初中数学解题模型专题讲解42---最值系列之瓜豆原理
初中数学最值系列之瓜豆原理
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
最值问题——瓜豆原理
△OPQ是等腰直角三角形,∠POQ=90°且 OP=OQ,当点P在直线AB上运动时,求Q点 轨迹?
△OPQ是直角三角形,∠POQ=90°且 OP=2OQ,当点P在直线AB上运动时,求Q 点轨迹?
线型模型总结
必要条件: 主动点、从动点与定点连线的夹角是定量(∠PAQ是定值) 主动点、从动点到定点的距离之比是定量(AP:AQ是定值) 结论: P、Q两点轨迹所在直线的夹角等于∠PAQ P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)
线形——平行四边形问题
线形——路径长问题
圆形最值问题
过关检测
最值问题
瓜豆原理
瓜豆原理——种豆得豆,种瓜得瓜
• P是直线AB上ー动点,连接OP,取OP中点Q,当点P在AB上运动时,Q点轨迹是?
P 是 圆 O 上 ー 个 动 点 , A 为 定 点 , 连 接 A P, Q 为 A P 中 点 . 当 点 P 在 园 O 上 运 动 时 , Q 点 轨 迹 是 ?
圆型变形
P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP. 考虑:当点P在圆O上 运动时,Q点轨迹是?
圆型变形
△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
圆型模型总结
必要条件: 主动点、从动点与定点连线的夹角是定量(∠PAQ是定值) 主动点、从动点到定点的距离之比是定量(AP:AQ是定值) 结论: 主、从动点与定点连线的夹角等于两圆心与定点连线的夹角∠PAQ=AO:AM
任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
分析步骤
• ① 找三点:主动点P ; 从动点Q ;中心点A(主从连线公共点) • ②分析主动点关于中心点到从动点的运动,推出:
中考数学最难瓜豆原理
中考数学最难瓜豆原理
中考数学中的“瓜豆原理”指的是组合数学中的排列与组合。
在考试中,常常会出现和瓜豆原理相关的问题,让很多考生感到头疼。
瓜豆原理实际上是由两个定理组成的:
1. 瓜式原理(也称为“乘法原理”):做一件事情有m种方法,做另一件事情有n种方法,那么这两件事情一共有m\times n种方法。
例如,从5个数0、1、2、3、4中取3个数,可以分成两个步骤:
第一步,从5个数中选出3个数,共有5种情况。
第二步,将选出的数按照任意顺序排列,即有3!=6种情况。
根据瓜式原理,一共有5\times 3!=30种取法。
2. 豆式原理(也称为“加法原理”):做一件事情有m种方法,或者另一件事情有n种方法,那么这两件事情一共有m+n种方法。
例如,从5个数0、1、2、3、4中取3个数,可以分成两种情况:
情况一:第一个数是0;情况二:第一个数不是0。
对于情况一,从4个数1、2、3、4中取2个数的取法有C_2^4 = 6种。
对于情况二,从5个数0、1、2、3、4中取3个数的取法有C_3^5=10种。
根据豆式原理,一共有6+10=16种取法。
中学数学最次噩梦瓜豆原理
中学数学最次噩梦瓜豆原理
瓜豆原理是主从联动轨迹问题,主动点叫做瓜,从动点叫做豆,瓜在直线上运动,豆的运动轨迹也是直线;瓜在圆周上运动,豆的运动轨迹也是圆。
关键是作出从动点的运动轨迹,根据主动点的特殊位置点,作出从动点的特殊点,从而连成轨迹。
平面内,动点Q随着动点P的运动而运动,我们把点P叫做主动点,点Q叫做从动点;当这两个动点与某个定点连线的夹角一定,且与该定点距离之比一定时(简记为“定角、定比”),易判断两个动点与定点构成的三角形形状一定,大小可能变,此时两个动点的轨迹形状相同。
因此,如果掌握了瓜豆原理,那么对于中学数学中的一些轨迹问题,就可以轻松解决。
特殊的平行四边形中的最值模型-瓜豆模型(原理)(解析版)
特殊的平行四边形中的最值模型-瓜豆模型(原理)动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹为直线型)进行梳理及对应试题分析,方便掌握。
【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
动点轨迹基本类型为直线型和圆弧型,本专题受教学进程影响,故只对瓜豆原理中的直线型轨迹作讲解。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。
模型:运动轨迹为直线型1)如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.2)如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。
