计量经济学Eviews操作案例集.

合集下载

计量经济学EViews操作

计量经济学EViews操作

计量经济学作业操作过程详解1.进入Eviews软件2.主菜单-->File--->Workfile3.打开工作文件范围选择框,选择Annual,分别输入1985,1998。

点击完成。

4.数据输入:方法一:导入excel文件中的数据1)在excel中先建立数据文件2)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。

此时工作文件中出现变量图标。

方法二:手工数据输入主菜单--->Quick----->Empty Group分别输入变量Y、GDP的数据。

点击obs后面的灰色格子中分别输入Y、GDP。

(方法一:一个一个输入方法二:在Excel中输入完再复制粘贴)5.主菜单---->Quick----->Estimate Equation打开估计模型对话框,输入Y C GDP ,(如上图所示,注意字母之间要有空格)点击OK键。

得出Eviews的估计结果:β(上面还要带个帽子,电脑打不出来),26.95415为1β。

其中12596.27为0第五步可以直接输入LS Y C GDP 等出结果6.一元线性回归模型的预测1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。

计量经济学EVIEWS模型案例

计量经济学EVIEWS模型案例

数据收集
数据来源: 《中国统计年鉴》 其中:
Y ——各项税收收入(亿元)
X2——国内生产总值(亿元) X3——财政支出(亿元) X4——商品零售价格指数(%)
参数估计
假定模型中随机项满足基本假定,可用 假定模型中随机项满足基本假定,可用OLS法估计 法估计 其参数。具体操作: 软件, 其参数。具体操作:用EViews软件,估计结果为: 软件 估 X2t + β2 X3t + β3 X4t + ut
其中: 其中: 各项税收收入(亿元) Y — 各项税收收入(亿元) X2 — 国内生产总值(亿元) 国内生产总值(亿元) X3 — 财政支出(亿元) 财政支出(亿元) 商品零售价格指数( ) X4 — 商品零售价格指数(%)
上机要求: 上机要求:
1、更新数据至2009年,并对模型进行估 计和检验; 2、上网查2010年各解释变量的数据,求 出2010年税收收入的点预测和区间预测, 并与实际值进行比较分析; 3、形成报告于下次上机课上交打印稿。
R 2 = 0.9971
F = 2717.238
df = 21
模型检验: 模型检验: 拟合优度: 较高, 拟合优度:可决系数 R 2 = 0.9974 较高, R 2 = 0.9971 也较高, 修正的可决系数 也较高, 表明模型拟合较好。 表明模型拟合较好。
显著性检验
F检验: 针对 H0 : β2 =,取β4 = 0 检验: 检验 β3 = 查自由度为 k -1=3 和 的临界值 n - k =21
理论分析 影响中国税收收入增长的主要因素可能有: 影响中国税收收入增长的主要因素可能有: (1)从宏观经济看,经济整体增长是税收增长的 )从宏观经济看, 基本源泉。 基本源泉。 2) (2)社会经济的发展和社会保障等都对公共财政 提出要求, 提出要求,公共财政的需求对当年的税收收入可 能会有一定的影响。 能会有一定的影响。 (3)物价水平。中国的税制结构以流转税为主, )物价水平。中国的税制结构以流转税为主, 以现行价格计算的GDP和经营者的收入水平都与 以现行价格计算的 和经营者的收入水平都与 物价水平有关。 物价水平有关。 (4)税收政策因素。 )税收政策因素。

