数学专题训练——数的开方(基础测试)

合集下载

数的开方测试题及答案

数的开方测试题及答案

数的开方测试题及答案1. 对以下数进行开方运算,并给出结果:a) 16b) 81c) 25d) 144e) 49f) 100答案:a) √16 = 4b) √81 = 9c) √25 = 5d) √144 = 12e) √49 = 7f) √100 = 102. 求解下列方程的解:a) x² = 49b) y² = 81c) z² = 121d) w² = 169答案:a) x = ±7b) y = ±9c) z = ±11d) w = ±133. 根据已知条件计算下列开方:a) 若x² = 25,则x的值为多少?b) 若y² = 64,则y的值为多少?c) 若z² = 196,则z的值为多少?答案:a) x = ±5b) y = ±8c) z = ±144. 使用近似值计算下列开方,并保留两位小数:a) √7b) √13c) √18d) √23答案:a) √7 ≈ 2.65b) √13 ≈ 3.61c) √18 ≈ 4.24d) √23 ≈ 4.805. 请判断以下说法是否正确,并给出理由:a) √16 + √9= √25b) (a + b)² = a² + b²c) √(2² + 3²) = √13d) 3² = 9答案:a) 正确。

√16 = 4,√9 = 3,4 + 3 = 7,√25 = 5,所以等式成立。

b) 错误。

(a + b)² = a² + 2ab + b²。

c) 错误。

√(2² + 3²) = √(4 + 9) = √13。

d) 正确。

3² = 9。

总结:本文对数的开方进行了测试题及答案的陈述和解析。

通过对给定的数进行开方运算,以及求解方程和计算已知条件下的开方,我们可以更好地理解和应用数的开方。

八年级数的开方单元测试题(附答案)

八年级数的开方单元测试题(附答案)

数的开方单元测试题班级:姓名:__________一、选择题:(每题2分,共24分)1、在数-5,0,722,2006,20.80中,有平方根的数有() A 、1个B 、2个C 、3个D 、4个2、10的平方根应表示为()A 、210B 、10±C 、10D 、10-3、在数-27,-1.25,0,724中,立方根为正的数有() A 、1个B 、2个C 、3个D 、0个4、下面的运算中,是开平方运算的是()A 、4069)64(2=-B 、864=C 、864±=±D 、4643=5、下列各数中:5,-3,0,34,722,-1.732,25,2π-,293+,无理数的个数有()A 、1个B 、2个C 、3个D 、4个6、下列说法中,正确的有()①无限小数是无理数;②无理数是无限小数;③两个无理数的和是无理数;④对于实数a 、b,如果22b a =,那么a=b ;⑤所有的有理数都可以用数轴上的点来表示,反过来,数轴上的所有点都表示有理数。

A 、②④B 、①②⑤C 、②D 、②⑤7、下列各式正确的是()A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=-8、在数轴上,原点和原点左边的所有点表示的数是()A 、负有理数B 、负数C 、零和负有理数D 、零和负实数9、a 、b 是两个实数,在数轴上的位置如图所示,下面结论正确的是()A 、a 、b 互为相反数B 、b+a 〉0C 、零和负有理数D 、b-a 〉010、下列式子正确的是()A 、55〈B 、23-〉-C 、3223-〈-D 、230-〈11一个自然数的算术平方根为a ,则与这个自然数相邻的下一个自然数的算术平方根为()A 、22+a B 、12+a C 、1+a D 、1+a12、若x -有意义,则x x -一定是()A 、正数B 、非负数C 、负数D 、非正数二、填空题:(每空2分,共38分)13、若a 的算术平方根为21,则a= 14、如果68.28,868.26.2333==x ,那么x=15、若0125=-++--y x y x ,则=x y16、若m=3,代数式2213m m m +-+=17、若29922--+-=x x x y +1,则y x 43+= 18、比较大小:53112,1011-67- 19、38的平方根是,2)4(-的算术平方根是,81的平方根是20、把2写成一个数的算术平方根的形式:21、若一个正数的两个平方根为2m-6与3m+1,则这个数是;若a+3与2a-15是m 的平方根,则m=22、绝对值最小的实数是,21-的绝对值是,21-的相反数是23、若实数满足1-=aa ,则a 是;若40≤≤a ,则a 的取值范围是 24、在数轴上,与表示7-的点相距2的点表示的数为三、解答题:(每题2分,共8分)25、求下列各数的平方根:(1)0(2)0.49(3)1691(4)2)5(- 26、求下列各数的立方根:(每题2分,共8分)(1)27102(2)-0.008(3)0(4)125-- 27、求下列各式的值:(每题3分,共27分)(1)16.0(2)169-(3)412±(4)3027.0(5)31512169--(6)36.009.0+(7)222129- (8)31000511003631-(9)1691691271943--+ 28、求下列各式中的x 值:(每题5分,共20分)(1)641212=x (2)02433=-x(3)22)7()5(-=-x (4)32)4()12(25-=--x29按照从小到大的顺序,用“<”把下列各数连接起来(4分)30、若2+-b a 与1-+b a 互为相反数,求22a+2b 的立方根(6分)31、青云学府新建了一个面积为16平方米的传达室,计划用100块正方形的地板砖来铺设地面,那么所需要的正方形的地板砖的连长是多少?(7分)32、若a 和b 互为相反数,c 与d 互为倒数,m 的倒数等于它本身,试化简:mcd b a m 233222----+(8分) 参考答案1、D2、B3、A4、C5、D6、C7、B8、D9、D10、C11、B12、D13、1/414、2360015、316、1117、13或518、> < 19、2±4±320、421、16441或4922、012-12-23、负实数0≤a ≤224、2727--+-或25、(1)0(2)±0.7(3)±5/4(4)±526、4/3-0.20-527、0.4-13±3/20.37/80.920-9/5-13/1628、(1)x=±8/11(2)x=2(3)x=-2或x=12(4)x=13/10或x=-3/1029、略30、-231、0.432、2±2。

数的开方测考试试题1

数的开方测考试试题1

八年级数的开方测试题一、 选择题:1.把-1.6、-2π、32、23、0从小到大排列( ). (A )-1.6<-2π<0<32<23 (B )-1.6<-2π<0<23<32 (C )-2π<-1.6<0<23<32 (D )-2π<-1.6<0<32<23 2.下列各式中错误的是( ).(A )6.036.0±=± (B )6.036.0=(C )2.144.1-=- (D )2.144.1±=3.若()227.0-=x ,则=x ( ). (A )-0.7 (B )±0.7 (C )0.7 (D )0.494.36的平方根是( ).(A )6 (B )±6 (C )6 (D )6±5.一个数的平方根是它本身,则这个数的立方根是( ).(A ) 1 (B ) 0 (C ) -1 (D )1,-1或06.3a 的值是( ).(A ) 是正数 (B ) 是负数 (C ) 是零 (D ) 以上都可能7.下列说法中,正确的是( ).(A)27的立方根是3,记作27=3 (B )-25的算术平方根是5(C )a 的三次立方根是3a ± (D )正数a 的算术平方根是a8.数3.14,2,π,0.323232…,71,9,21+中,无理数的个数为( ). (A )2个 (B )3个 (C )4个 (D )5个9.下列二次根式中,与3是同类二次根式的是( ).(A )18 (B )33 (C )30 (D )30010.下列计算中正确的是( ).(A )2323182=⨯= (B )134916916=-=-=-(C )24312312=== (D )a a 242= 11.下列说法中正确的是( ).A )4是8的算术平方根B )16的平方根是4(C )6是6的平方根(D )a -没有平方根12.不改变根式的大小把()aa --111根号外的因式移入根号内,正确的是( ). (A )a -1 (B )1-a (C )1--a (D )a --113.下列等式:①81161=,②()2233-=-,③()222=-,④3388-=- ⑤416±=,⑥24-=-;正确的有( )个.(A )4 (B )3 (C )2 (D )14、化简[])2(821322--+++a a a (a<-4)的结果是 ( ) (A)a 3215-; (B)3a -21; (C)215+a ; (D)21-3a. 15,下列说法:①一个正数的算术平方根总比这个数小;②任何一个实数都有一个立方根,但不一定有平方根;③无限小数是无理数;④无理数与有理数的和是无理数.其中正确的是( )(A )①② (B )③④ (C )①③ (D )②④二、填空题:1.9的算术平方根是__________,81的平方根是___________.2.若x x -+有意义,则=+1x ___________.3.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.4.当x _______时,二次根式121-x 有意义.5.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.6.当a ≥0时,2a =______;当a <0时,2a =_______.7、若55252-⋅+=-x x x 成立,则x 的取值范围是_________8的平方根是__________________________________.9. 满足-2<x <10的整数x 是______________________.10. 在36,2π,-⋅⋅71.5,-39,38-,0.3####…,0中,无理数有__________;负实数有______________________;整数有________________.三、解答题:1.求下列各数的平方根:(1)425 (2)()24- (3)()()82-⋅-.2.计算:(1)256; (2)44.1-; (3)2516±;(4)01.0; (5)232⎪⎭⎫ ⎝⎛±; (6)410-±.3.解方程:(1)942=x ; (2)()112=+x ; (3)()049121352=--x .4.计算:(1)3125.0-1613+23)871(-.(2)312564-38+-1001(-2)3×3064.0.(3)21418232383-+-.5.将半径为12cm 的铁球融化,重新铸造出27个半径相同的小铁球,如不计损耗,小铁球半径是多少cm ?(提示:球的体积公式为334R v π=)6.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:5h t ≈. (1)已知h =100米,求落下所用的时间t ;(结果精确到0.01)(2)一人手持一物体从五楼让它自由落到地面,约需多少时间?(每层楼高约3.5米,手拿物体高为1.5米)(结果精确到0.01)(3)如果一物体落地的时间为3.6秒,求物体开始下落时的高度.7.已知a ,b 两数在数轴上表示如下:化简:()()()22222b a b a ++--+. -2-121ba O8.a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.9.若17的整数部分为x ,小数部分为y ,求x,y 的值.10 已知三角形的三边长分别为1,2,x ,试求2221x x +-+492842+-x x 的值.。

