八年级数学因式分解与分式
第二章分式与分式方程单元教学设计(五四制)数学八年级上册
第七节
2.3 分式的加减法3
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想
同步及训练案
按考点复习,做到一讲一练
训练案
第八节
2.3 分式的加减法4
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想.
3练案
按考点复习,做到一讲一练
训练案
第五节
2.3 分式的加减法1
1.掌握同分母分式的加减法运算法则, 能熟练进行同分母分式的
加减运算
2.理解算理, 进一步发展学生的运算能力.
3.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
训练案
第六节
2.3 分式的加减法2
1.知道通分、 最简公分母的概念;
2.掌握异分母分式的加减法运算法则, 能熟练进行异分母分式
的加减运算
3.理解算理, 进一步发展学生的运算能力.
4.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
学情分析
经过前期的学习,学生初步养成了自主探究意识。一方面,学生己经学习了整式及加减运算和整式的乘除,已经具备了研究分式的基础知识与方法;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。另外。在学习本之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路已经比较熟悉,分式方程的未知数在分母中,它的解法比以前学过的整式方程复杂。随着问题复杂性的增加,学生需要不断地提高认识问题的水平,这里包括提高对新事物与已热悉的事物之间的联系的认识,这种认识水平的提高,是构建知识体系的过程中不可决少的。
中考数学复习第五节 因式分解与分式
第五节因式分解与分式本节知识导图河北中考命题规律考什么怎么考考点年份题号题型考查方式考频命题趋势因式分解2019 13 选择题分式化简与求值,涉及完全平方公式5年4考因式分解常与分式化简结合考查,多为选择题,2019年首次分式化简及求值与数轴相结合,形式新颖,预计2020年仍会考查2018 14 选择题分式化简,涉及提公因式2016 4 选择题分式化简,涉及平方差公式、完全平方公式2015 18 填空题分式化简与求值,涉及平方差公式和提公因式分式的运算2019 13 选择题分式化简,判断结果在数轴上的位5年4考2018 14 选择题四名同学接力完成分式化简2017 13 选择题两项分式减法2016 4 选择题两项的分式减法、乘法、除法运算2015 18 填空题涉及平方差公式和提公因式,化简并求值5年1考河北中考考题试做因式分解1.(2013·河北中考)下列等式从左到右的变形,属于因式分解的是(D)A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)分式化简及求值2.(2019·河北中考)如图,若x为正整数,则表示(x+2)2x2+4x+4-1x+1的值的点落在(B)A.段①B.段②C.段③D.段④3.(2018·河北中考)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是(D ) A .只有乙 B .甲和丁 C .乙和丙 D .乙和丁4.(2016·河北中考)下列运算结果为x -1的是( B ) A .1-1x B .x 2-1x ·x x +1C .x +1x ÷1x -1D .x 2+2x +1x +15.(2017·河北中考)若3-2x x -1=( )+1x -1,则( )中的数是(B )A .-1B .-2C .-3D .任意实数6.(2015·河北中考)若a =2b ≠0,则a 2-b 2a 2-ab 的值为__32__.中考考点清单因式分解及其基本方法1.因式分解:把一个多项式分解成几个__整式乘积__的形式,叫做多项式的因式分解. 2.因式分解与整式乘法的关系多项式因式分解整式乘法整式的积.3.提公因式法:ma +mb +mc =__m(a +b +c)__.【方法点拨】公因式的确定:(1)系数:取各项系数的最大公约数;(2)字母:取各项相同的字母;(3)指数:取各项相同字母的最低次数.4.运用公式法(1)平方差公式:a 2-b 2=__(a +b)(a -b)__. (2)完全平方公式:a 2±2ab +b 2=__(a±b)2__.【方法点拨】因式分解的一般步骤例如,分解因式:3x -6=3(x -2),a 3-4a =a(a +2)(a -2),4x 2-4x +1=(2x -1)2.分式的有关概念5.分式:一般地,我们把形如__AB__的代数式叫做分式,其中,A ,B 都是整式,且B 含有字母.A 叫做分式的分子,B 叫做分式的分母.6.与分式有关的“五个条件” (1)分式AB 没有意义时,B__=0__;(2)分式AB有意义时,B__≠0__;(3)分式AB的值为零时,A__=0__且B__≠0__;(4)分式AB 的值为正时,A ,B__同号__,即⎩⎪⎨⎪⎧A>0,B > 0或⎩⎪⎨⎪⎧A<0,B < 0;(5)分式AB 的值为负时,A ,B__异号__,即⎩⎪⎨⎪⎧A>0,B < 0或⎩⎪⎨⎪⎧A<0,B > 0.7.最简分式:分子和分母没有__公因式__的分式.分式的基本性质及运用8.分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为AB=A ×MB ×M ,A B =A÷MB÷M .其中,M 是不等于0的整式.9.约分与通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.约分的关键是确定分式的分子与分母的公因式.【方法点拨】确定最大公因式的方法 (1)分子、分母能因式分解的先因式分解;(2)取分子、分母中相同因式的最低次幂(数字因式取最大公约数).(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式的值相等的同分母的分式,叫做分式的通分.通分的关键是确定几个分式的最简公分母.【方法点拨】确定最简公分母的方法(1)先观察各分母,能因式分解的先因式分解;(2)取各分母公有因式的最高次幂(数字因式取最小倍数);(3)对于只在一个分母中含有的因式,则连同它的指数作为最简公分母的因式.分式运算10.分式的加减运算法则:同分母的两个分式相加(减),分母不变,把分子相加(减);异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减),即A B ±C B =A±C B ;A B +D C =AC +BD BC. 11.分式的乘除运算法则:分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘,即A B ·C D =A·C B·D ;A B ÷C D =A B ·D C =A·D B·C. 12.分式乘方的运算法则:分式乘方是把分子、分母各自乘方,即⎝⎛⎭⎫A B n=A nB n (n 为整数).13.分式的混合运算:在分式的混合运算中,应先算乘方,再算乘除,最后进行加减运算,遇到括号,先算__括号里面的__.分式运算的结果要化成整式或最简分式.【方法点拨】分式化简求值的一般步骤:(1)若有括号的,先计算括号内的分式运算,括号内如果是异分母加减运算时,需将异分母分式通分化为同分母分式运算,然后将分子合并同类项,把括号去掉,简称:去括号;(2)若有除法运算的,将分式中除号(÷)后面的式子分子分母颠倒,并把这个式子前的“÷”变为“×”,保证几个分式之间除了“+”“-”就只有“×”或“·”,简称:除法变乘法;(3)利用因式分解、约分进行分式乘法运算;(4)最后按照式子顺序,从左到右计算分式加减运算,直到化为最简形式;(5)将所给数值代入求值,代入数值时要注意使原分式有意义(即使原分式的分母不为0).例如,化简:x +1x -1x =1,(a -1)÷(1a -1)·a =-a 2,1x +1+2x 2-1=1x -1.