消去n 得,m 2+2m −3=0,解得m =1或m =−3,舍去;③当 0<−m <1,即−1<m <0时,{m 2+2n +1=0−1+2m +2n +1=−4解得m =−1或m =3,舍去;④当−m ≥1,即m ≤−1时,{−1−2m +2n +1=0−1+2m +2n +1=−4, 解得{m =−1n =−1, 综上所述m =1,n =−1或m =−1,n =−1.。
2014北约自主招生数学试题及详解(含文、理)

今年北约自招笔试已落下帷幕,从试题的整体难度来看,它不像我们平时觉得的有竞赛的难度,与往年相比难度也是大有降低,具体体现在试题中的前六道,属于高考基本题型,只要准备过自招考试的基本能拿满分,但也要熟悉反三角函数的处理以及无理性的证明思路.有区分度的点在最后三道,最后一题属于不等式的延伸内容,北约的考试尤其是解答题从来都不是基于课内知识点的反复强调和训练,往往来源于一些很基本的甚至是近似于数学常识的知识,比如去年考试中“任意三个数的和都是质数”的理解,的理解,和今年证明是无理数这样和今年证明是无理数这样的问题,都属于不强调复杂的计算,都属于不强调复杂的计算,只求看清楚问题的本质的处理手法。
只求看清楚问题的本质的处理手法。
只求看清楚问题的本质的处理手法。
去年和今年也都考去年和今年也都考察了对数列的理解,去年考察奇偶项和的理解,去年考察奇偶项和的理解,今年考察对数项形式的分析,今年考察对数项形式的分析,今年考察对数项形式的分析,所以北约的数所以北约的数学试题做起来如果很繁琐,说明往往已经偏离了命题人的基本想法。
下面附上试题及解析,供考完的对照以及明年参加北约考试的孩子参考。
希望对同学们有所帮助.2014北约理科数学试题北约理科数学试题1、圆心角为3p的扇形面积为6,p 求它围成圆锥的表面积.【解析】21,6,2,2S R R l R a a p =Þ===扇从而圆锥底面周长为222,,67.r S r S p p p p p p p =Þ===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ××=3、()()()()22,11,47,33f a f ba b f f f ++æö===ç÷èø求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围.【解析】值域问题.2440,1a a a D =-³Þ³或0.a £5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()112,0,4x y xy xy =-+-³Þ<£从而11717..4xy xy +³6、()22arctan 14x f x C x +=+-在11,44æö-ç÷èø上为奇函数,求C 的值.【解析】()00,arctan 2.f C =Þ=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-æö+-=++=--=ç÷-+èø7、求证:tan3.Q °Ï【解析】反证法.假设tan3,Q °Î则tan6,tan12,tan 24,Q Q Q °ÎÞ°ÎÞ°Î从而tan30,Q °Î矛盾.tan3.Q \°Ï8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b ea d c f -+-+-=D =----=由()()30f x g x +=可得 ()()()()()()223330,34330.a d xb e xc f b e ad c f +++++=D =+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df \-<()g x \没有实根.9、1213a a a 是等差数列,{}|113,i j k M a a a i j k =++£<<£问:7160,,23是否可以同时在M 中,并证明你的结论.【解析】数列中的项.分析M 中项的构成,若按照从小到大的顺序排列,最小的项为123a a a ++,第二项为124a a a ++,最大的项为111213,a a a ++设n a 公差为,d 则M 中项的公差也为d ,所以M 中共有111213123131++---+=项,假设7160,,23均为M 中的项,不妨设212121217167110,,,,030,23221kk d k d k k Z k k k -=-=Þ=Î<£、、且1231,k k +£这样的k 不存在,矛盾.