计量经济学案例Eviews实现

计量经济学案例Eviews实现

2.8:散点图:graph01。

建立一元线性回归模型。

参数估计:eq02。

可得出模型:t t x y 69.031.135+=预测:graph02。

得到1990年、2000年某城镇居民年人均消费性支出预测值为:1354.89、1424.05.3.7进行回归分析,建立回归模型。

1用最小二乘法做参数估计:eq02/stats 。

得到回归方程:i i i x x y 219117.00494.05398.158-+=。

回归标准差为:20.217572经济意义检验:可得出所有的回归系数的符号和大小都与经济理论及人们的经验期望值相一致。

3统计检验:(1) 拟合优度检验:得出样本回归方程较好的拟合了样本观测值。

(2) F 检验:F=72.9065>4.46,所以回归方程是显著的.(3) t 检验:t1=10.5479>2.306即1β显著不等于0;9213.02-=t <2.306不能否定02=β即x2不能作为解释变量进入模型.4预测eq02/resids在2000年我国城镇居民家庭人均可支配收入为5800,耐用消费价格指数为135,进行预测可得2000Y 的置信度为0.95的预测区间为(267.2001,376.7605)4.31对CES 函数进行线性化处理,再用最小二乘法做参数估计:eq02/stats.得出回归方程:2)]([0602.00293.11693.17145.8)(LK Ln LnL LnK LnGDP -++-=分别得到A m ,,ρδ的估计值A=0.00016、δ=0.5318、ρ=0.2199、m=2.1986.2 预测:eq02/resids最后得出CES 的生产函数为2199.01986.22199.02199.0]4682.05318.0[00016.0---+=L KGDP当2199.0=ρ时得出K 与L 的替代弹性8197.0=σ5.51建立计量经济模型i i i u X Y ++=10ββ用普通最小二乘法估计:eq03。

EViews统计分析在计量经济学中的应用综合案例

EViews统计分析在计量经济学中的应用综合案例
R itiiR m tit (6)
计量经济学创新实验设计
我们以方正科技(600601)为例,介绍如何通过Eviews 软件进行系数的回归估计。
打开Eviews6.0,选择File-New-Workfile,frequency选择integer date,时间为1至200,点击确定。
计量经济学创新实验设计
计量经济学创新实验设计
二.资本资产定价模型及其检验方法介绍
各种股票的收益和风险呈现正相关,每种资
产的收益由无风险收益和风险贴水两部分构成。 可表示为:
E Ri Rf i E Rm Rf
(1)
其中: E Ri 为股票的期望收益率; Rf 为无风险收益率、 E Rm 为市场证券组合的
期望收益率; i 是股票 i 收益和市场组合收益间的协方差im 与市场组合收益方差 m 2 的比
值,即 i
im
2 m
,常被称为“
系数”(可以看作某种股票收益变动对市场组合收益变
动的敏感度)。
计量经济学创新实验设计
假设关于任何资产的收益是一个公平博弈,换句 话说就是任何资产已实现的平均收益率等于其预 期的收益率。数学上有如下形式:
Rit E Rit imt eit
(2)
其 中 , mt Rmt E Rmt , E mt 0 , eit 为 随 机 误 差 项 , 且 E eit 0 ,
covemt
, eit
0

cov eit ,eit1
0

i
cov Rmt
,
Rit
Var
Rmt

计量经济学创新实验设计
出现下图后,点击Object-New Object,在Type of object中 选择seriers,,并命名为SY和MY,从而创建两个序列。

eviews操作及案例-简版

eviews操作及案例-简版

■ 成本分析和预测
■ 蒙特卡罗模拟
■ 经济模型的估计和仿真 ■ 利率与外汇预测
EViews 引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分
析和统计分析,数据管理简单方便。其主要功能有:
(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;
(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生
实验七 ___________________________________________________________67
1
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
第一部分 EViews 基本操作
第一章 预 备 知识
一、什么是 EViews
EViews (Econometric Views)软件是 QMS(Quantitative Micro Software)公司开发的、基
于 Windows 平台下的应用软件,其前身是 DOS 操作系统下的 TSP 软件。EViews 具有现代
自 结合课程论文,自拟上机内容(不低于 定 10 学时上机)。
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.