2019—2020年华东师大版八年级上学期数学《数的开方》单元测试及答案解析(基础提分试卷).docx

2019—2020年华东师大版八年级上学期数学《数的开方》单元测试及答案解析(基础提分试卷).docx

《第11章数的开方》一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根2.下列各式中错误的是()A. B.C. D.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.494.的平方根是()A.6 B.±6 C.D.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.4149.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零二、填空题11.和统称实数.12.1﹣绝对值是,相反数是,倒数是.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有个.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.15.若|a﹣3|+(5+b)2+=0,求代数式的值.16.已知=0,求3x+6y的立方根.四、定义的应用17.已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为.20.数a、b在数轴上的位置如图所示,化简:.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.《第11章数的开方》参考答案与试题解析一、选择题1.下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.﹣a没有平方根【考点】平方根;算术平方根.【分析】如果一个数x2=a(a≥0),那么x就是a的一个平方根.根据定义知道一个非负数的平方根有两个,它们互为相反数.【解答】解:A、∵4是16的算术平方根,故选项A错误;B、∵16的平方根是±4,故选项B错误;C、∵是6的一个平方根,故选项C正确;D、当a≤0时,﹣a也有平方根,故选项D错误.故选C.【点评】本题主要考查平方根和算术平方根的知识点,比较简单.2.下列各式中错误的是()A. B.C. D.【考点】算术平方根.【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据算术平方根的定义即可判定.【解答】解:A、=±0.6,故选项A正确;B、,故B选项正确;C、,故选项C正确,D、,故选项D错误.故选D.【点评】本题主要考查算术平方根的知识点,不是很难.3.若x2=(﹣0.7)2,则x=()A.﹣0.7 B.±0.7 C.0.7 D.0.49【考点】平方根.【分析】先根据乘方的运算法则计算出(﹣0.7)2=0.49,再根据平方根的意义即可求出0.49的平方根.【解答】解:∵x2=(﹣0.7)2,∴x2=0.49,∴x=±0.7.故选B.【点评】本题考查了平方根及乘方的知识,熟练掌握这些基础概念是解题的关键.4.的平方根是()A.6 B.±6 C.D.【考点】平方根.【专题】计算题.【分析】先计算出的值,再求其平方根.【解答】解:∵=6,∴6的平方根为,故选D.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一定先计算出的值,比较容易出错.5.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零【考点】立方根.【分析】A、根据立方根的性质即可判定;B、根据立方根的性质即可判定;C、根据立方根的定义即可判定;D、根据立方根的性质即可判定.【解答】解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.故选D.【点评】本题考查了平方根、立方根定义和性质等知识,注意负数没有平方根,任何实数都有立方根.6.下列说法中正确的是()A.无限小数都是无理数B.带根号的都是无理数C.循环小数都是无理数D.无限不循环小数是无理数【考点】无理数.【分析】根据无理数的定义,开方开不尽的数,与π有关的数,没有循环规律的无限小数都是无理数.【解答】解:由无理数的定义可知,无限不循环小数是无理数.故选D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.7.是无理数,则a是一个()A.非负实数 B.正实数C.非完全平方数 D.正有理数【考点】实数.【分析】根据实数,即可解答.【解答】解:∵开方开不尽的数是无理数,是无理数,∴a是非完全平方数,故选:C.【点评】本题考查了实数,解决本题的关键是熟记开方开不尽的数是无理数.8.下列说法中,错误的是()A.是无限不循环小数B.是无理数C.是实数D.等于1.414【考点】实数.【分析】根据实数,即可解答.【解答】解:A、是无限不循环小数,正确;B、是无理数,正确;C、是实数,正确;D、 1.414,故本选项错误;故选:D.【点评】本题考查了实数,解决本题的关键是熟记是无理数.9.与数轴上的点成一一对应关系的是()A.有理数B.实数 C.整数 D.无理数【考点】实数与数轴.【分析】根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.【解答】解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选B.【点评】此题考查了数轴上的点和实数之间的一一对应关系.10.下列叙述中,不正确的是()A.绝对值最小的实数是零 B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零【考点】立方根.【分析】根据绝对值,算术平方根,平方,立方根的求法判断所给选项的正误即可.【解答】解:A、一个数的绝对值是非负数,其中,0最小,所以绝对值最小的实数是零是正确的,不符合题意;B、非负数的算术平方根是非负数,在非负数里,0最小,所以算术平方根最小的实数是零是正确的,不符合题意;C、任何数的平方都是非负数,非负数里,0最小,所以平方最小的实数是零是正确的,不符合题意;D、没有立方根最小的数,故错误,符合题意,故选D.【点评】综合考查了绝对值,算术平方根,平方,立方根与0的关系;没有立方根最小的数这个知识点是易错点.二、填空题11.有理数和无理数统称实数.【考点】实数.【分析】实数的定义:有理数和无理数统称实数.【解答】解:有理数和无理数统称实数.故答案是:有理数;无理数.【点评】本题考查了实数的定义.熟记概念是解题的关键.12.1﹣绝对值是﹣1 ,相反数是﹣1 ,倒数是﹣1﹣.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,只有符号不同的两个数互为相反数,乘积为1的两个数互为倒数,可得答案.【解答】解:1﹣绝对值是﹣1,相反数是﹣1,倒数是﹣1﹣,故答案为:﹣1,﹣1,﹣﹣1.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键,求倒数时要分母有理化.13.下列说法:(1)带根号的数是无理数;(2)无限小数都是无理数;(3)无理数都是无限小数;(4)在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数.其中错误的有 3 个.【考点】实数.【分析】根据有理数和无理数的概念进行判断即可.【解答】解:=2,故带根号的数是无理数错误;0.3333…是有理数,故无限小数都是无理数错误;无理数都是无限小数正确;0既不是正数,也不是负数,故在实数范围内,一个数不是有理数,则一定是无理数,不是正数,则一定是负数错误,故答案为:3.【点评】本题考查的是实数的概念,正确区分有理数和无理数是解题的关键.三、非负数性质的应用14.若x、y都是实数,且y=++2,求x+3y的平方根.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得,解不等式可得x=3,然后可得y的值,进而可得x+3y的值,然后计算平方根即可.【解答】解:由题意得:,解得:x=3,则y=2,x+3y=3+3×2=9,平方根为±=±3.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.若|a﹣3|+(5+b)2+=0,求代数式的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值、平方和二次根式的非负性和已知条件即可得到关于a、b、c的方程组,解方程组即可求得a、b、c的值,然后代入所求代数式中计算即可.【解答】解:∵|a﹣3|≥0,(5+b)2≥0,≥0,且|a﹣3|+(5+b)2+=0,∴a﹣3=0,5+b=0,c+1=0∴a=3,b=﹣5,c=﹣1∴=﹣.【点评】此题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键.16.已知=0,求3x+6y的立方根.【考点】非负数的性质:算术平方根;立方根;二次根式有意义的条件.【分析】根据分式的值为零,可得方程组,根据解方程组,可得x、y的值,根据代数式求值,可得被开方数,根据开立方运算,可得答案.【解答】解:由=0,得.解得.3x+6y=﹣9+36=27.==3.【点评】本题考查了非负数的性质,利用了算术平方根的和为零得出方程组是解题关键,注意分母不能为零.四、定义的应用17.(2015春•桃园县校级期末)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【考点】立方根;平方根.【分析】先运用立方根和平方根的定义求出x与y的值,再求出x2+y2的平方根.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=22,2x+y+7=27,解得x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根是±10.【点评】本题主要考查了立方根和平方根,解题的关键是正确求出x与y的值.18.如果M=是a+b+3的算术平方根,N=是a+2b的立方根,求M﹣N 的立方根.【考点】立方根;算术平方根.【分析】根据“M=是a+b+3的算术平方根,N=是a+2b的立方根”即可列出关于a、b的二元一次方程组,解方程组即可得出a、b的值,将其代入M、N中求出M、N的值,再求出的值即可.【解答】解:由已知得:,解得:,∴M==3,N==2,∴==1.【点评】本题考查了立方根以及算术平方根,根据算术平方根以及立方根的定义列出关于a、b的二元一次方程组是解题的关键.五、数形结合的应用19.点A在数轴上表示的数为3,点B在数轴上表示的数为﹣,则A,B两点的距离为4.【考点】实数与数轴.【分析】根据数轴上两点间的距离是较大的数减较小的数,可得答案.【解答】解:由题意,得AB=|3﹣(﹣)|=4,故答案为:4.【点评】本题考查了实数与数轴,利用数轴上两点间的距离是较大的数减较小的数是解题关键.20.(2012秋•杞县校级期末)数a、b在数轴上的位置如图所示,化简:.【考点】二次根式的性质与化简;实数与数轴.【专题】常规题型.【分析】根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.【解答】解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.【点评】本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.21.已知a,b,c实数在数轴上的对应点如图所示,化简﹣|a﹣b|+|c﹣a|+.【考点】立方根;实数与数轴.【分析】首先根据数轴上的各点的位置,可以知道a<0,b<0,c>0,且|a|>|b|>c,接着有a﹣b <0,c﹣a>0,b﹣c<0,由此即可化简绝对值,最后合并同类项即可求解.【解答】解:有数轴可知,a<0,b<0,c>0,∴|a|>|b|>c,a﹣b<0,c﹣a>0,b﹣c<0,∴=﹣a﹣(b﹣a)+(c﹣a)+(c﹣b)=﹣a﹣b+a+c﹣a+c﹣b=2c﹣2b﹣a.【点评】本题考查实数与数轴上的点的对应关系,在原点O左边的数小于0,右边的数大于0,同时也考查了对带有绝对值和根号的代数式的化简.六.实数绝对值的应用22.化简下列各式:(1)|﹣1.4|(2)|π﹣3.14|(3)|﹣|(4)|x﹣|x﹣3||(x≤3)(5)|x2+1|.【考点】实数的性质.【分析】根据绝对值的性质解答.【解答】解:(1)|﹣1.4|=1.42﹣;(2)|π﹣3.14|=π﹣3.14;(3)|﹣|=﹣;(4)∵x≤3,∴|x﹣|x﹣3||=|x﹣3+x|=|2x﹣3|(5)|x2+1|=x2+1.【点评】本题考查的是绝对值的性质,掌握正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数是解题的关键.七、实数应用题23.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问正方形边长应为多少cm?【考点】算术平方根.【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:由题意可得:两个正方形的面积和为:112+13×8=225(cm2),则正方形边长应为:=15(cm).【点评】此题主要考查了算术平方根的定义,正确开平方求出是解题关键.八.引申提高24.已知的整数部分为a,小数部分为b,求(a+b)(a﹣b)的值.【考点】估算无理数的大小;平方差公式.【分析】根据5<<6,可得a、b的值,再代入(a+b)(a﹣b)即可求值.【解答】解:∵25<29<36,∴5<<6,∴a=5,b=﹣5,∴(a+b)(a﹣b)=(5+﹣5)(5﹣+5)=(10﹣)=10﹣29.【点评】本题考查了估算无理数的大小和二次根式的混合运算的应用,主要考查了学生的计算能力.。