典题精讲精练因式分解【例1】(2019·哈尔滨中考)把多项式a 3-6a 2b +9ab 2分解因式的结果是a(a -3b)2. 【解析】本题考查因式分解,涉及提公因式和完全平方公式. a 3-6a 2b +9ab 2=a(a 2-6ab +9b 2)=a(a -3b)2.【方法点拨】有公因式的先提公因式,然后再考虑套公式,最后注意要分解到不能再分解为止.1.(2019·贺州中考)把多项式4a 2-1分解因式,结果正确的是(B ) A .(4a +1)(4a -1) B .(2a +1)(2a -1) C .(2a -1)2 D .(2a +1)22.(2019·绥化中考)下列因式分解正确的是(D )A .x 2-x =x(x +1)B .a 2-3a -4=(a +4)(a -1)C .a 2+2ab -b 2=(a -b)2D .x 2-y 2=(x +y)(x -y)分式的概念及其基本性质【例2】下列分式的变形中不一定成立的是(C ) A .y x =xy x 2 B .y x =πy πxC .y x =y (x -y )x (x -y )D .y x =y (y 2+1)x (y 2+1)【解析】A 选项从左边变化到右边是将分子、分母同乘x ,依题意知x ≠0,故A 选项成立;B 选项从左边变化到右边是将分子、分母同乘π,又π≠0,故B 选项成立;C 选项从左边变化到右边是将分子、分母同乘(x -y),(x -y)是否等于0不能确定,故C 选项不一定成立;D 选项从左边变化到右边是将分子、分母同乘(y 2+1),且y 2+1≠0,故D 选项成立.,【例3】(2019·贵港中考)若分式x 2-1x +1的值等于0,则x 的值为(D )A .±1B .0C .-1D .1【解析】分式的值为零时,分子为零且分母不为零需满足x 2-1=0且x +1≠0,故x =1.3.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是(A ) A .3x 2y B .3x 2y 2 C .3x 22y D .3x 32y2 4.(2019·北京中考)若分式 x -1x的值为0,则x 的值为1.分式化简求值【例4】(2019·广东中考)先化简,再求值: ⎝⎛⎭⎫x x -2-1x -2÷x 2-x x 2-4,其中x = 2.【解析】本题考查分式化简求值.先计算括号内的同分母分式减法,再分解因式,同时将分式的除法改为乘法,分子分母进行约分,将分式化为最简分式,再将字母x 的值代入最简分式,从而求出原式的值.【解答】解:原式=x -1x -2·(x +2)(x -2)x (x -1)=x +2x. 当x =2时,原式=2+22=2(2+2)2=1+ 2.5.(2019·河南中考)先化简,再求值:⎝ ⎛⎭⎪⎫x +1x -2-1÷x 2-2x x 2-4x +4,其中x = 3.解:原式=x +1-x +2x -2÷x (x -2)(x -2)2=3x -2·x -2x =3x .当x =3时,原式=33= 3. 请完成限时训练A 本P A 7~A 8,选做B 本P B 7本章复习完毕后,请完成限时训练A 本“阶段测评(一)”。
八年级数学因式分解和分式方程经典试题汇总
因式分解与分式方程经典试题1.=++-==+xy y x xy y x 6,2,222则已知 。
=-+--==-3223,23b ab b a a ab b a 多项式,已知 。
2.是,则的边长,且是ABC ac c ab b ABC c b a ∆+=+∆22,,22 三角形。
3.),另一个因式为的一个因式是(的多项式,若关于3122--+x ax x x 。
4.的值为的一个因式,则是已知k x kx x 1232+++ 。
(这里我需要指出的是2x 项的系数为两因式x 项系数的乘积,常数项是两因式常数的乘积,因此我们可以设另一因式为)4(+kx ,然后利用对应项系数相等求得)多项式m a a +-322含有因式3-a ,求m 并分解多项式。
5.的可能的值可以是因式,则能用完全平方公式分解若多项式m mx x 42++ 。
6.已知36442++mx x 是完全平方式,那么m 的值是 。
7.若整式142++Q x 是完全平方式,请你写出一个满足条件的单项式Q 是 。
8.的值是,则能分解为若m n x x mx x ))(3(152++-+ 。
9.多项式229)1(b ab k a +-+能用乘法公式因式分解,则k= 。
10.若))(2)(4(24b x x x a x -++=-,则=a ,=b 。
11.若=+++-=+yxy x y xy x y x 35322211,则 。
12.已知=++++=+22222211yxy y xy y x y x ,则 。
13.若=+---=-abb a b ab a b a 7222411,则 。
14.已知=++=+n m m n n m n m ,求711 。
15.已知,,124-=-=+xy y x 求1111+++++y x x y 的值。
16.,则,设060.22=-+>>ab b a b a 的值等于a b b a -+ 。
17.若=+=+-2221013aa a a ,则 。
八年级数学重点知识点(全)
初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。
八年级上数学分式知识点
八年级上数学分式知识点一、分式的概念分式也叫有理数,是数的一种表现形式,其中分子和分母都是整数,分母不能为0。
分式可以写成a/b的形式,a为分子,b为分母。
二、分式的化简1.因式分解法将分子和分母进行因式分解,然后将公因式约掉。
例如:(6a^2b)/(9ab^2) = (2a)/(3b)2.通分化简法将两个分母的最小公倍数作为分母,分子分别乘以分母的倍数,然后约掉公因式。
例如:(3/4) + (1/6) = (9/12) + (2/12) = (11/12) 3.除法化简法将除法转换成乘法,分子不变,分母倒过来。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)三、分式的加减1.通分后合并分子例如:(2/3) + (1/4) = (8/12) + (3/12) = (11/12) (1/2) - (1/3) = (3/6) - (2/6) = (1/6)2.需要先找到一个公因式例如:(1/4x) + (3/5) = (5/20x) + (12/20) = (5+12)/20x = (17/20x) (1/2y) - (2/3x) = (3/6y) - (4/6x) = (3x-4y)/6xy四、分式的乘法将分子相乘,分母相乘,然后约掉公因式。
例如:(3/4) × (2/5) = (6/20) = (3/10)五、分式的除法将除号转为乘号,然后取倒数,分子同分母约掉公因式。
例如:(3/4) ÷ (2/5) = (3/4) × (5/2) = (15/8)六、分式的绝对值分式的绝对值是分子分母的绝对值之商,如果分子分母符号相同,结果为正,如果符号不同,结果为负。
例如:|-2/3| = 2/3|-2/-3| = 2/3七、分式的倒数将分数的分子和分母交换位置,得到一个新的分数,即原分数的倒数。
例如:倒数是 4/5 的分数为 5/4以上就是八年级上数学分式知识点的详细介绍,希望同学们在学习数学的过程中能够掌握这些知识点,并且通过练习提高自己的数学水平。
八年级因式分解分式与分式方程