计量经济学案例分析(Eviews操作)

计量经济学案例分析(Eviews操作)

美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。

并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。

然后解释方程的经济意义,并利用软件对未来指数变动进行预测。

最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。

关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。

一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。

全世界早有不少学者对中美资本流通做了深入研究。

但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。

2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。

外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。

所以研究两个指数的变动是很有意义的。

二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。

标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。

与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。

计量经济学---EViews的基本操作案例

计量经济学---EViews的基本操作案例

说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
(3)画散点图
确定了模型后,需要在直观上初步探明变量之间的相互关系,
为此,以人均年收入为横轴,以人均年消费支出为纵轴,描 出样本变量观测值的散点分布图。如下图所示:
根据上图散点分布情况可以看出,在1985~2001年期间,我国城镇
居民人均年消费和可支配收入之间存在较为明显的线性关系。
(4)显示估计结果Fra bibliotekTHANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
Xi——表示城镇居民人均年收入水平 ui——表示随机误差项 现给定样本观测值(Xi,Yi),i=1,2,…,17,n=17为样本容量。则建立样 本回归模型:Yi=β0+β1Xi+ei 其中,β0,β1分别为β0、β1的估计值,ei为残差项。样本回归方程: Ŷi=β0+β1Xi 其中,Ŷi表示样本观测值Yi的估计值。

计量经济学EIVEWS实验步骤和案例

计量经济学EIVEWS实验步骤和案例

一元线性回归检验个人的收入与消费是密不可分的,为了考察城镇居民可支配收入和其人均消费支出的关系,利用计量经济学的方法进行回归。

1990-2011年城镇居民可支配收录和人均消费支出数据如表1.1所示表1.1 城镇居民可支配收录和人均消费支出图2-1数据来源:《中国民政统计年鉴2012》作城镇居民可支配收录(X)和人均消费支出(Y)的散点图图2. 2从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。

运用计算机软件EViews 作计量经济分析十分方便。

利用EViews 作简单线性回归分析的步骤如下:1、建立工作文件首先,双击EViews 图标,进入EViews 主页。

在菜单一次点击File\New\Workfile图2-3选择数据类型和起止日期。

时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。

本例中在Start Data 里输入1990,在End data 里输入2011,见图2-3。

单击OK 后屏幕出现Workfile 工作框,如图2-4所示。

图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。

在主菜单上单击Quick→Empty Group(见图2-5)图2-5再用方向键将光标移到每一列的顶部之后,输入各个变量名,回车后输入数据(见图2-7)。

另外数据还可以从Excel中直接复制到空组。

然后为每个时间序列取序列名。

单击数据表中的SER01,在数据组对话框中的命令窗口输入该序列名称,如本例中输入X,回车后Yes。

采用同样的步骤修改序列名Y(见图2-8)。

数据输入操作完成。

图2-8数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。

计量经济学实验一EViews软件的基本操作

计量经济学实验一EViews软件的基本操作
图1.2
图1.3创建工作文件窗口在Workfile structure type选项区共有3种类型:
(1)Unstructured/Undated(非结构/非日期);
(2)Dated-regular frequency;
(3)Balanced Panel(平衡面板)。
其中默认的状态是Dated-regular frequency类型。
图1.3
图1.4
在默认状态Dated-regular frequency类型下,另一选项区Date specification(日期设定)中有8个选择,分别是Annual(年度的),Semi-annual(半年度的),Quarterly(季度的)、Monthly(月度的)、Weekly(周度的)、Daily-5 day week(一周5个工作日)、Daily-7 day week(一周7工作日)和Integer date(整序数的),如图1.4所示。本例中选择默认的时间频率Annual(年度数据),在起始栏和终止栏分别输入相应的日期1990和2004。点击OK,在EViews软件的主显示窗口将显示相应的工作文件窗口,如图1.5所示。
此外,除了选用菜单方式,也可以选用命令方式建立工作文件。即在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。命令格式为:
CREATE时间频率类型起始期终止期
则以上菜单方式过程可写为:CREATE A 1990 2004
1.3.2.2输入数据
建立或调入工作文件以后,可以输入和编辑数据。输入数据有两种基本方法:data命令方式和鼠标图形界面方式。
菜单栏:标题栏下是主菜单栏。主菜单栏上共有7个选项:File,Edit,Objects,View,Procs,Quick,Options,Window,Help。用鼠标点击可打开下拉式菜单(或再下一级菜单,如果有的话),点击某个选项电脑就执行对应的操作响应。