初二数学试卷数的开方

初二数学试卷数的开方

一、选择题(每题3分,共30分)1. 下列各数中,哪个数是正数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方2. 下列各数中,哪个数是负数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方3. 下列各数中,哪个数是0?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方4. 下列各数中,哪个数是无理数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方5. 下列各数中,哪个数是有理数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方6. 下列各数中,哪个数是实数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方7. 下列各数中,哪个数是虚数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方8. 下列各数中,哪个数是整数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方9. 下列各数中,哪个数是分数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方10. 下列各数中,哪个数是无限循环小数?A. 4的平方根B. 4的立方根C. 4的平方D. 4的立方二、填空题(每题5分,共25分)11. 9的平方根是______。

12. 16的平方根是______。

13. 25的平方根是______。

14. 36的平方根是______。

15. 49的平方根是______。

三、解答题(每题10分,共30分)16. (1)求4的平方根。

(2)求4的立方根。

17. (1)求9的平方根。

(2)求9的立方根。

18. (1)求16的平方根。

(2)求16的立方根。

四、拓展题(每题10分,共20分)19. (1)一个数的平方根是3,求这个数。

(2)一个数的立方根是2,求这个数。

20. (1)求下列各数的平方根:① 81② 64③ 25(2)求下列各数的立方根:① 27② 64③ 125本试卷旨在考查学生对数的开方知识的掌握程度,要求学生能够熟练运用平方根、立方根的概念,解决实际问题。

数的开方单元检测题及答案

数的开方单元检测题及答案

数的开方单元测试一、选择题。

(每题4分,共28分)1.下列各数:3.141592 ,- 3 ,0.16 ,0.01 ,–π,0.1010010001…,227,35 ,0.2 ,8 中无理数的个数是………………………………………………………()A.2个B.3个C.4个D.5个2.25的平方根是…………………………………………………………………………()A.±5 B.-5 C.5 D.± 53.-8的立方根是…………………………………………………………………………()A.±2 B.-2 C.2 D.不存在4.a=15,则实数a在数轴上对应的点的大致位置是…………………………………()A.B.C.D.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是………()A.a2+2 B.±a2+2 C.a2+2 D.a+26.下列说法正确的是……………………………………………………………………()A.27的立方根是3,记作27=3 B.-25的算术平方根是5C.a的立方根是± a D.正数a的算术平方根是 a7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有…………………………()A.0个B.1个C.2个D.3个二、填空题。

(每题4分,共40分)8.9的算术平方根是___________;9.比较大小:32_______32 (用“<”或“>”填空);10.若∣x∣=3,则x=_______;0 1 2 3 4 50 1 2 3 4 511.-27的立方根是___________;12.2的相反数是___________;13.平方根等于本身的数是_______________;14.写出所有比11小且比3大的整数_____________________;15.81的算术平方根是___________;16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为____________米(精确到0.01);17.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321=___________。