因式分解、分式复习一、知识梳理知识点一 因式分解1.分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ; 完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项“ 1”易漏掉.分解不彻底,如保留中括号形式,还能继续分解等【课前练习】1.下列各组多项式中没有公因式的是( )A .3x -2与 6x 2-4x B.3(a -b )2与11(b -a )3C .mx —my 与 ny —nxD .ab —ac 与 ab —bc 2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因式的是()22222222.949 .949.949 .(949)A x y B x y C x y D x y ---+-+4. 分解因式:x 2+2xy+y 2-4 =_____5. 分解因式:(1)()229=n ;()222=a(2)22x y -= ;(3)22259x y -= ; (4)22()4()a b a b +--;(5)以上三题用了 公式222222.1(1)(1) ;.14(12)(12).8164(98)(98);.(2)(2)(2)A x x x B y y y C x y x y x y D y x y x y x -=+--=+--=+---=-+-【经典考题剖析】 例 1. 分解因式:(1)33x y xy -;(2)3231827x x x -+;(3)()211x x ---;(4)()()2342x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
八年级数学竞赛专题训练试卷(二)因式分解与分式
八年级数学竞赛专题训练试卷(二)因式分解与分式一、选择题(每小题4分,共40分)1.已知a 2+b 2+4a -2b+5=0,则a b a b+-的值为 ( ) (A)3 (B)13 (C)-3 (D)13- 2.a 4+4分解因式的结果是 ( )(A)(a 2+2a -2)(a 2-2a+2) (B)(a 2+2a -2)(a 2-2a -2)(C)(a 2+2a+2)(a 2-2a -2) (D)(a 2+2a+2)(a 2-2a+2)3.下列五个多项式:①ab -a -b -1;②(x -2) 2+4x ;③3m(m -n)+6n(n -m );④x 2-2x -1;⑤6a 2-13ab+6b 2,其中在有理数范围内可以进行因式分解的有 ( )(A)1个 (B)2个 (C)3个 (D)4个4.a ,b ,c 为△ABC 的三边且3a 3+6a 2b -3a 2c -6abc=0,则△ABC 的形状为 ( )(A)直角三角形 (B)等腰三解形(C)等腰直角三角形 (D)等腰三角形或直角三角形5.a ,b ,c 是正整数,a >b >c ,且a 2-ab -ac+bc=7,则b -c 等于 ( )(A)1 (B)6 (C)土6 (D)1或76.若x 取整数,则使分式6321x x +-的值为整数的x 的值有 ( ) (A)3个 (B)4个 (C)6个 (D)8个7.已知x 2+ax -18能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )(A)3个 (B)4个 (C)6个 (D)8个8.若a=20092+20092×20102+20102,则n ( )(A)是完全平方数,还是奇数 (B)是完全平方数。
还是偶数(C)不是完全平方数,但是奇数 (D)不是完全平方数,但是偶数9.设有理数a ,b ,c 都不为零,且a+b+c=0,则222222222111b c a c a b a b c +++-+-+- 的值是 ( )(A)正数 (B)负数 (C)零 (D)不能确定10.当x 分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211x x -+的值,将所得的结果相加,其和等于 ( ) (A)-1 (B)1 (C)0 (D)2007二、填空题(每小题4分,共40分)11.因式分解:4a 2-4b 2+4bc -c 2=_________.12.已知a 、b 为实数,且ab=1,a ≠1,设11a b M a b =+++,1111N a b =+++,则M -N 的值等于_________.13.若多项式x 3+ax 2+bx 能被(x -)和(x+4)整除,那么a=________,b=_________.14.整数a ,b 满足6ab -9a+10b=303,则a+b=_________.15.k 取________时,方程2211x k x x x x x+-=++会产生增根. 16.已知15a b +=-,a+3b=1,则22331295a ab b +++的值为__________. 17.分解因式:x 4-x 3+4x 2+3x+5=________.18.分解因式:x 2-2xy -8y 2-x -14y -6=_________.19.分解因式:24x 2-1507x -337842=_________.20.已知abc=1,a+b+c=2,a 2+b 2+c 2=3,则111111ab c bc a ca b +++-+-+-的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.解方程:(1)(x+1)(x+3)(x+5)(x+7)+15=0.(2)()()()()()111511291012x x x x x x ++=+++++…+.22.已知:3(a2+b2+c2)=(a+b+c) 2,求证:a=b=c.23.小明在计算中发现:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…由此他做出猜想:四个连续正整数的乘积加1必为平方数.你认为他的猜想正确吗?试说明理由.参考答案一、选择题1.B 2.D 3.B 4.B 5.B 6.B 7.C 8.A 9.C 10.C二、填空题11.原式=(2a+2b -c)(2a -2b+c).12.M -N=0.13.a=1,b=12.14.a+b=15.15.k=-1或k=2时方程有增根.16.0.17.x 4-x 3+4x 2+3x+5=(x 2+x+1)(x 2-2x+5).18.原式=x 2-(2y+1)x -(8y 2+14y -6)=x 2-(2y+1)x -2(4y+3)(y+1)=(x -4y -3)(x+2y+2).19.原式=(3x+274)(8x -1233).20.23- 三、解答题21.(1)原方程可整理成:(x 2+8x+7)(x 2+8x+15)+15=0.将(x 2+8x)看成整体,则有(x 2+8x) 2+22(x 2+8x)+120=0.∴(x 2+8x+12)(x 2+8x+10)=0,即x 2+8x+12=0或x 2+8x+10=0,解得x 1=-2,x 2=-6,34x =-44x =-(2)原方程可写成:1111115112x+91012x x x x x -+-+-=++++…+, 即1151012x x -=+,去分母,整理得x 2+10x 24=0, 解得x 1=12,x 2=2,且经检验是原方程的解.22.∵3(a 2+b 2+c 2)=(a+b+c) 2,∴3a 2+3b 2+3c 2=a 2+b 2+c 2+2ab+26c+2ca .∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ca+a 2)=0.即(a -b ) 2+(b -c) 2+(c -a) 2=0.∴a -b =0且b -c=0且c -a=0,∴a =b =c .23.猜想正确.设四个连续正整数为n ,(n+1),(n+2),(n+3)(其中n 为正整数), n(n+1)(n+2)(n+3)+l=(n 2+3n)(n 2+3n+2)+1=(n 2+3n) 2+2(n 2+3n)+1=[(n 2+3n)+1] 2∴四个连续正整数的乘积加1必为平方数.。
八年级数学因式分解与分式