理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹确定时可直接运用垂线段最短求最值;2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定:①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线;②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④若动点轨迹用上述方法都合适,则可以将所求线段转化为其他已知轨迹的线段求值。
最值模型-瓜豆原理(解析版)--中考数学常见几何模型全归纳之模型解读
最值模型-瓜豆原理动点轨迹问题是中考的重要题型,受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹基本类型为直线型和圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。
模型1、运动轨迹为直线模型1-1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.模型1-2如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。
理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹确定时可直接运用垂线段最短求最值;2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定:①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线;②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④若动点轨迹用上述方法都合适,则可以将所求线段转化为其他已知轨迹的线段求值。
初中数学最值系列问题之瓜豆原理
最值系列之瓜豆原理初中数学有一类动态问题叫做主从联动,这类问题应该说是非常出题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,个人理解可能是种瓜得瓜种豆得豆的意思吧,主动点运动的轨迹是什么,则从动点的轨迹就是什么。
也有的老师叫他旋转相似,或者手拉手。
我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些题目来集中训练一下这类题目,希望对你能有所帮助涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点),根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
最值模型之瓜豆模型(解析版)
最值模型之瓜豆模型模型一直线轨迹型瓜豆原理知识梳理【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
动点轨迹基本类型为直线型和圆弧型。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。
运动轨迹为直线型的瓜豆原理题目(1)如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?(2)如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°得到P ',求P '点轨迹?解析Q 点轨迹是直线l 。
(相似模型)P '点轨迹是直线BP '(手拉手模型)确定从动点轨迹的方法:当确定轨迹是线段的时候,可以任取两个时刻的从动点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹已知时可直接运用垂线段最短求最值;2)当动点轨迹未知时,先确定动点轨迹,再垂线段最短求最值。
例题解析1如图,△ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则△CDF 周长的最小值是.【答案】3+33/33+3【分析】根据题意,证明△CBE ≌△CAF ,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ′,连接DC ,设CC 交AF 于点O ,则∠AOC =90°,则当D ,F ,C 三点共线时,FC +FD 取得最小值,即FC +FD =F C +F D =CD ,进而求得C D ,即可求解.【详解】解:∵E 为高BD 上的动点.∴∠CBE =12∠ABC =30°∵将CE 绕点C 顺时针旋转60°得到CF .