《数的开方》基础测试.doc

《数的开方》基础测试.doc

7 2与I 的算术平方根是(-2)2的平方根是, 的平方根是《数的开方》基础测试(一) 判断题(每小题2分,共16分)1. 〃为有理数,若1有平方根,则a>0 ............................... ( )2. —5?的平方根是±5 ............................................. ( )3. 因为一3是9的平方根,所以西=一3 ............................... ()4. 正数的平方根是正数 ............................................. ( )5. ...................................................................................................................... 正数。

的两个平方根的和是0 ................................................................ ( )6. V25 =±5 ....................................................... ( )7. —际是5的一个平方根 ........................................... ( )8. 若。

>0,则\f--a =-\fa ........................................... ( )【答案】1. X ; 2. X ; 3. X ; 4. X ; 5. J ; 6. X ; 7. J ; 8. J. (二) 填空题(每空格1分,共28分)9. 正数。

的平方根有 个,用符号可表示为,它们互为,其中正的平方根叫做。

数的开方测试题2ok版

数的开方测试题2ok版

八年级数学《数的开方》测试题一选择题36分1、 与数轴上的点一 一对应的是() A 、有理数B 整数C 、无理数D 实数 2、 若一个有理数的平方根与立方根是相等的,则这个有理数一定是( ) A 、0 B 1 C 0 或 1D 0 和土 1 3、 下列说法正确的是:()A 4的平方根是2 B 、一 1的平方根是一1 C 、.. 49 = 7 D 、— 2是4的一个平方根 4、a 是4的一个平方根,且 A 、一 2 B 、土 22(-3)的算术平方根是(F 列各数中,无理数的个数有(一0 . 1 0 1 0, 0 1 \ , 71, 4B 、2C 、A 、x_2B 、x :: 2C 、x_2以下语句及写成式子正确的是() 12用计算器求得 3【3的结果(保留4个有效数字)是( )A 、3.1742B 、3.174C 、3.175D 、3.1743二、填空题39分a v 0,则a 的值是() C 、一 16 ± 1625的平方根是(C 、— 5D 、A 、9B 、- 3F 列叙述正确的是( _3 A 、0.4的平方根是 _0.23 _ -(--2)的立方根不存在 8、 C 、一 6是36的算术平方根 F 列等式中,错误的是(-27的立方根是-3二、64 = 8 J 121 B J 石 11 + — 15 C 、 翠一216 = —6 0.001 = -0.110、 如果、2 -X 有意义,则x 的取值范围是( 11、 7是49的算术平方根,即■. 49 = 77是(-7)2的平方根,即..(-7)2 =7 -7是49的平方根,即二-49 =7-7是49的平方根,即 \49 =「7B 、 x :: 21.4的平方根是______________ . —1 -的相反数的平方根是 ________ .92.旅的平方根是 _______________ .J36的算术平方根是_______ .3、若a是正数,且a 2 =25,那么a的平方根是_________________4、如果的平方根等于±2,那么a = __________5、-3是______ 的平方根,-3是_________ 的立方根6、. 64的平方根是_______ ,64的立方根是___________ ;17、的立方根是_______ , 125的立方根是_________88、;(/)2二____ . [(-6)3二 _____ ,(、.196)2= ___ .■ ■3 n 厂9、下列各数0.456、一、3.14、0.80108、兀_1_n:、0.1010010001 …、屮4、20.4514524534 54…,8 ,其中无理数的个数是____________________ 个。

《数的开方》单元测验卷.doc

《数的开方》单元测验卷.doc

《数的开方》单元测试卷班级姓名学号成绩一、填空题1.若一个实数的算术平方根等于它的立方根,则这个数是_________;2.数轴上表示 5 的点与原点的距离是________;3.2的相反数是, 3 的倒数是, 3 1 的相反数是;4. 81 的平方根是 _______,4的算术平方根是 _________,102 的算术平方根是;5.计算:3611_________, 310 6_______ ,1452242;1256.若一个数的平方根是8 ,则这个数的立方根是;7.当m ______时,3m 有意义;当m ______时,3m 3 有意义;8.若一个正数的平方根是2a1a2,则a____,这个正数是;和9.a2(a) 2成立的条件是___________;10 .若a1a 1,则 a 满足条件________;a2a211 .已知2a 1(b3)20,则32ab;312.若最简二次根式x y与与是同类根式,则 x,y________;x y13x2y5二、选择题131415161718192013 .以下运算正确的选项是()A、2727B、23 23C、824D、82 214.在实数 0、 3、 6 、、π、23、中无理数的个数是()7A、 1 B 、 2C、 3D、 4 15.以下二次根式中与2 6 是同类二次根式的是()A、18B、30C、48 D 、5416.以下说法错误的选项是()A、( 1)21 B 、331 1C、 2 的平方根是2D、(3)23217 .以下说法中正确的有()① 带根号的数都是无理数;② 无理数必定是无穷不循环小数;③ 不带根号的数都是有理数;④无穷小数不必定是无理数;A、1 个B、2 个C、3 个D、4 个18 .一个等腰三角形的两边长分别为 5 2和2 3 ,则这个三角形的周长是()A、10223 B 、52 4 3C、10 2 2 3 或 52 4 3 D 、没法确立19 .假如a23, b1,则有()32A、a bB、a bC、a bD、1 ab20 .设x、y为实数,且y4 5 x x 5 ,则x y 的值是()A、 1 B 、 9C、 4 D 、5三、计算题1.(23)(23)2.287126 783.23 1 22 2 64.(2 3 3 2)2(23 32)265.2 4 3216 4216.2 4 ( 73)2 136373四、解方程1. 9 x 3 2642 . ( 2x 1)38五、解答题1.已知:实数 a 、 b 满足条件 a1 (ab 2)2试求11 1 2)1 的值.ab ( a1)(b 1) (a 2)(b(a 2004)(b 2004)2.已知x6 2 ,试求 x34x22x 2008 的值.3.已知x32, y32,求以下各式的值。

数的开方 检测题 有答案

数的开方   检测题 有答案

数的开方 检测题一、填空题1.计算()13125- =____________________________。

2.-216000的立方根是________。

3.383的立方根是_______。

4.(-33)2的立方根是__________________________。

5.已知,08,0362532=+=-y x 则y x +的值是____________.6.当642=a 时,.___________3=a 7.在实数137,4,-6,0.444…,1.414,π中有______个无理数。

8.在实数34,302.0,2020020002.2,0,5,64,7222,3.0-----•• π中,有理数______;无理数有___________;正实数有___________.二、选择题1.和数轴上的点是一一对应的数为 ( )(A)整数 (B)有理数 (C)无理数 (D)实数2.在下列条件中不能保证n a 是实数的是 ( )(A )n 为正整数,a 为实数; (B ) n 为正整数,a 为非负数;(C )n 为奇数,a 为实数; (D ) n 为偶数,a 为非负数。

3.下面有4个判断:(1)两个实数之间,有无限多个实数 ;(2)两个有理数之间,有无限多个有理数(3)两个无理数之间,有无限多个无理数; (4)两个整数之间,有无限有整数。

其中错误的判断的有 ( )(A)0个 (B)1个 (C)2个 (D)3个4.若2x 是有理数,则x 是( ).(A)有理数 (B)整数 (C)非负数 (D)实数三.求下列各式中的x1. x ³=-8;2. 2.27-64x ³=0;3.(x-2)³ =-27.四.解答下列各题1. 计算335π32+-(精确到0. 1);2. 计算)2(8.12453-⨯-+(结果保留一个有效数字);3.比较大小:320-,36.7-.答案:一、填空题 1.512.-603.1214.3 5.54-或516- 6.2± 7.28.0.3,64,0,,2;302.0,722π--⋅⋅ ...020020002.2,0,5,64;3.0;4,2020020002.2,0,53-- 二、选择题1. D2. A3. B4. A三、1.x=-2 2.x=433.x=-1.四、1.4.28 2.5.24 3.<.。