八年级数学因式分解与分式测试题一、选择题(每小题3分,共54分)1.下列各式中从左到右的变形,是因式分解的是()A .(a +3)(a -3)=a 2-9 B.x 2+x -5=(x -2)(x +3)+1 C.a 2b +ab 2=ab (a +b ) D.x 2+1=x (x +x1)2.多项式xyz zy x zy x 682222643可提出的公因式是()A.222z y x B.xyz C. xyz 2 D.2222zy x 3、已知的值是则22,4,6xy yx xyyx()A. 10 B.—10 C. 24 D.—244.若多项式281nx 能分解成2492323xx x ,那么n=( )A 、2 B、4 C、6 D、8 5、两个连续奇数是自然数)的平方差是和x x x (1212()A. 16的倍数B.6的倍数C.8的倍数 D.3的倍数6、等于20092008)2(2()A. 20082B.20092C. 20082D.200927、下列各式中,不能用完全平方公式分解的是( )A. xy yx222B.xy yx222C.xy yx222D.xyyx2228、无论的值都是取何值,多项式、136422y x yx y x ()A. 正数B. 负数C.零 D.非负数9、若0yxxy,则分式xy11()A 、xy1 B 、x y C 、1 D、-110、三角形的三边a 、b 、c 满足2230a b cb c b,则这个三角形的形状是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形11.化简a b a bab 等于( )A.2222a b abB.222()a b abC.2222a b abD.222()a b ab12..若分式x2-4x-2的值为零,则x 的值是( )A.2或-2B.2C.-2D.413.不改变分式52223xyx y的值,把分子、分母中各项系数化为整数,结果是( )A.2154x y xyB.4523x y x y C.61542x y x yD.121546x y xy14.分式:①223a a,②22a b ab,③412()aa b ,④12x中,最简分式有( )A.1个B.2个C.3个 D.4个15.下列各式:xx x xy xx x 2225,1,2,34,151其中分式共有()个。
因式分解、分式和分式方程(易错必刷44题18种题型)—八年级数学下学期期末(北师大版)(解析版)
因式分解和分式方程(易错必刷44题18种题型专项训练)➢因式分解的意义 ➢因式分解-运用公式法 ➢提公因式法与公式法的综合运用 ➢因式分解-十字相乘法等 ➢分式有意义的条件 ➢分式有意义的条件 ➢分式的值➢因式分解-提公因式法➢因式分解-运用公式法➢因式分解-分组分解法➢因式分解的应用➢分式的值为零的条件➢分式的值为零的条件➢ 分式的基本性质 ➢分式的加减法 ➢分式的化简求值➢分式方程的解 ➢解分式方程➢分式方程的增根 ➢分式方程的应用一.因式分解的意义(共5小题)1.若多项式x 2﹣ax ﹣1可分解为(x ﹣2)(x +b ),则a +b 的值为( )A .2B .1C .﹣2D .﹣1【答案】A【解答】解:∵(x ﹣2)(x +b )=x 2+bx ﹣2x ﹣2b =x 2+(b ﹣2)x ﹣2b =x 2﹣ax ﹣1,∴b ﹣2=﹣a ,﹣2b =﹣1,∴b =0.5,a =1.5,∴a+b=2.故选:A.2.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)【答案】D【解答】解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;D x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.3.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【答案】C【解答】解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.4.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=,n=.【答案】见试题解答内容【解答】解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.5.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解法一:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n,∴解得n=﹣7,m=﹣21.∴另一个因式为x﹣7,m的值为﹣21.解法二:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n)∴当x=﹣3时,x2﹣4x+m=(x+3)(x+n)=0即(﹣3)2﹣4×(﹣3)+m=0,解得m=﹣21∴x2﹣4x+m=x2﹣4x﹣21=(x+3)(x﹣7)∴另一个因式为x﹣7,m的值为﹣21.问题:仿照以上一种方法解答下面问题.(1)若多项式x2﹣px﹣6分解因式的结果中有因式x﹣3,则实数p=.(2)已知二次三项式2x2+3x﹣k有一个因式是2x+5,求另一个因式及k的值.【答案】见试题解答内容【解答】解:(1x+a,得x2﹣px﹣6=(x﹣3)(x+a)则x2﹣px﹣6=x2+(a﹣3)x﹣3a,∴,解得a=2,p=1.故答案为:1.(2)设另一个因式为(x+n),得2x2+3x﹣k=(2x+5)(x+n)则2x2+3x﹣k=2x2+(2n+5)x+5n∴,解得n=﹣1,k=5,∴另一个因式为(x﹣1),k的值为5.二.公因式(共1小题)6.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【答案】D【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.三.因式分解-提公因式法(共2小题)7.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.40【答案】C【解答】解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.8.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)【答案】B【解答】解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(x),=(y﹣x)(a﹣b﹣c).故选:B.四.因式分解-运用公式法(共2小题)9.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.【答案】见试题解答内容【解答】解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.10.分解因式:(4a+b)2﹣4(a+b)2.【答案】3(2a+b)(2a﹣b).【解答】解:(4a+b)2﹣4(a+b)2=(4a+b)2﹣(2a+2b)2=(4a+b+2a+2b)(4a+b﹣2a﹣2b)=(6a+3b)(2a﹣b)=3(2a+b)(2a﹣b).五.提公因式法与公式法的综合运用(共3小题)11.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2 C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.12.因式分解:(1)4m2n﹣8mn2﹣2mn(2)m2(m+1)﹣(m+1)(3)4x2y+12xy+9y(4)(x2﹣6)2+2(x2﹣6)﹣15.【答案】见试题解答内容【解答】解:(1)4m2n﹣8mn2﹣2mn=2mn(2m﹣4n﹣1);(2)m2(m+1)﹣(m+1)=(m+1)(m2﹣1)=(m+1)2(m﹣1);(3)4x2y+12xy+9y=y(4x2+12x+9)=y(2x+3)2;(4)(x2﹣6)2+2(x2﹣6)﹣15=(x2﹣6﹣3)(x2﹣6+5)=(x2﹣9)(x2﹣1)=(x+3)(x﹣3)(x+1)(x﹣1).13.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解下列问题:(1)因式分解:9+6(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣8)+16.(3)证明:若n为正整数,则式子(n+1)(n+2)(n+3)(n+4)+1的值一定是某一个整数的平方.【答案】见试题解答内容【解答】解:(1)将“x﹣y”看成整体,令x﹣y=A,则原式=A2+6A+9=(A+3)2再将“A”还原,得:原式=(x﹣y+3)2故答案为:(x﹣y+3)2;(2)因式分解:(a+b)(a+b﹣8)+16.