EVIEWS在计量经济学教学过程中的演示示例

EVIEWS在计量经济学教学过程中的演示示例

EVIEWS在计量经济学教学过程中的演示示例(一)目的:1、正确使用EVIEWS2、会使用OLS和WLS,Goldfeld-Quandt检验3、能根据计算结果进行异方差分析和出现异方差性后的补救。

3、数据为demo data1实例:某市人均储蓄与人均收入的关系分析(异方差性检验及补救)根据某市1978-1998年人均储蓄与人均收入的数据资料(见下表),其中X 为人均收入(元),Y为人均储蓄(元),经分析人均储蓄受人均收入的线性影响,可建立一元线性回归模型进行分析。

1、用OLS估计法估计参数设模型为:μββ++=X Y 21运行EVIEWS 软件,并输入数据,得计算结果如下:Dependent Variable: Y Method: Least Squares Date: 10/11/05 Time: 23:10 Sample: 1978 1998 Variable Coefficient Std. Error t-Statistic Prob. C -2185.998 339.9020 -6.431262 0.0000 R-squared0.974766 Mean dependent var 4533.238 Adjusted R-squared 0.973438 S.D. dependent var 6535.103 S.E. of regression 1065.086 Akaike info criterion 16.86989 Sum squared resid 21553736 Schwarz criterion 16.96937 Log likelihood -175.1338 F-statistic 733.9495 Durbin-Watson stat0.293421 Prob(F-statistic)0.0000002、异方差检验(1)Goldfeld-Quandt 检验在Procs 菜单项选Sort series 项,出现排序对话框,输入X ,OK 。

计量经济学Eviews操作案例集

计量经济学Eviews操作案例集
”—截距项 “resid”—剩余项。
在“Objects”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并
5
在“Name for Objects”上定义文件名,点击“OK”出现数据编辑窗口。 若要将工作文件存盘,点击窗口上方“Save”,在“SaveAs”对话框中给定路径和文件名, 再点击“ok”,文件即被保存。
Monthly (月度)
Undated or irreqular (未注明日期或不规则的)
在本例中是截面数据,选择“Undated or irreqular”。并在“Start date”中输入开始时间
或顺序号,如“1”在“end date”中输入最后时间或顺序号,如“31”点击“ok”出现“Workfile
案例分析一 关于计量经济学方法论的讨论
问题:利用计量经济学建模的步骤,根据相关的消费理论,刻画我国改革开放以来的边际 消费倾向。
第一步:相关经济理论。首先了解经济理论在这一问题上的阐述,宏观经济学中,关于消 费函数的理论有以下几种:①凯恩斯的绝对收入理论,认为家庭消费在收入中所占的比例取 决于收入的绝对水平。②相对收入理论,是由美国经济学家杜森贝提出的,认为人们的消费 具有惯性,前期消费水平高,会影响下一期的消费水平,这告诉我们,除了当期收入外,前 期消费也很可能是建立消费函数时应该考虑的因素。关于消费函数的理论还有持久收入理 论、生命周期理论,有兴趣的同学可以参考相应的参考书。毋庸置疑,收入和消费之间是正 相关的。
2中国ipo抑价率多因素回归模型在股票发行初级市场中针对ipo的超额收益率设定新股抑价率为arptp0p0构建多因素回归模型跟前文相对应我们先设定两个回归元的回归模型假定ar跟股票的发行规模有关在本例中我们用其发行规模的对数值来替代设定为lgipo除此之外还有股票的中签率有关则设定一个简单的三变量回归模型为arlgiporat月120只上海证券交易所上市的新股数据

计量经济学案例eviews

计量经济学案例eviews

案例分析1.问题的提出和模型的设定根据我国1978—1997年的财政收入Y 和国民生产总值X 的数据资料,分析财政收入和国民生产总值的关系建立财政收入和国民生产总值的回归模型。