△ABC 是边长为6的等边三角形,∴CE =CF ,∠ECF =∠BCA =60°,BC =AC ∴△CBE ≌△CAF ∴∠CAF =∠CBE =30°,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ′,连接DC ,设CC 交AF 于点O ,则∠AOC =90°在Rt △AOC 中,∠CAO =30°,则CO =12AC =3,则当D ,F ,C 三点共线时,FC +FD 取得最小值,即FC +FD =F C +F D =CD∵CC =AC =6,∠ACO =∠C CD ,CO =CD ∴△ACO ≌△C CD ∴∠C DC =∠AOC =90°在△C DC 中,C D =CC 2-CD 2=62-32=33,∴△CDF 周长的最小值为CD +FC +CD =CD +DC =3+33,故答案为:3+33.2如图,在平行四边形ABCD 中,AB =6,BC =10,∠B =60°,点E 在线段BC 上运动(含B 、C 两点).连接AE ,以点A 为中心,将线段AE 逆时针旋转60°得到AF ,连接DF ,则线段DF 长度的最小值为.【答案】23【分析】以AB为边向右作等边△ABG,作射线GF交AD于点H,过点D作DM⊥GH于M.利用全等三角形的性质证明∠AGF=60°,得出点F在平行于AB的射线GH上运动,求出DM即可.【详解】解:如图,以AB为边向右作等边△ABG,作射线GF交AD于点H,过点D作DM⊥GH于M.∵四边形ABCD是平行四边形,∠B=60°,∴∠BAD=120°,∵△ABG是等边三角形,∴∠BAG=∠EAF=60°,BA=GA,EA=FA,∴∠BAE=∠FAG,∴△BAE≌△GAF(SAS),∴∠B=∠AGF=60°,∴点F在平行于AB的射线GH上运动,∵∠HAG=∠AGF=60°,∴△AHG是等边三角形,∴AB=AG=AH=6,∴DH=AD-AH=4,=23,∵∠DHM=∠AHG=60°,∴DM=DH•sin60°=4×32根据垂线段最短可知,当点F与M重合时,DF的值最小,最小值为23,故答案为:23.3如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP ,连接DP ,则DP 的最小值是.【答案】22-2【分析】在BC上截取BE=BD,根据等腰直角三角形的性质求得BA和BE,再证明△BDP ≌△BEP (SAS),从而可得到PE=DP ,则当PE⊥CD时,PE有最小值,即DP 有最小值,再求得PE,从而求得DP 的最小值.【详解】解:如图,在BC上截取BE=BD,连接EP∵∠ACB=90°,AC=BC=4,CD⏊AB,∴BA=AC2+BC2=42+42=42,∠ABC=∠BAC=∠BCD=∠DCA=45°,BD=CD=AD=22=BE ,∵以B 点为旋转中心把线段BP 逆时针旋转45°得到BP ,∴BP =BP ,∠PBP =45°∴∠ABC =∠PBP =45°∴∠ABC -∠PBD =∠PBP -∠PBD 即∠EBP =∠DBP ,又∵BE =BD ,BP =BP ,∴△BDP ≌△BEP SAS ,∴PE =DP ,∴当PE ⊥CD 时,PE 有最小值,即DP 有最小值,∵PE ⊥CD ,∠BCD =45°,∴CE =2PE =BC -BE =4-22∴PE =22CE =22×4-22 =22-2,∴DP =PE =22-2.即DP 的最小值是22-24如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转,使∠1=∠2,且过点D 作DG ⊥PG ,连接CG .则CG 最小值为【答案】3625【分析】策略一:得到G 点轨迹直线后,画出起点G 1和终点G 2策略2:旋转相似:【解析】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.△ADH∽△PDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1.5,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC=32+42=5,DH=AD﹒DCAC =125,∴CH=CD2-DH2=95,∴EH=DH﹒CHCD=3625,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=3625,∴CG的最小值为3625,5如图,在矩形ABCD中,AB=5,BC=9,E是边AB上一点,AE=2,F是直线BC上一动点,将线EF绕点E逆时针旋转90°得到线段EG,连接CG,DG,则CG+DG的最小值是.【答案】13【分析】将△FBE绕点E逆时针旋转90°得到△GHE,延长GH交BC于点M,延长CB至点N,使CM= NM,连接DN,由矩形的条件和旋转的性质可得EH=EB=3,∠B=∠BEH=∠EHG=90°,可说明四边形EBMH是矩形,然后由正方形的性质可得到CN=12,GM⊥CN,从而说明GM是CN的垂直平分线,进一步推导出CG+DG=NG+DG≥ND,当点N,G,D三点共线时,CG+DG取最小值,最后由勾股定理可求解.