所以7160,,23不可以同时在M 中.10、()01,2,...,i x i n >=1 1.nii x==Õ求证:()()1221.nni i x =+³+Õ【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值()212n nn n iniiin H G x x =£=+æöç÷ç÷+èøÕå,则()12222nni niiin x x £+æöç÷ç÷+èøÕå,()()1222nnnn i i n i ii i ii n x x x x x £+=+æöç÷ç÷+èøÕÕå可得()2222n niiniin x x æö£ç÷ç÷+èø+åÕ,()22n i niini ix nx x æö£ç÷ç÷+èø+åÕ 上述两式相加得()()212222nn in iii i niin x n x x x +æöæö£+=ç÷ç÷++èøèø+ååÕ,即()()212nni ix +£+Õ,即()()212nni ix +£+Õ法二:由11.n i i x ==Õ及要证的结论分析,由柯西不等式得()()212221ii x x æö++³+ç÷èø,从而可设1i i y x =,且111 1.n ni i i iy x ====ÕÕ从而本题也即证()()1221.n ni i y =+³+Õ从而()()212221nni ii x x æö++³+ç÷èøÕ,即()()()22221nnii ix y ++³+Õ,假设原式不成立,即()()1221,nni i x =+<+Õ则()()1221.nni i y =+<+Õ从而()()()22221nnii ix y ++<+Õ,矛盾.得证.2014北约文科数学试题北约文科数学试题1、圆心角为3p的扇形面积为6,p 求它围成圆锥的表面积.【解析】21,6,2,2S R R l R a a p =Þ===扇从而圆锥底面周长为222,,67.r S r S p p p p p p p =Þ===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ××=3、()()()()22,11,47,33f a f ba b f f f ++æö===ç÷èø求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围.【解析】值域问题.2440,1a a a D =-³Þ³或0.a £5、已知1,x y +=-且,x y 都为负实数,求1xy xy +的取值范围.【解析】均值不等式,对勾函数性质.()()112,0,4x y xy xy =-+-³Þ<£从而117.4xy xy +³6、()22arctan14x f x C x +=+-在11,44æö-ç÷èø上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =Þ=-下面证明:()()22224arctan arctan 2arctan 2arctan 20.14143x x f x f x Cx x +-æö+-=++=--=ç÷-+èø7、等比数列{}(){}()411200,631200n n m m +££-££的公共项之和.【解析】此题考察数的同余问题;设公共项为a ,1mod(4),3mod(6).a a ºº易得a 最小的数为9.4和6的最小公倍数为12,则912,.a k k N =+Î91242001,66.k k +=´+Þ=\公共项之和为()67980127135.2S +==8、梯形的对角线长分别为5和7,高是3,求梯形的面积.【解析】如图,梯形面积为()()1122S AB CD h DF EC h =+=+,易求得210,4,DF EC ==()()11421036310.22S DF EC h =+=+=+9、求证:tan3.Q °Ï【解析】反证法假设tan3,Q °Î则tan6,tan12,tan 24,Q Q Q °ÎÞ°ÎÞ°Î从而tan30,Q °Î矛盾.tan3.Q \°Ï10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d xb e xc f b e ad c f -+-+-=D =----=由()()30f x g x +=可得()()()()()()223330,34330.a d xb e xc f b e ad c f +++++=D =+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df \-<()g x \没有实根.FEDCBA。
2014届全国自主招生模考卓越数学答案2

卓越模拟题2 答案二、计算题9、 证明:(1)在[0,]2π上,22cos sin tan '()0cos x x x x x f x x x x--==<,所以()f x 是减函数;…………(8分) (2)因为{}n a 是递减的,………………………………………………(2分)根据(1),1()n n n na b f a a +==是递增的。
……………………………(5分) 10、 解:由题意:2346,24,504,a a a ===…,下证:…………………………(2分)当2n ≥时,14,n n a a +≥…………………………(3分)即证:4n a n ≥+…………………………(3分)事实上,2624a ==+;假设4k a k ≥+,则21()41(1)4k k k k k k k a a ka a k a a a k +=-=-≥>+≥++,所以1()4n n n n a a n a a +=-≥(2n ≥)…………………………(3分)所以12111n a a a +++L 11113624504=++++L 1111(+)362496<++++L 11112513639914=+⋅=+=-。