八年级数学数的开方试卷题

八年级数学数的开方试卷题

一、选择题(每题4分,共20分)1. 下列各数中,不是正实数的是()A. √4B. √9C. √-4D. √162. 已知a=√9,b=√16,那么a+b的值是()A. 5B. 6C. 7D. 83. 如果a=√25,那么a的平方根是()A. √25B. ±√25C. 5D. ±54. 已知x²=4,那么x的值是()A. 2B. -2C. ±2D. ±45. 下列各数中,不是无理数的是()A. √2B. √3C. √4D. √5二、填空题(每题5分,共25分)6. √25的平方根是__________。

7. 3的平方根是__________。

8. 已知x²=64,那么x的值是__________。

9. 如果a=√16,那么a的立方根是__________。

10. 下列各数中,是无理数的是__________。

三、解答题(每题10分,共30分)11. 简化下列各数的平方根:(1)√36(2)√81(3)√2512. 求下列各数的平方根:(1)√49(2)√144(3)√3213. 求下列各数的立方根:(1)∛27(2)∛64(3)∛125四、应用题(每题10分,共20分)14. 已知某数的平方根是4,求这个数。

15. 已知某数的立方根是3,求这个数的平方根。

答案:一、选择题:1. C2. B3. B4. C5. C二、填空题:6. ±27. √38. ±89. √210. √2、√3、√5三、解答题:11. (1)±6(2)±9(3)±512. (1)±7(2)±12(3)±4√213. (1)3(2)4(3)5四、应用题:14. 1615. 9。

数的开方测试题

数的开方测试题

数的开方测试题数的开方是数学中一个重要的概念,它涉及到对一个数进行开方运算,以求解出相应的平方根。

开方运算在日常生活中有着广泛的应用,如测量、计算、设计等各个领域。

因此,对数的开方进行深入理解和掌握是非常必要的。

数的开方运算可以理解为求解一个数的平方根。

在数学上,任何一个非负数x都有一个唯一的正数平方根,记作√x。

同时,任何一个实数都有无数个平方根,这些平方根可以是正数、负数,也可以是零。

以下是一些关于数的开方的测试题,旨在帮助大家理解和掌握数的开方运算。

7a. (注:这是一个很大的数)若x是64的平方根,则x=_______.答案:x=±8,因为正数的平方根有两个,它们互为相反数。

一个数的平方根是123,则它的另一个平方根是_______.答案:-123,因为一个正数的平方根有两个,它们互为相反数。

答案:x=±2,因为正数的平方根有两个,它们互为相反数。

,因为正数的平方根有两个,它们互为相反数。

,因为正数的立方根只有一个。

解答:根据平方根的定义,对于任何一个正数,都有两个平方根,它们互为相反数。

所以选项A和B都是错误的。

选项C虽然部分正确,但并不是该题的最佳答案。

正确的答案是D,以上都不对。

解答:根据平方根的定义,0也有平方根,它等于0本身。

因此,选项C是错误的。

而选项A、B和D都是正确的。

如果一个数的平方根是a和-a,那么这个数是________。

如果一个数的平方根是2m和n-3m,那么这个数是________。

一个正数的平方根是x和y,如果x>y,那么这个正数是________。

由题意得,a + (-a) = 0,解得这个数是0。

由题意得,(2m)2 = (n-3m)2,解得这个数是0。

由题意得,x2 = y2,即x = y或x = -y,因为x>y,所以x = y不成立,所以这个正数是y的平方。

(2) -25没有平方根,因为负数没有平方根;(4) 25的平方根是±5。

数的开方基础过关测试卷(附参考答案和评分标准)

数的开方基础过关测试卷(附参考答案和评分标准)

第11章 数的开方基础过关测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 计算327的结果是 【 】 (A )3± (B )3 (C )33± (D )332. 下列实数中无理数是 【 】 (A )4 (B )8 (C )722(D )327 3. 估算324+的值 【 】 (A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间4. 下列计算结果正确的是 【 】 (A )636±= (B )()332-=-(C )()233-=- (D )3355-=-5. 下列各组数中,是互为相反数的是 【 】 (A )2-与38- (B )2-与()22-(C )2-与21(D )2-与2 6. 比较91.3---、、π的大小,正确的是 【 】 (A )1.39-<-<-π (B )91.3-<-<-π (C )91.3-<-<-π (D )1.39-<-<-π7. 下列说法中,正确的是 【 】 (A )立方根等于1-的实数是1- (B )27的立方根是3± (C )带根号的数都是无理数 (D )()26-的平方根是6-8. 化简ππ--3得 【 】(A )3 (B )3- (C )32-π (D )π23-9. 计算3825--的结果是 【 】 (A )3 (B )7- (C )7 (D )3-10. 若一个正数的两个平方根分别是12-a 和8-a ,则这个正数是 【 】 (A )3 (B )6 (C )9 (D )25二、填空题(每小题3分,共30分)11. 如果某数的一个平方根是5-,那么这个数是_________. 12. 下列各数: π , 4-, 75, 0. 010010001中,是无理数的是_________. 13.81的平方根是_________.14. 在实数41,0,2,1--中,最小的实数是_________.15. 若021=-++y x ,则y x 的值为_________.16. 设b a ,是一个等腰三角形的两边长,且满足094=-+-b a ,则该三角形的周长是_________. 17. 计算:()=-+--+3128923_________.18. 若单项式n m y x +-45与2y x n m -是同类项,则n m 7-的算术平方根是_________. 19. 实数a 在数轴上的位置如图所示,则化简=-3a _________.20. 若32-x 与321y -互为相反数,则y x 2-的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共10分)(1)()⎪⎭⎫⎝⎛-÷+-+--324227523; (2)()338211+-+-.22.(8分)求下列各式中的x :(1)()032222=--x ; (2)()2713=+x .23.(8分)正数x 的两个平方根分别为a -3和72+a . (1)求a 的值;(2)求x -44这个数的立方根.24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3.(1)填空:__________________,_________,===a y x ; (2)求a y x 3+-的平方根.26.(8分)观察表格,然后回答问题:(1)__________________,==y x ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题: ①已知16.310≈,则≈1000_________;②已知973.8=m ,若3.897=b ,用含m 的代数式表示b ,则=b _________.27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长; (3)把正方形ABCD放到数轴上,如图②,使得点A与1重合,求点D在数轴上表示的数.①②第11章 数的开方基础过关测试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. 25 12. π 13. 3± 14. 2- 15. 1 16. 22 17.23+ 18. 10 19. a -3 20. 1三、解答题(共60分) 21. 计算:(每小题5分,共10分) (1)0 ; (2)2 . 22.(8分)求下列各式中的x : (1)()032222=--x ;解:()32222=-x()1622=-x∴42=-x 或42-=-x ∴6=x 或2-=x ; (2)()2713=+x .解:32713==+x ∴2=x .23.(8分)正数x 的两个平方根分别为a -3和72+a .(1)求a 的值;(2)求x -44这个数的立方根. 解:(1)由题意可知:0723=++-a a解之得:10-=a ;……………………………………3分 (2)由(1)可知:()131033=--=-a ∴169132==x……………………………………5分 ∴1251694444-=-=-x……………………………………6分 ∵51253-=-∴x -44这个数的立方根为5-. ……………………………………2分 24.(8分)已知1-x 的平方根为3±,13-+y x 的立方根为4,求162+-y x 的平方根.解:由题意可知:⎩⎨⎧==-+=-64413913y x x 解之得:⎩⎨⎧==3510y x……………………………………4分 ∴811635101622=+-=+-y x9=……………………………………6分 ∴162+-y x 的平方根为3±. ……………………………………8分 25.(8分)已知正数x 的两个平方根分别是12-a 和5-a ,且3--y x 的立方根为3. (1)填空:____________,______,===a y x ;(2)求a y x 3+-的平方根. 解:(1)9 , 21- , 2 ;……………………………………3分 (2)由(1)可知:()36232193=⨯+--=+-a y x ……………………………………5分 ∵636±=±∴a y x 3+-的平方根为6±. ……………………………………8分 26.(8分)解:(1)0. 1 , 10 ;……………………………………2分 (2)31. 6 ;……………………………………5分 (3)m 10000.……………………………………8分 27.(10分)如图①,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长; (3)把正方形ABCD 放到数轴上,如图②,使得点A 与1-重合,求点D 在数轴上表示的数.①②解:(1)∵4643= ∴这个魔方的棱长为4;……………………………………3分 (2)由(1)可知每个小立方体的棱长为2.∴阴影部分的面积为:842221=⨯⨯⨯……………………………………5分 ∵阴影部分为正方形 ∴阴影部分的边长为8; (或写成22)……………………………………7分 (3)设原点为点O 由(2)可知:8=AD ∴81+=+=AD OA OD∴点D 在数轴上表示的数是81--. ……………………………………10分。