【详解】解:将△FBE绕点E逆时针旋转90°得到△GHE,延长GH交BC于点M,延长CB至点N,使CM =NM,连接DN,∵在矩形ABCD中,AB=5,BC=9,AE=2,∴EB=AB-AE=3,∠B=∠BCD=90°,CD=5,∴EH=EB=3,∠B=∠BEH=∠EHG=90°,∴∠EHM=90°,∴四边形EBMH是矩形,∴BM =EH =3,∠BMH =90°,∴CN =2CM =2×9-3 =12,GM ⊥CN ,∴GM 是CN 的垂直平分线,∴CG =NG ,∵F 是直线BC 上一动点,∴CG +DG =NG +DG ≥ND ,∴当点N ,G ,D 三点共线时,CG +DG 取最小值ND ,在Rt △NCD 中,CN =12,CD =5,ND =CN 2+CD 2=122+52=13,∴CG +DG 的最小值是13.故答案为:13.变式训练6如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),P 是x 轴上一动点,把线段PA 绕点P 顺时针旋转60°得到线段PF ,连接OF ,则线段OF 长的最小值是.【答案】2【分析】点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =433,进而得P 1A =P 1F 1=AF 1=833,求得点F 1的坐标为433,0 ,当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =3x -4,再由线段中垂线性质得出F 1F 2=AF 1=833,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×h ,即12×433×4=12×833×h ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.【详解】解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =433,∴P 1A =P 1F 1=AF 1=833,∴点F 1的坐标为433,0 ,如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan ∠OF 1F 2=OF 2OF 1=4433=3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b ,则,解得,∴直线F 1F 2的解析式为y =3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=833,在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×h ,∴12×433×4=12×833×h ,解得h =2,即线段OF 的最小值为27如图,矩形ABCD 中,AB =6,BC =8,E 为BC 上一点,且BE =2,为AB 边上的一个动点,连接,将绕着点顺时针旋转到EG 的位置,连接和CG ,则CG 的最小值为.【答案】2+32/32+2【分析】如图,将线段BE 绕点顺时针旋转45°得到线段ET ,连接交于.首先证明∠ETG =90°,推出点G 在射线TG 上运动,推出当CG ⊥TG 时,CG 的值最小,进一步即得答案.【详解】解:如图,将线段BE 绕点E 顺时针旋转得到线段ET ,连接,连接交CG 于.∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =45°,∴∠BEF =∠TEG ,在△EBF 和△ETG 中,,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,点G 在射线TG 上运动,当CG ⊥TG 时,CG 的值最小,∵BC =8,,,∴CE =CD =6,∴,∴,∴四边形ETGJ 是矩形,∴DE ⎳GT ,GJ =TE =BE =2,∴CJ ⊥DE ,∴JE =JD ,∴CJ =12DE =32,∴CG=CJ+GJ=2+32,∴CG的最小值为2+328如图,矩形ABCD的边AB=112,BC=3,E为AB上一点,且AE=1,F为AD边上的一个动点,连接EF,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,连接CG,则CG的最小值为()A.5B.52C.3D.22【答案】B【分析】过点G作GH⊥AB于H,过点G作MN∥AB,由“AAS”可证△GEH≌△EFA,可得GH=AE= 1,可得点G在平行AB且到AB距离为1的直线MN上运动,则当F与D重合时,CG有最小值,即可求解.