假定财政收入和国民收入总值之间满足线性约束,则理论模型设定为i i i u X Y ++=21ββ其中i Y 表示财政收入,i X 表示国民生产总值。

表1我国1978—1997年财政收入和国民生产总值2.参数估计进入EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下表 2obsX Y 19783624.100 1132.260 19794038.200 1146.380 19804517.800 1159.930 19814860.300 1175.790 19825301.800 1212.330 19835957.400 1366.950 19847206.700 1624.860 19858989.100 2004.820 198610201.40 2122.010 198711954.50 2199.350 198814922.30 2357.240 198916917.80 2664.900 199018598.40 2937.100 199121662.50 3149.480 199226651.90 3483.370 199334560.50 4348.950 199446670.00 5218.100 199557494.90 6242.200 199666850.50 7407.990 1997 73452.50 8651.140估计结果为Y=858.3108 + 0.100031X(12.78768) (46.04788)R^2=0.991583 S.E.=208.508 F=2120.408括号内为t统计量值。

3.检验模型的异方差(一)图形法1、EViews软件操作。

计量经济学实验教学案例实验一EViews软件的基本操作

计量经济学实验教学案例实验一EViews软件的基本操作

实验一 EViews软件的基本操作【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。

【实验内容】一、EViews软件的安装;二、数据的输入、编辑及序列生成;三、图形分析及描述统计分析;四、数据文件的存贮、调用及转换。

实验内容中后三步以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。

表1-1 我国税收及GDP统计资料单资料来源:《中国统计年鉴1999》【实验步骤】一、安装EViews软件㈠EViews对系统环境的要求⒈一台386、486奔腾或其他芯片的计算机,运行Windows3.1、Windows9X、Windows2000、WindowsNT或WindowsXP操作系统;⒉至少4MB内存;⒊VGA、Super VGA显示器;⒋鼠标、轨迹球或写字板;⒌至少10MB以上的硬盘空间。

㈡安装步骤⒈点击“网上邻居”,进入服务器;⒉在服务器上查找“计量经济软件”文件夹,双击其中的setup.exe,会出现如图1-1所示的安装界面,直接点击next按钮即可继续安装;⒊指定安装EViews软件的目录(默认为C:\EViews3,如图1-2所示),点击OK按钮后,一直点击next按钮即可;⒋安装完毕之后,将EViews的启动设置成桌面快捷方式。

图1-1 安装界面1图1-2 安装界面2二、数据的输入、编辑及序列生成㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口(如图1-3所示)。

标题栏菜单栏命令窗口工作区域状态栏图1-3 EViews主窗口在主菜单上依次点击,即选择新建对象的类型为工作文件,将弹出一个对话框(如图1-4所示),由用户选择数据的时间频率(frequency)、起始期和终止期。

图1-4 工作文件对话框其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。

计量经济软件eviews使用指导及示例演示(收藏精品)

计量经济软件eviews使用指导及示例演示(收藏精品)

第一部分 Eviews简介Eviews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包。

1、Eviews是什么Eviews是美国QMS公司研制的在Windows下专门从事数据分析、回归分析和预测的工具。

使用Eviews可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来值。

Eviews的应用范围包括:科学实验数据分析与评估、金融分析、宏观经济预测、仿真、销售预测和成本分析等。

Eviews是专门为大型机开发的、用以处理时间序列数据的时间序列软件包的新版本。

Eviews的前身是1981年第1版的Micro TSP。

目前最新的版本是Eviews4.0。

我们以Eviews3.1版本为例,介绍经济计量学软件包使用的基本方法和技巧。

虽然Eviews是经济学家开发的,而且主要用于经济学领域,但是从软件包的设计来看,Eviews的运用领域并不局限于处理经济时间序列。

即使是跨部门的大型项目,也可以采用Eviews进行处理。

Eviews处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称就可以对序列中所有的观察值进行操作,Eviews允许用户以简便的可视化的方式从键盘或磁盘文件中输入数据,根据已有的序列生成新的序列,在屏幕上显示序列或打印机上打印输出序列,对序列之间存在的关系进行统计分析。