将“a+b”看成整体,令a+b=A,则原式=A(A﹣8)+16=A2﹣8A+16=(A﹣4)2再将“A”还原,得:原式=(a+b﹣4)2;(3)证明:(n+1)(n+2)(n+3)(n+4)+1=(n+1)(n+4)•(n+3)(n+2)+1=(n2+5n+4)(n2+5n+6)+1令n2+5n=A,则原式=(A+4)(A+6)+1=A2+10A+25=(A+5)2=(n2+5n+5)2∵n为正整数,∴n2+5n+5是整数,∴式子(n+1)(n+2)(n+3)(n+4)+1的值是某一个整数的平方.六.因式分解-分组分解法(共1小题)14.已知整数a,b满足2ab+4a=b+3,则a+b的值是()A.0或﹣3B.1C.2或3D.﹣2【答案】A【解答】解:由2ab+4a=b+3,得:2ab+4a﹣b﹣2=1∴(2a﹣1)(b+2)=1,∵2a﹣1,b+2都为整数,∴或,解得或,∴a+b=0或﹣3.故选:A.七.因式分解-十字相乘法等(共2小题)15.若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个一次因式2x﹣3,则a的值为()A.1B.5C.﹣1D.﹣5【答案】A【解答】解:∵多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,﹣6=﹣3×2.∴2x2+ax﹣6=(2x﹣3)(x+2)=2x2+x﹣6.∴a=1.故选A.16.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【答案】A【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.八.因式分解的应用(共8小题)17.已知x2+2x﹣1=0,则x4﹣5x2+2x的值为()A.0B.﹣1C.2D.1【答案】A【解答】解:∵x2+2x﹣1=0,∴x2=1﹣2x,x4﹣5x2+2x=(x2)2﹣5x2+2x=(1﹣2x)2﹣5(1﹣2x)+2x=1﹣4x+4x2﹣5+10x+2x=4x2+8x﹣4=4(1﹣2x)+8x﹣4=4﹣8x+8x﹣4=0,故选:A.18.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1B.3C.5D.不能确定【答案】B【解答】解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选:B.19.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是()A.61,63B.63,65C.65,67D.63,64【答案】B【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.20.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.2022【答案】A【解答】解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.21.已知x2+x+1=0,则x2019+x2018+x2017+…+x+1的值是()A.0B.1C.﹣1D.2【答案】B【解答】解:原式=(x2019+x2018+x2017)+(x2016+x2015+x2014)+•+(x3+x2+x)+1=x2017(x2+x+1)+x2014(x2+x+1)+•+x(x2+x+1)+1=0+0+0+•+0+1=1.故选:B.22.已知a+b=2,则a2﹣b2+4b的值为.【答案】见试题解答内容【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.23.a,b,c是△ABC的三边,若(a2+b2)(a﹣b)=c2(a﹣b),则△ABC的形状是三角形.【答案】见试题解答内容【解答】解:∵(a2+b2)(a﹣b)=c2(a﹣b)∴(a﹣b)(a2+b2﹣c2)=0∴a﹣b=0或a2+b2﹣c2=0,①当a﹣b=0时,解得:a=b,此时△ABC是等腰三角形;②直角三角形,理由如下,如图所示:在△ABC中,设AB=c,AC=b,BC=a,∠ACB=90°,四个全等直角三角拼接成边长为c的大正方形,边长为a﹣b的小正方形,由面积的和差得:S正方形ABMN=S正方形CDEF+4•S△ABC,∴=a2﹣2ab+b2+2ab=a2+b2∴a2+b2﹣c2=0即△ABC是直角三角形;故答案为等腰或直角.24.阅读材料:若m2﹣2mn+2n2﹣4n+4=0,求m,n的值.解:∵m2﹣2mn+2n2﹣4n+4=0,∴(m2﹣2mn+n2)+(n2﹣4n+4)=0,∴(m﹣n)2+(n﹣2)2=0,∴(m﹣n)2=0,(n﹣2)2=0,∴n=2,m=2.(1)a2+b2+6a﹣2b+10=0,则a=,b=.(2)已知x2+2y2﹣2xy+8y+16=0,求xy的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣8b+18=0,求△ABC的周长.【答案】见试题解答内容【解答】(1)解:由:a2+b2+6a﹣2b+10=0,得:(a+3)2+(b﹣1)2=0,∵(a+3)2≥0,(b﹣1)2≥0,∴a+3=0,b﹣1=0,∴a=﹣3,b=1.故答案为:﹣3;1.(2)由x2+2y2﹣2xy+8y+16=0得:(x﹣y)2+(y+4)2=0∴x﹣y=0,y+4=0,∴x=y=﹣4∴xy=16.答:xy的值为16.(3)由2a2+b2﹣4a﹣8b+18=0得:2(a﹣1)2+(b﹣4)2=0,∴a﹣1=0,b﹣4=0,∴a=1,b=4;已知△ABC的三边长a、b、c都是正整数,由三角形三边关系知c=4,∴△ABC的周长为9.九.分式有意义的条件(共1小题)25.当x=时,分式无意义.【答案】见试题解答内容【解答】解:根据题意得:x(x﹣1)=0,解得x1=0,x2=1.故答案为:0或1.十.分式的值为零的条件(共1小题)26.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【答案】B【解答】解:根据题意,得:|x|﹣1=0且x+1≠0,解得,x=1.故选:B.十一.分式的值(共1小题)27.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1【答案】D【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.十二.分式的基本性质(共3小题)28.若=2,则=.【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.29.若把分式中的x和y都变为原来的3倍,那么分式的值()A.变为原来的3倍B.变为原来的C.变为原来的D.不变【答案】B【解答】解:用3x和3y代替式子中的x和y得:,则分式的值变为原来的.故选:B.30.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.十三.分式的加减法(共2小题)31.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【答案】B【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.32.分式中,在分子、分母都是整式的情况下,如果分子的次数低于分母的次数,称这样的分式为真分式.例如,分式,是真分式.如果分子的次数不低于分母的次数,称这样的分式为假分式.例如,分式,是假分式.一个假分式可以化为一个整式与一个真分式的和.例如,.(1)将假分式化为一个整式与一个真分式的和;(2)若分式的值为整数,求x的整数值.【答案】见试题解答内容【解答】解:(1)由题可得,==2﹣;(2)===x﹣1+,∵分式的值为整数,且x为整数,∴x+1=±1,∴x=﹣2或0.十四.分式的化简求值(共1小题)33.先化简,再求值:,然后从0,1,2,3四个数中选择一个恰当的数代入求值.【答案】,﹣.【解答】解:原式=(﹣)•=•=,∵x≠3,0,2,∴当x=1时,原式==﹣.十五.分式方程的解(共4小题)34.若关于x的分式方程﹣1=无解,则m的值.