初中数学 《数的开方》基础测试(含答案)

初中数学 《数的开方》基础测试(含答案)

《数的开方》基础测试一、判断题(每小题2分,共16分)1.a 为有理数,若a 有平方根,则a >0 ………………………………………( )2.-52 的平方根是±5 ……………………………………………………………( )3.因为-3是9的平方根,所以9=-3………………………………………( )4.正数的平方根是正数……………………………………………………………( )5.正数a 的两个平方根的和是0…………………………………………………( )6.25=±5………………………………………………………………………( )7.-5是5的一个平方根………………………………………………………( )8.若a >0,则3a -=3a -……………………………………………………( )二、填空题(每空格1分,共28分)9.正数a 的平方根有_______个,用符号可表示为_________,它们互为________,其中正的平方根叫做a 的______,记作_______.10.|-972|的算术平方根是______,(-2)2的平方根是______,16的平方根是_______.11.若-21是数a 的一个平方根,则a =______. 12.-8的立方根是_____,-278的立方根是_________,0.216的立方根是______. 13.0.1是数a 的立方根,则a =_________.14.64的平方根是______,64的立方根是_________.15.比较下列每组数的大小: 5___3;0___-2,3___7,-3____-2.16.若12+x 有意义,则x 的取值范围是___________,若x -2有意义,则x 的取值范围是________.17.若按CZ—1206键后,再依次按键 ,则显示的结果是_______.18.在3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中,有理数有________________________,无理数有_________________________. 19.数325-的相反数是________,它的绝对值是_______;数4-17的绝对值是_____________.20.讨论2+3保留三个有效数的近似值是________.三、选择题(每小题4分,共16分)21.下列说法中正确的是……………………………………………………………( )(A )36的平方根是±6 (B )16的平方根是±2(C )|-8|的立方根是-2 (D )16的算术平方根是422.要使4+a 有意义,则a 的取值范围是……………………………………( ) (A )a >0 (B )a ≥0 (C )a >-4 (D )a ≥-4 23.要使321a -有意义,则a 的取值范围是……………………………………( ) (A )a ≥21 (B )a ≤21 (C )a ≠21 (D )a 是一切实数 24.若|x +2|=-x -2,则x 的取值范围是………………………………( )(A )x ≥-2 (B )x =-2 (C )x ≤-2 (D )x =0四、计算:(每小题4分,共8分)25.64.0-412+44.1; 26.381-325125-+3343--327-.五、用计算器求下列各式的值:(每小题2分,共12分)27.14.3; 28.02815.0 29.3465130.369.21- 31.38917.0 32.-38192-六、求下列各式中的x:(每小题4分,共8分)33.x 2-3.24=0; 34.(x -1)3=64.七、求值:(本题6分)35.已知112--y x +|2x -3y -18|=0,求x -6y 的立方根.八、(本题6分)36.用作图的方法在数轴上找出表示3+1的点A .参考答案1.×;2.×;3.×;4.×;5.√;6.×;7.√;8.√.9.两;±a ;相反数;算术平方根;a . 10.35,±2,±2. 11.41. 12.-2,-32,0.6. 13. 0.001. 14.±8,4. 15.>,>,>,<. 16.一切实数,x ≤2. 17.2.18. 3.14,31,⋅⋅21.0,722,3216,94;33,2,3π,0.2020020002…. 19. 325,325;17-4. 20. 3.15. 21. B . 22.D .23. D . 24. C . 25.0.5;26.-3.27.1.772 28.0.1678 29.186.1 30.-2.789 31.0.9625 32.20.16.33.x =±1.8; 34.x =5.35.【提示】一个数的算术平方根与绝对值都是非负数,它们的和为零,则每个数必为零,故可列出方程组:⎩⎨⎧=--=--.018320112y x y x 求出x 、y ,再求x -6y 的立方根. 【答案】x -6y 的立方根是3.36.作一个腰为1的等腰直角三角形,以其斜边为1为直角边作直角三角形.则以原点O为圆心,以这个直角三角形斜边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图1)或作一个以1为直角边,2为斜边的直角三角形.则以原点O 为圆心,以这个直角三角形的另一直角边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图2).有了表示3的点,即可找到表示3+1的点.(图1)(图2)点A就是数轴上所求作的表示3+1的点.。

初二数学《数的开方》测试卷

初二数学《数的开方》测试卷

初二数学《数的开方》测试卷姓名 班级 学号 得分一、 填空.平方等于的数是 ,的立方根是 。

.81的平方根是 ,2)3(-的算数平方根是 ,321-的五次方根是 。

.若π=x ,则 。

.小于36-的所有非负整数是 。

.已知=-++<<221,21x x x 那么 。

.已知==-x x ,则4)1(2。

.已知===b ab a ,则,6.718186.733 。

.正实数的两个平方根的立方和是 。

.在下列数中:。

为正整数),,,,,,3284()1(643.0212732.13-+-----n n 有理数是 ;无理数是 。

.当 时,x x x ;当-= 时,1=x x ;当 时,22=+-x x ;当 时,x x -=。

.已知的取值范围是,则实数的整数x n x n )1(> 。

.在的取值是中x x 2 ,在x -中的取值是 。

.在下列各式中填入“>”或“<”:-,4--732.1- 3-。

二、 判断题.若b a b a ==,则。

( ) .无理数都是无限小数。

( ).9的平方根是3±。

( ).27-的立方根是3- ( ).数轴上原点和原点右边的点表示的数是零与全体正有理数。

( ) .正数的算术平方根一定比它本身小。

( ) .实数的倒数一定是m 1。

( ).有理数与无理数的差是正实数。

( ).两个无理数的积一定是无理数。

( ).两个无理数的和一定是无理数。

( )三、 选择: .m 为无理数时,是( )(A ) 完全平方数()非完全平方数()非负实数()正实数.如果)0(≥=a a x n ,则当为偶数时,( )()n a ±()n a ()n a -()n a .如果==-++20012)(0)22(2xy y x ,则( )(A ) ()()().任何实数的偶次幂是( )(A ) 有理数()正实数()非负实数()实数 .数轴上表示实数的点在表示的点的左边,则22)1(2)2(---x x 的值是()(A ) 正数()负数()小于()大于四、 求下列各式中的:.02783=+x 。

数的开方单元测试A卷 (有答案)

数的开方单元测试A卷 (有答案)

第12章《数的开方》单元测试A 卷一.选择题1、25的平方根是( ) A 、5 B 、–5 C 、5± D 、5±2、2)3(-的算术平方根是( ) A 、9 B 、–3 C 、3± D 、33、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在C 、6±是36的算术平方根D 、–27的立方根是–34、下列等式中,错误的是( )A 、864±=±B 、1511225121±= C 、62163-=- D 、1.0001.03-=- 5、下列命题中正确的是( )A 、有理数是有限小数B 、无限小数是无理数C 、数轴上的点与有理数一一对应D 、数轴上的点与实数一一对应6、在实数23-,0, 3.14-中,无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个7、要使得7-y 有意义,则y 的取值范围是 ( )A 、7=yB 、y ≤7C 、y ≥7D 、y 是任意实数二.填空题8、49的平方根是 ,算术平方根是 。

11、如果38x =,那么x = 。

9的平方根是 , 338-的立方根是______。

10、= ,= ,94-=______。

12、一个数的算术平方根是16,这个数是__________,一个数的立方根是-3,这个数是__________,13、平方根等于本身的数是________;立方根等于本身的数是_______14、 把下列各数填入相应的大括号内(12分)5, -3, 0, 3.1415 , 722, 3 , 31- , 38-, 2π,, 1.121221222122221… (两个1之间依次多个2)(1)无理数集合:{…}; (2)非负数集合:{…}; (3)整数集合: {…}; (4)分数集合: { …}。