Eviews具有操作简便且可视化的操作风格,体现在从键盘或从键盘输入数据序列、依据已有序列生成新序列、显示和打印序列以及对序列之间存在的关系进行统计分析等方面。

Eviews具有现代Windows软件可视化操作的优良性。

可以使用鼠标对标准的Windows 菜单和对话框进行操作。

操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。

此外,Eviews还拥有强大的命令功能和批处理语言功能。

在Eviews的命令行中输入、编辑和执行命令。

在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。

计量经济学实验一 计量经济学软件EViews

计量经济学实验一 计量经济学软件EViews

实验一计量经济学软件EViews一、计量经济学软件EViews的使用实验目的:熟悉EViews软件的基本使用功能。

实验要求:快速熟悉描述统计和线性回归分析。

实验原理:软件使用。

实验数据:1978-2005年广东省消费和国内生产总值统计数据。

实验步骤:(一)启动EViews软件进入Windows以后,双击桌面EViews6图标启动EViews,进入EViews窗口。

EViews的四种工作方式:(1)鼠标图形导向方式;(2)简单命令方式;(3)命令参数方式(1与2相结合);(4)程序(采用EViews命令编制程序)运行方式。

(二)创建工作文件假定我们要研究广东省消费水平与国内生产总值(支出法)之间的关系,收集了1978—2005年28年的样本资料(表1-1),消费额记作XF(亿元),国内生产总值记作GDP(亿元)。

根据资料建立消费函数。

进入EViews后的第一件工作,通常应由创建工作文件开始。

只有建立(新建或调入原有)工作文件,EViews才允许用户输入,开始进行数据处理。

建立工作文件的方法是点击File/New/Workfile。

选择新建对象的类型为工作文件。

选择数据类型和起止日期,并在对话框中提供必要的信息:适当的时间频率(年、季度、月度、周、日);最早日期和最晚日期。

开始日期是项目中计划的最早的日期;结束日期是项目计划的最晚日期,以后还可以对这些设置进行修改。

非时间序列提供最大观察个数。

建立工作文件对话框如图1-2所示,按OK确认,得新建工作文件窗口(图1-3)。

表1-1图1-2工作文件窗口是EViews的子窗口。

它也有标题栏、控制栏、控制按钮。

标题栏指明窗口的类型是Workfile、工作文件名和存储路径。

标题栏下是工作文件窗口的工具条。

工具条上是一些按钮。

图1-3View —观察按钮;Proc —过程按钮;Save —保存工作文件;Show —显示序列数据;Fetch —读取序列;Store —存储序列;Delete —删除对象;Genr —生成新的序列;Sample —设置观察值的样本区间。

联立方程计量经济学模型——Eviews操作具体过程

联立方程计量经济学模型——Eviews操作具体过程

联立方程模型_Eviews 案例操作1.下面建立一个包含3个方程的中国宏观经济模型,已经判断消费方程式恰好识别的,投资方程是过度识别的。

对模型进行估计。

样本观测值见表6.101211012t t t t t t t t t t t C Y C u I Y u Y I C G αααββ−=+++⎧⎪=++⎨⎪=++⎩表6.1中国宏观经济数据单位:亿元年份Y I C G 年份Y I C G 19783606137817594691991212807517103163447197940741474200559519922586496361246037681980455115902317644199334501149981568238211981490115812604716199446691192612081066201982548917602868861199558511238772694576891983607620053183888199668330268673215293111984716424693675102019977489428458348551158119858792338645898171998790032954636921125361986101333846517511121999826733070239334126371987117844322596115012000893413250042896139451988147045495763315762001985933746145898152341989164666095852418472001107514423554853516624199018320644491132763(1)用狭义的工具变量法估计消费方程选取方程中未包含的先决变量G 作为内生解释变量Y 的工具变量,过程如下:结果如下:所以,得到结构参数的工具变量法估计量为:012ˆˆˆ582.27610.2748560.432124ααα===,,(2)用间接最小二乘法估计消费方程消费方程中包含的内生变量的简化式方程为:1011112120211222t t t t t t t tC C G Y C G πππεπππε−−=+++⎧⎨=+++⎩参数关系体系为:11121210012012122000παπαπααππαπ−−=⎧⎪−−=⎨⎪−=⎩用普通最小二乘法估计,结果如下:所以参数估计量为:101112ˆˆˆ1135.937,0.619782, 1.239898πππ===202122ˆˆˆ2014.368,0.682750, 4.511084πππ===所以,得到间接最小二乘估计值为:12122ˆˆ0.274856ˆπαπ==211121ˆˆˆˆ0.432124απαπ=−=010120ˆˆˆˆ582.2758απαπ=−=(3)用两阶段最小二乘法估计消费方程第一阶段使用普通最小二乘法估计内生解释变量的简化方程,得到1ˆ2014.3680.68275 4.511084t t tY C G −=++用Y 的预测值替换消费方程中的Y ,过程如下:得到预测值,然后使用工具变量法进行估计。