【答案】见试题解答内容【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.35.若方程的根为正数,则k的取值范围是()A.k<2B.﹣3<k<2C.k≠﹣3D.k<2且k≠﹣3【答案】A【解答】解:方程两边都乘以(x+3)(x+k)得:3(x+k)=2(x+3),3x+3k=2x+6,3x﹣2x=6﹣3k,x=6﹣3k,∵方程的根为正数,∴6﹣3k>0,解得:k<2,∵分式方程的解为正数,x+3≠0,x+k≠0,x≠﹣3,k≠3,即k的范围是k<2,故选:A.36.已知关于x的分式方程=1的解是非负数,则m的取值范围是.【答案】见试题解答内容【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.37.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为.【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.十六.解分式方程(共2小题)38.解方程:(1);(2).【答案】(1)无解;(2)x=﹣2.【解答】解:(1),原分式方程可化为:+2=,﹣3+2(x﹣4)=1﹣x,﹣3+2x﹣8=1﹣x,2x+x=1+8+3,3x=12,x=4,检验:把x=4代入(x﹣4)=0,∴原分式方程无解;(2),原分式方程可化为:﹣1=,1+4x﹣(x﹣2)=﹣3,1+4x﹣x+2=﹣3,4x﹣x=﹣3﹣1﹣2,3x=﹣6,x=﹣2,检验:把x=﹣2代入(x﹣2)≠0,∴原分式方程解为x=﹣2.39.代数式的值比代数式的值大4,则x=.【答案】见试题解答内容【解答】解:由题意得:﹣=4,x+2=4(2x﹣3),解得:x=2,检验:当x=2时,2x﹣3≠0,∴x=2是原方程的根,故答案为:2.十七.分式方程的增根(共1小题)40.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【答案】B【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.十八.由实际问题抽象出分式方程(共1小题)41.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.【答案】见试题解答内容【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:,故答案为:.十九.分式方程的应用(共3小题)42.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【答案】见试题解答内容【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了a天,乙加工了b天,则由题意得,由①得b=75﹣1.5a③将③代入②得150a+120(75﹣1.5a)≤7800解得a≥40,当a=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.43.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【答案】见试题解答内容【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件由题意得:5000≤100y+90(55﹣y)≤5050解得5≤y≤10∴共有6种选购方案.44.某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?【答案】见试题解答内容【解答】解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要1.5x天.根据题意,得:(10+30)+×30=1,解得x=60.经检验,x=60是原方程的根.∴1.5x=60×1.5=90.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)①设甲、乙两队合作完成这项工程需要y天,(+)y=1,解得:y=36,36×(2.5+2)=162(万元),∵162>160,∴不够,需追加162﹣160=2(万元),答:不够用,需追加预算2万元;②甲工程队需要施工a天,乙工程队需要施工b天,根据题意得:,由①得:2b=180﹣3a③,把③代入②得:2.5a+180﹣3a≤160,a≥40,∴甲工程队至少需要施工40天.。
因式分解与分式
因式分解练习题例1、下列各式的变形中,是否是因式分解,为什么?(5个式子均不是) (1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=;(4)()()()()221a y x a x y y x --=-+-;(5) .96962⎪⎭⎫ ⎝⎛++=++x x xy y xy y x1. 提公因式法——形如ma mb mc m a b c ++=++()2. 运用公式法——平方差公式:a b a b a b 22-=+-()(),完全平方公式:a ab b a b 2222±+=±()()2222222a b c ab bc ca a b c +++++=++3. 十字相乘法 x p q x pq x p x q 2+++=++()()()()()()22a p q ab p qb a pb a qb +++⋅=++4. 分组分解法 (适用于四次或四项以上,①分组后能直接提公因式 ②分组后能直接运用公式)。
例2、因式分解(本题只给出最后答案) (1) ;823x x -2(2)(2)x x x =+-(2) .9622224y y x y x +-222(3)y x =-(3) ;6363223abc c a b a a --+3()(2)a a c a b =-+(4) ().4222222a c b c b -+-()()()()b c a b c a b c a b c a =-+++--+--(5) 121164+--n n a b a =14(2)(2)n a b a b a -+- (6) ;361222422y xy y y x +--2(6)(6)y x y x y =-+--(7) .2939622++-+-y x y xy x(31)(32)x y x y =----例3、因式分解(本题只给出答案)1、()();742--+x x =(3)(5)x x +-2、()();563412422++---x x x x22(44)(45)x x x x =----3、()()()()566321+--+-x x x x22(44)(45)x x x x =----4、().566)67(22+--+-x x x x22(44)(45)x x x x =----小结: 1、 因式分解的意义左边 = 右边 ↓ ↓多项式 整式×整式(单项式或多项式)2、 因式分解的一般步骤3、多项式有因式乘积项 → 展开 → 重新整理 → 分解因式因式分解1、;25942n m -2、;4482--a a3、()();44y x y x --+4、;12222c b a ab +--5、()();2222b a cd d c ab +++6、;4215322222y a xy a x a --7、;186323b ab b a b a -+-8、.41422a b a -+-9、()().20158122-++-a a a(1)如果(-1-b )·M =b 2-1,则M =_______.(2)若x 2+ax +b 可以分解成(x +1)(x -2),则a =_______,b =_______. (3)若9x 2+2(m -4)x +16是一个完全平方式,则m 的值为_______. (4)分解因式a 2(b -c )-b +c =_______. (5)分解因式xy -2y -2+x =_______. (6)在实数范围内分解因式x 3-4x =_______.分式和分式方程知识点总结1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( )2.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( )3. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.7解方程: 730100-=x x. 8 解分式方程:+=1.二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