15、计算16. 解方程(15分)(1)364x =- (2) ()3327x +=- (3) 240x -=17、(6分)已知一个正方体的体积是253cm ,另一个正方体的体积是 这个正方体体积的5倍,求另一个正方体的表面积 。

数的开方练习题集

数的开方练习题集

数的开方练习题集数的开方小测试题(1)追求卓越 肩负天下1.计算: ()()2332481------ 2.计算: ()91645232--+⨯- 3.计算: 313221---+- 4.计算:(1)04.0103632972+-; (2)()323832164---⨯⎪⎭⎫ ⎝⎛-+-.5.计算: 4128253+-- 6.已知y x ,为实数,且499+---=x x y ,求y x +的值. 7.已知0276433=-++b a ,求()b b a -的立方根.8.计算:(1)()()()11122++--x x x x ;(2)()()[]y x y x x y y x x 232223÷--.数的开方小测试题(2)追求卓越 肩负天下1.计算:(1)()572243+-⨯-÷-;(2)()328235---+-.2.解下列方程:(1)()64122=-x ; (2)()6412273-=--x . 3.求下列代数式的值:(1)若b a ,42=的算术平方根为3,求b a +的值;(2)已知x 是25的平方根,y 是16的算术平方根,且y x <,求y x -的值.4.已知12-a 的平方根是3±,124++b a 的平方根是5±,求b a 2-得平方根.5.已知b a ,互为倒数,d c ,互为相反数,求13+++d c ab 的值.6.计算: 22341312764949⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+--.数的开方小测试题(3)追求卓越 肩负天下1.若322=+-+-y x x ,求y x 的值2.一个正数a 的两个平方根分别是2+x 和82-x ,求a 的值.3.若321x -与353-x 互为相反数,求x -1的值.4.已知43=x ,且()03122=-++-z z y ,求333z y x ++的值.5.计算:()41218131623÷⎪⎭⎫ ⎝⎛---+追求卓越 肩负天下1.计算: ()323243212-+--+⎪⎭⎫ ⎝⎛-.2.解方程:()5432413=+x .3.计算:π---+185.04132.追求卓越 肩负天下1. 81的平方根是_________.2.81的平方根是_________.3. 16的平方根是4±用数学式子表示为____________.4.计算=--3825_________.5.计算:33125276416--+.6.算术平方根等于它本身的数是_________.7.一个正数的两个平方根分别是12-m 和m 34-,则这个正数是_________. 8.38的算术平方根是_________.9.计算:=+-41_________.10.在61,2,0,2-中,无理数是_________. 11.在 01020304.0,23,314.0,27,31,3π-中,无理数的个数是_________. 12.23-的相反数是_________,绝对值是_________.13.若334373+-n m 与互为相反数,则=+n m _________.14.已知b a ,是两个连续的整数,且b a <<15,则=+b a _________.15.估计16+的值在整数_________之间. 16.17+的整数部分是_________,小数部分是_________.17.若011=-++b a ,则()2017ab 的值是_________. 18.若322--+-=x x y ,则=x y _________.追求卓越 肩负天下1.下列各数中,没有平方根的是 【 】(A )1-- (B )0 (C )()23- (D )1 2.如果92=x ,那么=x _________.3.()23-的平方根是_________. 4.已知()0822=-+-b a ,则b a 的平方根是_________. 5.方程()8112=+x 的平方根是_________. 6.81的平方根是_________,算术平方根是_________.7.下列各式成立的是 【 】(A )39±= (B )525-=-(C )()662-=- (D )()10102=--8.若⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为____. 9.4的算术平方根为_________.10.=64.0_________; =-1613_________; ()=-±23_________.11.若n 20的算术平方根为10,则正整数n 的值为_________.12.估计19的值在两个连续的整数_________之间.13. 25的算术平方根是_________. 14.已知021=-++y x ,求y x 5+的算术平方根.15.已知12-a 的平方根是13,3-+±b a 的算术平方根是4,求b a 2+的值.追求卓越 肩负天下1. 8-的立方根是_________.2.一个数的立方根是它本身,则这个数是_________.3.4的立方根等于_________.4.364的平方根是_________.5.方程()128123=-x 的解为____________.6.若163+x 的立方根是4,则42+x 的平方根为_________.7.8-的立方根与16的平方根之和为_________. 8.412的平方根是_________,算术平方根是_________.9.若x 的平方根是它本身,y 的立方根是它本身,则=-y x _________. 10.=-327_________; ()=-333_________; =327102_________.11.下列实数中,是无理数的为 【】(A )4- (B )0. 101001 (C )722(D )212.32-的相反数是_________,23-的绝对值是_________.13.21+的整数部分是_________,小数部分是_________.14.化简=--ππ3_________. 15.估计17+的值在_________之间. 16.若312-a 和331b -互为相反数,求b a的值.17.若()0125272=-++b a ,求a b的立方根. 18.设32+的整数部分是x ,小数部分是y ,求x y -的值.追求卓越 肩负天下1.下列关于3的判断:①3是无理数; ②3是实数; ③3是3的算术平方根; ④231<<,其中正确的是 【 】(A )①④ (B )①②④(C )①③④ (D )①②③④ 2.5的整数部分是_________,小数部分是_________.3.下列四个数中,最大的一个数是 【 】(A )2 (B )3 (C )0 (D )2-4.若3,,3-=-=-=c b a π,则c b a ,,的大小关系为__________.5.33-的相反数是_________,=-33_________.6.点M 在数轴上与原点相距6个单位,则点M 表示的实数为_________.7.在实数51,4,,1415926.3,8-π中,无理数是__________. 8.计算: (1)()2196----; (2)()3227225--+---.9.若b a ,互为相反数,d c ,互为倒数,4=m ,求()m b cd a 3222017-+-的值.10.先阅读理解,再回答问题: 因为2112=+,且221<<,所以112+的整数部分是1; 因为362,6222<<=+且,所以222+的整数部分是2; 因为12332=+,且4123<<,所以332+的整数部分是3.依次类推,我们会发现n n +2)(为正整数n 的整数部分是_________,请说明理由.追求卓越 肩负天下1.下列等式一定成立的是 【 】(A )549=- (B )22-=-ππ(C )39±= (D )()992=--2.若9,422==b a ,且0<ab ,则b a -的值为_________.3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④1717是±的平方根.其中正确的结论是_________.4.下列实数中,有理数是 【 】(A )8 (B )34 (C )2π (D )0. 101001 5.对于实数b a ,,定义运算“*”:⎩⎨⎧<-≥-=*)()(2b a b a b a ab a b a ,例如:因为24>,所以8244242=⨯-=*,则()()=-*-23_________. 6.若052=-+-m n ,则=n m _________. 7.()29-的平方根是_________. 8.在实数 001001001001.3,16,,6,5π-中,有理数是__________________. 9.=+⎪⎭⎫ ⎝⎛---4312723_________. 10.已知8263+---=x x y ,求13-+y x 的平方根.11.有以下实数:()9,3,12,2,25,53332---. (1)请你计算其中有理数的和;(2)若2-x 是(1)中的和的平方,求2x 的值.。

数学练习题数的开方

数学练习题数的开方

数学练习题1、64的平方根记作 ,值为 。

2、64的立方根记作 ,值为 。

3、81的平方根是 ,81的立方根是 。

4、97是 的平方根。

5、(2)2= 。

6、已知a m 的值。

7、已知x 是10的整数部分,y 是10的小数部分,求(y -10)x -1的平方根。

8、如果a的平方根是±3,那么a= ;如果a 是整数,且106<<a ,那么a=。

9、求方程23)31(2a a --=-的整数解。

10、已知a,b 为实数,且01)(1=----b a b a ,求a 2002-b 2002的值。

11、已知x,y 是实数,且y <222+-+-x x ,化简)22()2(2+---x y 2。

12、下列说法:①两个无理数的和或差一定是无理数;②两个无理数的积或商一定是无理数;③一个无理数与一个有理数的和仍是无理数;④一个无理数与一个有理数的积仍是无理数,其中正确的是( ) A 、0个 B 、1个 C 、2个 D 、3个 13、若a,b 是有理数,且满足a +b 3=2-43,则a +b= .14、(-2)3×3233322781)4()4(-⎪⎪⎭⎫ ⎝⎛-⨯-+-15、下列式子成立的是()A 、2)2(2-=- B 、5)5(2±=± C 、3355=- D 、33)8(-=-816、在数轴上点A 到原点的距离为2,点B 到原点的距离为23,则AB 的17a 是多少?18、算式22+22+22+22可化为( )A 、24B 、82C 、28D 、21619、若5m =2,5n =3,则53n = ,53m +2n= 。