计量经济学 案例分析 Eviews

计量经济学 案例分析 Eviews

一、研究课题:通过对1984——2003年某国GDP和出口的分析,研究GDP和出口量的相关关系并对参数估计值进行检验。

二、模型及数据来源:GDP为因变量,出口量为自变量。

选择模型是一元线性回归模型y=c0+c1x+u(y代表GDP,x代表出口量,u表示残差项)数据来自《计量经济学软件——eviews的使用》135页表12.1。

提取其进口和国内生产总值两列数据:annual export gdp1984 580.5 71711985 808.9 8964.41986 1082.1 10202.21987 1470 11962.51988 1766.7 14928.31989 1956 16909.21990 2985.8 18547.91991 3827.1 21617.81992 4676.3 26638.11993 5284.8 34634.41994 10421.8 46759.41995 12451.8 58478.11996 12576.4 67884.61997 15160.7 74462.61998 15233.6 78345.21999 16159.8 82067.52000 20634.4 89468.12001 22024.4 97314.82002 26947.4 105172.32003 36287.9 117251.9三、作业1、根据表格得到曲线图、散点图、X-Y曲线图:1200001000008000060000400002000084868890929496980002曲线图05000010000015000010000200003000040000EXPORTG D P散点图20000400006000080000100000120000100002000030000EXPORTG D PX-Y 曲线图2、数据描述统计分析024681001234563、简单的回归估计Dependent Variable: GDP Method: Least Squares Date: 06/14/09 Time: 16:38 Sample: 1984 2003 Variable Coefficient Std. Error t-Statistic Prob. C 11772.77 2862.419 4.112873 0.0007 R-squared0.946953 Mean dependent var 49439.02 Adjusted R-squared 0.944006 S.D. dependent var 36735.19 S.E. of regression 8692.656 Akaike info criterion 21.07298 Sum squared resid1.36E+09 Schwarz criterion21.17256Log likelihood -208.7298 F-statistic 321.3229Durbin-Watson stat 0.604971 Prob(F-statistic) 0.000000y t=-11772.77+3.547790x t R2=0.946953 df=18检验回归系数显著性的原假设和备择假设是(给定α = 0.05)H0:c1= 0;H1:c1≠ 0。

计量经济学---EViews的基本操作案例

计量经济学---EViews的基本操作案例

THANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
Ŷ2003=132.0125+0.768761*7334.37=5770.389(元)
(8)作预测值曲线图
从图中可以看出,在样本区间内,城镇居民平均每人年消费 性支出样本值及其估计值非常接近,2002年、2003年预测 值的变化趋势也符合样本区间的变化趋势说明以上建立的先 行回归模型无论是结构分析、统计检验,还是预测效果,都 是比较好的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例分析一关于计量经济学方法论的讨论问题:利用计量经济学建模的步骤,根据相关的消费理论,刻画我国改革开放以来的边际消费倾向。

第一步:相关经济理论。

首先了解经济理论在这一问题上的阐述,宏观经济学中,关于消费函数的理论有以下几种:①凯恩斯的绝对收入理论,认为家庭消费在收入中所占的比例取决于收入的绝对水平。

②相对收入理论,是由美国经济学家杜森贝提出的,认为人们的消费具有惯性,前期消费水平高,会影响下一期的消费水平,这告诉我们,除了当期收入外,前期消费也很可能是建立消费函数时应该考虑的因素。