八年级数学(上册)-因式分解的方法汇总
(3)原式=
x4 2x2 1 2x(x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
解法三:将三次项 x3 拆成 9x3 8x3
解法四:添加两项 x2 x2
对应练习
分解因式:
(1)x9 x6 x 3 3
(2)(m2 1)(n2 1) 4mn
方法七:配方法
把一个式子或一个式子的部分写成完全 平方式或几个完全平方式的和的形式, 这种方法叫配方法。配方法的关键是通 过拆项或添项,将原多项式配上某些需 要的项,以便得到完全平方式 ,然后在 此基础上分解因式。
(1999x 1)(x 1999)
(5)原式= (x y)2 2(x y) 2xy(x y) 4xy (xy)2 2xy 1
(x y xy)2 2(x y xy) 1 (x y xy 1)2 (x 1)2 ( y 1)2
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法
=a(m+n)+b(m+n)
=(a+b)(m+n)
第3讲 因式分解与分式
分解因式: 分解因式 (1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
解(1)4x2 – 9 = (2x)2 – 3 2 ) = (2x+3)(2x-3) (2)(x+p)2 – (x+q) 2 ) = [ (x+p) +(x+q)] [(x+p) –(x+q)] =(2x+p+q)(p-q).
当
1 1 ( x + )( y + ) 的值。 的值。 y x
x=2+ 3 , y=2− 3时,
1 = 1+ + 2 1 =4
1 +2 原式 =(2+ 3)(2− 3)+ (2+ 3)(2− 3)
P13-9.(2010.山东济宁)先观察下列等式,然后 ( 山东济宁) 山东济宁 先观察下列等式, 发现的规律解答下面问题: 用你 发现的规律解答下面问题:
7 7 x
4.若将分式 若将分式 值分别扩大为原来的2倍 则分式的值( 的 值分别扩大为原来的 倍,则分式的值( B ) A.扩大为原来的 倍 扩大为原来的2倍 扩大为原来的 C.不变 不变
1 B.缩小为原来的2 缩小为原来的
a+b 均为正数) 、 均为正数 中的字母a、 ab (a、b均为正数)中的字母 、b
A A÷M = B B÷M
P12-3.下列各式从左到右的变形不一定正确的是( ) 下列各式从左到右的变形不一定正确的是( 下列各式从左到右的变形不一定正确的是 D
3(3 x − y ) 3 A. =− 5( y − 3 x ) 5
a2 − b2 a −b = 2 2 B. a + 2ab + b a+b ( y − z )( z − y ) 1 = C. ( x − z )( x − y )( y − z ) x − z x D. 1 =
2024-2025学年鲁教版(五四制)八年级数学上册期中考试知识梳理课件
知识点6:同分母分式的加减
同分母分式相加减,分母不变,把分子相加减;
上述法则可用式子表为:
知识点7:异分母分式的加减
异分母分式相加减,先通分,变为同分母的分式,再加减.
上述法则可用式子表为:
题型五 已知分式恒等式,确定分子或分母
x3
A
B
x 1 x 1 x 1 x 1
【点拨】本题主要考查了分式的性质,熟练掌握分式的性质是解题的关
键.根据分式的分子分母都乘以或除以一个不为0的整数,分式的值不变,
即可得到答案.
知识点3:分式的约分,最简分式
与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变
分式的值,这样的分式变形叫做分式的约分。如果一个分式的分子与分母没有相同
B.-x2+y2
C.-x2-y2
)
D.(-9 x)2-(-y)2
1 2 2 1 2 2 1
1
x -y =( x) -y =( x+y)( x-y),故不符合题意;
4
2
2
2
B.-x2+y2= y2-x2 = (y +x)( y-x),故不符合题意;
C.-x2-y2=-(x2+y2),不符合平方差公式的特点,故符合题意;
故选:B.
【点拨】此题考查了因式分解的意义,分解因式就是把一个多项式化为几个整式的积的形
式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.
题型二 根据因式分解的结果求参数
2
若 -3-10 = ( + ) ( + ),则 + =
因式分解与分式方程
因式分解教学过程设计:一、本章的知识结构图:二、基本知识点:1.因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解。
2.提公因式法:定义 多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
提公因式法: )(b a m mb ma +=+ 3.公式法:平方差公式: ))((22b a b a b a -+=-完全平方公式: 222)(2b a b ab a ±=+±4.十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘的和等于一次项系数。
基本式子:()()()q x p x pq x q p x ++=+++2))(()(2q bx p ax pq x bp aq abx ++=+++5. 分组分解法:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。
例如()()()()()()n m b a n m b n m a bn bm an am bn bm an am ++=+++=+++=+++小结:分解因式的一般步骤为:(1)若多项式各项有公因式,则先提取公因式。
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
(3)每一个多项式都要分解到不能再分解为止。
6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等三、随堂练习:1. 下列从左到右的变形,是因式分解的是( )A 、()()9332-=-+a a a B 、()5152-+=-+x x x xC 、⎪⎭⎫ ⎝⎛+=+x x x x 112 D 、()22244+=++x x x 2.若的表达式为,则M M x x x x ⋅+=+-+)1()1()1(3( )A 、x 2+1B 、x 2-x +1C 、x 2-3x +1D 、x 2+x +13.把多项式m 2(a -2)+m (2-a )分解因式等于( )A 、(a -2)(m 2+m )B 、(a -2)(m 2-m )C 、m (a -2)(m -1)D 、m (a -2)(m+1)4.下列多项式中不能用平方差公式分解的是( )A 、-a 2+b 2B 、-x 2-y 2C 、49x 2y 2-z 2D 、16m 4-25n 2p 25.下列多项式中,不能用完全平方公式分解因式的是( )A 、412m m ++B 、222y xy x -+-C 、224914b ab a ++- D 、13292+-n n6.若代数式x 2+kxy+9y 2是完全平方式,则k 的值是( ) A 、3; B 、±3; C 、6; D 、±67.下列多项式:①16x 5-x ;②(x -1)2-4(x -1)+4;③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( )A 、①②B 、②④C 、①④D 、②③8.分解因式:m 3-4m = 。
八年级数学重点知识点(全)初二数学
5.等腰三角形的定义:
初二数学知识点
几何表达式举例:
有两条边相等的三角形叫做等腰三角形.