…………………………(4分) 11、 证明:如下图,过E 作//FG AB ,交AD ,BC 于F 、G 。
设ADE θ∠=,并不妨AE = 1,则DE =,DF θ=,AF ==4分)即CG θ=,BG =2分)设ECG EAF α∠=∠=,则tan α= ,………………………(3分) tan EG CG α==2分)于是sin 2tan tan 2cos 2EG EBG BG θθθ∠===。
………………………(2分) 所以22EBG EDF θ∠==∠。
………………………(2分)12. 解:(1)因为12PB AB =,所以1(,)(,)2d P BCE d A BCE =面面。
2014年福州一中自主招生数学试卷及答案

福州一中2014年高中招生(面向福州以外地区)综合素质测试数学试卷(满分100分,考试时间60分钟)学 校 姓 名 准考证号 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置. 一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项是正确的.)1. 下列等式:①22532b a ab ab =+; ②326(5)25a a -=;③y x y x +=+; ④10112()( 3.14)|32|433π-+----=+ .其中正确的等式有(★★★)A .1个B .2个C .3个D .4个 2.某校男子足球队的年龄分布如下面的条形图所示:则这些队员年龄的众数和中位数分别是(★★★) A .31, 152 B .3115, 2 C .15, 15 D .3131, 223.右图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为等边三角形,尺寸如图所示,则该几何体的表面积为(★★★) A .2732B .123C .24D .2423+4年龄人数/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式年龄人数/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式/通用格式4.若关于x 的方程22x c x c +=+的解是1x c =,22x c=,则关于x 的方程2211x a x a +=+++的解12 x x ,的值是(★★★) A .2,a aB .21, 1a a ++C . 2, 1a a +D .1, 1a a a -+5.如图,边长为2的菱形纸片ABCD 中,60A ∠=,将该纸片折叠,EF为折痕,点A D 、分别落在'A 、'D 处.若''A D 经过点B ,且'D F CD ⊥,则DF 的长为(★★★) A.2B.4- C.32- D6.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为(★★★)A .425B .426C .427D .428二、填空题(本大题共6小题,每小题5分,共30分.)7.计算:22222132(1)211a a a a aa a a a a +-+⋅-÷=----+★★★.8.如图,BD CE 、分别是ABC ∆的AC AB 、边上的中线,且BD CE ⊥.若4BD =,6CE =,则ABC ∆的面积等于★★★.E DCBAD 'A 'FE DCBA9.从2,1,1,2--这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k b 、,则一次函数y kx b =+的图象不经过第三象限的概率是★★★. 10. 有一列数a ,b ,c ,d ,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若第一个数a 等于2,则第2014个数等于★★★. 11.如图,已知直线y kx =与双曲线ky x=相交于A B 、两点,过点A 作AC 垂直于x 轴,垂足为C ,且12AOCS ∆=.过原点O 作AB 的垂线交AC 的延长线于点D ,则ABD ∆的内切圆半径长等于★★★.12.规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =, {}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-. 若实数x 满足{}[]4 2=-x x ,则实数x 的取值范围是★★★.三、解答题(本大题共3小题,满分40分.)13.(本小题满分12分)如图,ABC ∆是⊙O 的内接三角形,AC BC =,D 为⊙O 中劣弧AB 上一点,延长DA 至点E ,使CE CD =. (1) 求证:ACE BCD ∠=∠;(2) 若60ACB ∠=,试探究CD 与AD BD +长度的大小关系,并证明你的结论.O DC BAOEBA如图,小明站在看台上的A 处,测得旗杆顶端D 的仰角为15,当旗杆顶端D 的影子刚好落在看台底部B 处时,太阳光与地面成60角.