关于消费函数的理论还有持久收入理论、生命周期理论,有兴趣的同学可以参考相应的参考书。

毋庸置疑,收入和消费之间是正相关的。

第二步:数据获得。

在这个例子中,被解释变量选择消费,用cs表示;解释变量为实际可支配收入,用inc表示(用GDP减去税收来近似,单位:亿元);变量均为剔除了价格因素的实际年度数据,样本区间为1978~2002年。

第三步:理论数学模型的设定。

为了讨论的方便,我们可以建立下面简单的线性模型:第四步:理论计量经济模型的设定。

根据第三步数学模型的形式,可得式中:cs=CS/P,inc=(1-t)*GDP/P,其中GDP是当年价格的国内生产总值,CS代表当年价格的居民消费值,P代表1978年为1的价格指数,t=TAX/GDP代表宏观税率,TAX是税收总额。

u t表示除收入以外其它影响消费的因素。

第五步:计量经济模型的参数估计根据最小二乘法,可得如下的估计结果:常数项为正说明,若inc为0,消费为414.88,也就是自发消费。

总收入变量的系数 为边际消费倾向,可以解释为城镇居民总收入增加1亿元导致居民消费平均增加0.51亿元。

另外,根据相对收入理论,我们可以得到下面的估计结果:上述结果表明加入消费的上期值以后,边际消费倾向的数据发生了明显的变化,究竟选择哪一个模型,可以在以后的案例讨论中进行说明。

第六步:假设检验。

可以利用t检验和F检验来见模型参数的显著性。

例如,在(1.2)式中,边际消费倾向估计量的标准差估计值是0.01,从而可以计算出t值为15,如果给定显著性水平为5%,查表得到临界值t0.025(21)=2.08,因此可以拒绝总收入系数为0的原假设,认为边际消费倾向的估计量是统计显著的。

第七步:预测。

如果要对此模型的预测功能进行评价,可以用1978~1999年的22年数据进行参数估计,用2000~2002年的数据作为检验性数据,考察实际值和预测值的差别。

图1.1将因变量的实际值和预测值画在一起进行比较。

第八步:利用模型进行控制或制定政策。

案例分析二我国城市居民家庭消费函数——一元线性回归模型一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。

为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。

从2002年《中国统计年鉴》中得到表2.5的数据:表2.52002年中国各地区城市居民人均年消费支出和可支配收入如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++ 三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。

运用计算机软件EViews 作计量经济分析十分方便。

利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。

在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。

在“Workfile frequency ”中选择数据频率:Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。

并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并4000600080001000012000400060008000100001200014000XY在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。

若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。

2、输入数据在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。

其他变量的数据也可用类似方法输入。

也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。

若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。

若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。

3、估计参数方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”或按回车,即出现如表2.6那样的回归结果。

表2.6在本例中,参数估计的结果为:^282.24340.758511i i Y X =+ (287.2649) (0.036928) t=(0.982520) (20.54026)20.935685r = F=421.9023 df=29方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。

若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形,如图2.13所示。

图2.13四、模型检验1、经济意义检验所估计的参数^20.758511β=,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差0.758511元。

这与经济学中边际消费倾向的意义相符。

2、拟合优度和统计检验用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。

拟合优度的度量:由表2.6中可以看出,本例中可决系数为0.935685,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出”的绝大部分差异作出了解释。

对回归系数的t 检验:针对01:0H β=和02:0H β=,由表2.6中还可以看出,估计的回归系数^1β的标准误差和t 值分别为:^1()287.2649SE β=,^1()0.982520t β=;^2β的标准误差和t 值分别为:^2()0.036928SE β=,^2()20.54026t β=。

取0.05α=,查t 分布表得自由度为231229n -=-=的临界值0.025(29) 2.045t =。

因为^10.025()0.982520(29) 2.045t t β=<=,所以不能拒绝01:0H β=;因为^20.025()20.54026(29) 2.045t t β=>=,所以应拒绝02:0H β=。

这表明,城市人均年可支配收入对人均年消费支出有显著影响。

相关文档
最新文档