A
(1) ∵ΔABC 是等腰三角形
(如图)
∴ AB = AC
(2) ∵AB = AC
B
C
∴ΔABC 是等腰三角形
6.等边三角形的定义:
几何表达式举例:
有三条边相等的三角形叫做等边三角形.
A
(如图)
(1)∵ΔABC 是等边三角形 ∴AB=BC=AC
A
E
B
C
F
G
11.全等三角形的判定: “SAS”“ASA”“AAS”“SSS”“HL”. (如图)
A
E
B
C
F
G
(1)(2)
A
E
C
B
G
F
(3)
几何表达式举例: (1) ∵ΔABC≌ΔEFG
∴ AB = EF ……… (2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
几何表达式举例: (1) ∵ AB = EF
式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求
化为最简分式.
7.分式的乘除法法则: a c = ac , a c = a d = ad . b d bd b d b c bc
8.分式的乘方: a n b
=
an bn
.(n为正整数).
9.负整指数计算法则:
∴EF⊥AB OA=OB (2) ∵EF⊥AB OA=OB
∴EF 是 AB 的垂直平分线
14.线段垂直平分线的性质定理及逆定理:
几何表达式举例:
(1)线段垂直平分线上的点和这条线段的 两个端点的距离相等;(如图)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学因式分解与分式测试题
一、选择题(每小题3分,共54分)
1.下列各式中从左到右的变形,是因式分解的是( )
A .(a +3)(a -3)=a 2-9 B.x 2+x -5=(x -2)(x +3)+1 C.a 2b +ab 2=ab (a +b ) D.x 2+1=x (x +x 1
)
2.多项式xyz z y x z y x 682222643-+-可提出的公因式是( )
A. 222z y x -
B. xyz -
C. xyz 2-
D.2222z y x -
3、 已知的值是则22,4,6xy y x xy y x --==+( )
A. 10
B.—10
C. 24
D.—24
4.若多项式()281n x -能分解成()()()2492323x x x ++-,那么n=( )
A 、2
B 、4
C 、6
D 、8
5、 两个连续奇数是自然数)的平方差是和x x x (1212-+ ( )
A. 16的倍数
B.6的倍数
C.8的倍数
D.3的倍数
6、 等于20092008)2(2-+ ( )
A. 20082
B.20092
C. 20082-
D.20092-
7、 下列各式中,不能用完全平方公式分解的是( )
A. xy y x 222++
B.xy y x 222++-
C.xy y x 222+--
D.xy y x 222---
8、 无论的值都是取何值,多项式、136422++-+y x y x y x ( )
A. 正数
B. 负数
C. 零
D. 非负数
9、若0≠-=y x xy ,则分式=-x y 1
1
( )
A 、xy 1
B 、x y -
C 、1
D 、-1
10、三角形的三边a 、b 、c 满足()2230a b c b c b -+-=,则这个三角形的形状是( )
A 、等腰三角形
B 、等边三角形
C 、直角三角形
D 、等腰直角三角形
11.化简a b
a b a b --+等于( ) A.2222a b a b +- B.222()a b a b +- C.2222a b a b -+ D.2
22()a b a b +-
12..若分式x 2−4x−2的值为零,则x 的值是( )
A.2或-2
B.2
C.-2
D.4
13.不改变分式52223
x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y -+ C.61542x y x y -+ D.121546x y x y
-+ 14.分式:①
223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A.1个 B.2个 C.3个 D.4个
15.下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、1
16.计算
2
2x x -÷(1-x 2),所得正确结果是 ( ) A .x B .-x 1 C .x 1 D .-x x 2- 17、若把分式xy
y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍
二:填空题(每小题3分,共21分)
18.当a 时,分式3
21+-a a 有意义 19. 分解因式:m 3-4m = .
20.利用分解因式计算:=⨯+⨯⨯+⨯224929********* 。
21.若x 2-kx+16是x 的完全平方式,则k =__________。
22.已知2221440x y x xy y --+++=,则x y +=___________。
23. 计算(x+y)·22
22x y x y y x
+-- =____________. 24.某农场原计划用m 天完成n 公顷的播种任务,如果要提前a 天结束,那么平均每天比
原计划要多播种_________公顷.
三:因式分解(每小题3分,共9分)
①3222a a b ab -+ ②22)(16)(9n m n m --+ ③ a 2(x -y )+b 2(y -x )
四:计算:(每小题4分,共12分)
① 222
21106532x
y x y y x ÷⋅ ②221111121x x x x x +-÷+--+ ③)252(23--+÷--x x x x 五:求下列各代数式的值:(每小题6分,共12分) 1、,8=+n m ,
15=mn 求22n mn m +-的值。
2、3,3
2,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中 六:解答题(每小题6分,共12分)
1.某农场修建水库,需要一种空心混凝土管道,它的规格是内径d=30cm,外径D=70cm ,
长200cm ,利用分解因式计算浇制一节这样的管道约需要多少立方米的混凝土?(兀取
3.14,结果精确到0.01)
2.甲、乙承包一项工程,合作b 天能完成,甲单独做需a 天完成,则乙单独完成这项
工程需要几天?
八年级数学答题纸
18:_______________ 19:_______________; 20:_____________;
21:__________________ 22:_______________; 23:____________;
24:________________
三:因式分解(每题3分)
① ②
四:计算(每题4分)
① ②
③
五:求代数式的值(每题6分)
1:
2:
六:解答题(每题6分)
1:
2:。