已知60ABC ∠=,4AB =米,求旗杆的高度. (点A 与旗杆DE 及其影子在同一平面内,CB E 、、三点共线且旗杆与地面垂直,不考虑小明的身高)如图,在平面直角坐标系中,A B 、为x 轴上两点(点A 在点B 的左边),C D 、为y 轴上两点,经过A C B 、、的抛物线的一部分1C 与经过A D B 、、的抛物线的一部分2C 组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点D 的坐标为(0 , 2)-,抛物线1C 的解析式为223 (0)y mx mx m m =--<.(1) 求A B 、两点的坐标;(2) 若四边形ACBD 是梯形,求m 的值;(3) 若点D 关于x 轴的对称点为1D ,试判断直线1AD 与该蛋线的公共点的个数,并证明你的结论.D 1DC BAO备用图D 1DC BAO福州一中2014年高中招生(面向市区以外)综合素质测试数学参考答案二、填空题(本大题共6小题,每小题5分,共30分) 7. 1- 8.16 9.1310.211.2 12.23x ≤<三、解答题(本大题共3小题,满分40分) 13.(1)证明: ABC ∆中,AC BC = CAB CBA ∴∠=1802ACB CBA ∴∠=-∠同理CED ∆中,1802ECD CDA ∠=-∠……2分O 中,AC AC =CBA CDA ∴∠=∠…………………………………3分ACB ECD ∴∠=∠…………………………………4分 ACB ACD ECD ACD ∴∠-∠=∠-∠即 ACE BCD ∠=∠.……………………………5分(2)解:,CD AD BD =+证明如下:……………………6分在ACE ∆和BCD ∆中,AC BC ACE BCDCE CD =⎧⎪∠=∠⎨⎪=⎩ACE ∴∆≌()BCD SAS ∆…………………………8分AE BD ∴=………………………………………9分若60ACB ∠=,则60ECD ∠=、又∵CE CD =ECD ∴∆是等边三角形DE DC ∴=………………………………………10分DE AD AE =+EAE BD =∴DE AD BD =+又∵DE DC =∴CD AD BD =+.………………………………12分 14.解:过点A 作AFBD ⊥于点F ,……………………1分由题意知,15,60.DAH DBE ∠=∠= 点,,C B E 在一条直线上18060ABD ABC DBE ∴∠=-∠-∠=………2分ABF ∆中,90,4AFB AB ∠==∴cos 4cos 602,BF AB ABD =⋅∠=⋅=sin 4sin 6023AF AB ABD =⋅∠=⋅=6分AH ∥BE60HAB ABC ∴∠=∠=75BAD HAB DAH ∴∠=∠+∠=DAB ∆中,18045ADB ABD DAB ∠=-∠-∠=Rt DAF ∴∆中,tan DFAF ADB =⋅∠=2BD BF FD ∴=+=+……………………10分在Rt BDE ∆中,60DBE ∠=(sin 23DE BD DBE ∴=⋅∠=+=+∴旗杆的高度为(3+米.………………………12分15.解:(1) 在函数223y mx mx m =--中,令0y =,则 2230mx mx m --= ∵0m < ∴2230x x --= 解得 123, 1x x ==-∴ (1,0), (3,0)A B -……………………………2分 (2) ∵(1,0), (3,0), (0,2)A B D --∴1, 3, 2AO BO DO ===.在函数223 (0)y mx mx m m =--<中,令0x =,则3y m =- ∴(0,3)C m -则3OC m =-……………………………………3分①若AC ∥BD则AOC ∆∽BOD ∆ ∴AO BOCO DO = ∴1332m =- 解得29m =-此时AC BD ≠,四边形ACBD 是梯形.……6分 ②若BC ∥AD则AOD ∆∽BOC ∆ ∴AO BODO CO = ∴1323m=- 解得2m =-此时AD BC ≠,四边形ACBD 是梯形. 综上所述,229m =--或.………………………………………………9分 (3) ∵点1D 与点D 关于x 轴对称 ∴1(0,2)D则直线1AD 的方程为:22y x =+………………………………………11分 易知直线1AD 与抛物线2C 只有一个公共点A ,D 1DC BAO下面只要考虑直线1AD 与抛物线1C 的公共点个数. 联立直线1AD 和抛物线1C 的方程22223y x y mx mx m=+⎧⎨=--⎩ 得2(22)320mx m x m -+--= 解得123x m=+,21x =-…………………………………………………13分 ∵0m < ∴233m+< ①当231m +>-,即12m <-时, 直线1AD 与该蛋线有两个公共点; ②当23m +≤1-,即12-≤0m <时, 直线1AD 与该蛋线只有一个公共点A .综上所述,当12m <-时,直线1AD 与该蛋线有两个公共点; 当12-≤0m <时,直线1AD 与该蛋线有一个公共点.…………16分。