20、计算21、计算22、 23、24、25、你能比较20072008与20082007的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写成一般形式,即比较n n +1与(n +1)n的大小(n 为自然数),分析n=1,2,3,…,从简单情形入手,发现规律,经过归纳,猜想出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练——数的开方(基础测试)(一)判断题(每小题2分,共16分)1.a 为有理数,若a 有平方根,则a >0 ………………………………………( )2.-52 的平方根是±5 ……………………………………………………………( )3.因为-3是9的平方根,所以9=-3……………………………………… ( )4.正数的平方根是正数……………………………………………………………( )5.正数a 的两个平方根的和是0…………………………………………………( )6.25=±5………………………………………………………………………( )7.-5是5的一个平方根………………………………………………………( )8.若a >0,则3a -=3a -…………………………………………………… ( )(二)填空题(每空格1分,共28分)9.正数a 的平方根有_______个,用符号可表示为_________,它们互为________,其中正的平方根叫做a 的______,记作_______.10.|-972|的算术平方根是______,(-2)2的平方根是______,16的平方根是_______.11.若-21是数a 的一个平方根,则a =______. 12.-8的立方根是_____,-278的立方根是_________,0.216的立方根是______. 13.0.1是数a 的立方根,则a =_________.14.64的平方根是______,64的立方根是_________.15.比较下列每组数的大小:5___3;0___-2,3___7,-3____-2.16.若12+x 有意义,则x 的取值范围是___________,若x -2有意义,则x 的取值范围是________.17.若按CZ —1206科学计算器的 ,则显示的结果是_______.18.在3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中,有理数有________________________,无理数有_________________________.19.数325-的相反数是________,它的绝对值是_______;数4-17的绝对值是_____. 20.讨论2+3保留三个有效数的近似值是________.(三)选择题(每小题4分,共16分)21.下列说法中正确的是……………………………………………………………( )(A )36的平方根是±6 (B )16的平方根是±2(C )|-8|的立方根是-2 (D )16的算术平方根是422.要使4+a 有意义,则a 的取值范围是……………………………………( )(A )a >0 (B )a ≥0 (C )a >-4 (D )a ≥-423.要使321a -有意义,则a 的取值范围是……………………………………( ) (A )a ≥21 (B )a ≤21 (C )a ≠21 (D )a 是一切实数 24.若|x +2|=-x -2,则x 的取值范围是………………………………( )(A )x ≥-2 (B )x =-2 (C )x ≤-2 (D )x =0 (四)计算:(每小题4分,共8分)25.64.0-412+44.1; 26.381-325125-+3343--327-. (五)用计算器求下列各式的值(每小题2分,共12分)27.14.3; 28.02815.0 29.3465130.369.21- 31.38917.0 32.-38192-(六)求下列各式中的x (每小题4分,共8分)33.x 2-3.24=0; 34.(x -1)3=64.(七)求值(本题6分)35.已知112--y x +|2x -3y -18|=0,求x -6y 的立方根.(八)(本题6分)36.用作图的方法在数轴上找出表示3+1的点A .参考答案(一)判断题(每小题2分,共16分)1.a 为有理数,若a 有平方根,则a >0 ………………………………………( )2.-52 的平方根是±5 ……………………………………………………………( )3.因为-3是9的平方根,所以9=-3………………………………………( )4.正数的平方根是正数……………………………………………………………( )5.正数a 的两个平方根的和是0…………………………………………………( )6.25=±5………………………………………………………………………( ) 7.-5是5的一个平方根………………………………………………………( )8.若a >0,则3a -=3a -……………………………………………………( )【答案】1.×;2.×;3.×;4.×;5.√;6.×;7.√;8.√.(二)填空题(每空格1分,共28分)9.正数a 的平方根有_______个,用符号可表示为_________,它们互为________,其中正的平方根叫做a 的______,记作_______.【答案】两;±a ;相反数;算术平方根;a . 10.|-972|的算术平方根是______,(-2)2的平方根是______,16的平方根是_______. 【答案】35,±2,±2. 11.若-21是数a 的一个平方根,则a =______.【答案】41. 12.-8的立方根是_____,-278的立方根是_________,0.216的立方根是______. 【答案】-2,-32,0.6. 13.0.1是数a 的立方根,则a =_________.【答案】0.001.14.64的平方根是______,64的立方根是_________.【答案】±8,4.15.比较下列每组数的大小:5___3;0___-2,3___7,-3____-2.【答案】>,>,>,<. 16.若12+x 有意义,则x 的取值范围是___________,若x -2有意义,则x 的取值范围是________.【答案】一切实数,x ≤2.17.若按CZ —1206键后,再依次按键,则显示的结果是_______.【答案】2.18.在3.14,33,31,2,⋅⋅21.0,722,3π,0.2020020002…,3216,94中,有理数有________________________,无理数有_________________________.【答案】3.14,31,⋅⋅21.0,722,3216,94;33,2,3π,0.2020020002…. 19.数325-的相反数是________,它的绝对值是_______;数4-17的绝对值是_____.【答案】325,325;17-4.20.讨论2+3保留三个有效数的近似值是________.【答案】3.15.(三)选择题(每小题4分,共16分)21.下列说法中正确的是……………………………………………………………( )(A )36的平方根是±6 (B )16的平方根是±2(C )|-8|的立方根是-2 (D )16的算术平方根是4 【答案】B . 22.要使4+a 有意义,则a 的取值范围是……………………………………( ) (A )a >0 (B )a ≥0 (C )a >-4 (D )a ≥-4【答案】D .23.要使321a -有意义,则a 的取值范围是……………………………………( ) (A )a ≥21 (B )a ≤21 (C )a ≠21 (D )a 是一切实数【答案】D . 24.若|x +2|=-x -2,则x 的取值范围是………………………………( )(A )x ≥-2 (B )x =-2 (C )x ≤-2 (D )x =0【答案】C . (四)计算:(每小题4分,共8分)25.64.0-412+44.1; 26.381-325125-+3343--327-. 【答案】25.0.5;26.-3. (五)用计算器求下列各式的值(每小题2分,共12分) 27.14.3; 28.02815.0 29.3465130.369.21- 31.38917.0 32.-38192-【答案】27.1.772 28.0.1678 29.186.1 30.-2.789 31.0.9625 32.20.16.(六)求下列各式中的x (每小题4分,共8分)33.x 2-3.24=0; 34.(x -1)3=64.【答案】33.x =±1.8; 34.x =5.(七)求值(本题6分)35.已知112--y x +|2x -3y -18|=0,求x -6y 的立方根.【提示】一个数的算术平方根与绝对值都是非负数,它们的和为零,则每个数必为零,故可列出方程组:⎩⎨⎧=--=--.018320112y x y x 求出x 、y ,再求x -6y 的立方根.【答案】x -6y 的立方根是3. (八)(本题6分)36.用作图的方法在数轴上找出表示3+1的点A .【提示】作一个腰为1的等腰直角三角形,以其斜边为1为直角边作直角三角形.则以原点O 为圆心,以这个直角三角形斜边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图1)或作一个以1为直角边,2为斜边的直角三角形.则以原点O 为圆心,以这个直角三角形的另一直角边长为半径画弧,它与数轴正半轴的交点即为表示3的点(如图2).有了表示3的点,即可找到表示3+1的点.(图1) (图2)点A 就是数轴上所求作的表示3+1的点.。

相关文档
最新文档