【详解】解:如图,过点G作GH⊥AB于H,过点G作MN∥AB,∵四边形ABCD是矩形,AB=112,BC=3,∴∠B=90°,CD=112,AD=3,∵AE=1,∴BE=92,∵∠GHE=∠A=∠GEF=90°,∴∠GEH+∠EGH=90°,∠GEH+∠FEA=90°,∴∠EGH=∠FEA,又∵GE=EF,∴△GEH≌△EFA(AAS),∴GH=AE=1,∴点G在平行AB且到AB距离为1的直线MN上运动,∴当F与D重合时,CG有最小值,此时AF=EH=3,∴CG的最小值=112-1-32+22=52,故选B.9如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.【分析】策略一:反向构造+伸缩如图从主动点F到从动点G可以理解为,将线段FE绕定点E顺时针旋转了45°再缩短为原来的22,反向构造则需要把CE绕点E逆时针旋转45°,再扩大变为原来的2倍,得到EH,显然△ECH为等腰直角三角形,进一步得到△FEH∽△GEC,相似比为2,所以CG=22FH≥22.策略二:求轨迹--以BE为底向上作等腰Rt△BHE,易得G点轨迹所在直线为BD,故CG最小值为2210如图,已知∠CAB=30°,AB=2,点D在射线AC上,以BD为边作正方形BDEF,连接AE、BE,则AE+BE的最小值为.【答案】2+6提示:以AB 为边作等腰Rt △ABG ,连接GE则GB =2AB ,EB =2DB ,∠GBE =∠ABD =45°-∠GBD∴△GBE ∽△ABD ,∴∠EGB =∠CAB =30°,∴∠AGE =75°∴点E 在直线GE 上运动作点B 关于GE 的对称点B ′,连接AB ′、BB ′、B ′E 、B ′G 则∠B ′GB =60°,B ′G =BG∴△B ′GB 是等边三角形,∴B ′G =B ′B又∵AG =AB ,AB ′=AB ′,∴△AB ′G ≌△AB ′B∴∠GAB ′=∠BAB ′=45°,∠GB ′A =∠BB ′A =30°,∴AB ′⊥BG设垂足为H ,则AH =BH =22AB =2∴B ′H =3BH =6,∴AB ′=AH +B ′H =2+6∴AE +BE =AE +B ′E ≥AB ′=2+6即AE +BE 的最小值为2+611正方形ABCD 的对角线相交于点O (如图1),如果∠BOC 绕点O 按顺时针方向旋转,其两边分别与边AB ,BC 相交于点E 、F (如图2),连接EF ,那么在点E 由B 到A 的过程中,线段EF 的中点G 经过的路线是()A.线段B.圆弧C.折线D.波浪线【答案】A【分析】连接OG ,BG ,根据题意可知∠EBF =∠EOF =90°则线段EF 的中点G 经过的路线是OB 的线段垂直平分线的一段,即线段【详解】连接OG ,BG ,根据题意可知∠EBF =∠EOF =90°,,∴点G 在线段OB 的垂直平分线上.则线段EF 的中点G 经过的路线是OB 的线段垂直平分线的一段,即线段12如图,在正方形ABCD 中,AB =8,点E 在边AD 上,且AD =4AE ,点P 为边AB 上的动点,连接PE ,过点E 作EF ⊥PE ,交射线BC 于点F ,则EFPE=.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为.【答案】【分析】过F 作FK ⊥AD 交AD 延长线于点K ,证明△AEP ∽△KFE ,得到EF PE =FKAE即可求解;过M 作GH ⊥AD 交AD 于点G ,交BC 于点H ,证明△EGM ≌△FHM ,得到MG =MH ,故点M 的运动轨迹是一条平行于BC 的线段,当点P 与A 重合时,BF 1=AE =2,当点P 与B 重合时,由△EF 1B ≌△F 2F 1E 得到,即,从而求解.【详解】解:过F 作FK ⏊AD 交AD 延长线于点K则四边形ABFK 为矩形,∠A =∠K =90°∴AB =FK =8由题意可得:AE =14AD =2∵EF ⊥PE∴∠AEP +∠KEF =∠PEF =90°又∵∠PEA +∠APE =90°∴∠APE =∠KEF ∴△AEP ∽△KFE ∴EF PE =FK AE=4过M 作GH ⊥AD 交AD 于点G ,交BC 于点H ,如下图∵AD ⎳CB ,GH ⊥AD ∴GH ⊥BC在△EGM 和△FHM 中∴△EGM ≌△FHM AAS ∴MG =MH ,故点M 的运动轨迹是一条平行于BC 的线段,当点P 与A 重合时,BF 1=AE =2当点P 与B 重合时,,∴∵∴∴,即解得F 1F 2=32∵M1、M 2分别为、的中点∴M 1M 2是△EF 1F 2的中位线∴M1M 2=12F 1F 2=16,即点运动的路径长为。
初中最值之瓜豆原理
初中最值之瓜豆原理瓜豆原理,即通过充分利用已知信息来求解问题。
在初中数学中,我们经常会遇到一些最值问题,例如“在一组数中找出最大值”、“在一段长度为10m的绳子上剪出两段,使得两段绳子的乘积最大”,这时我们可以运用瓜豆原理来解决这些问题。
在解决最值问题时,我们需要找出一种方法来确定最大值或最小值。
瓜豆原理告诉我们,我们可以通过充分利用问题给出的已知信息,进行一系列的推理和分析,最终得到最值。
首先,我们需审视已知信息。
在求解问题过程中,我们需要根据问题给出的条件进行分析。
例如,在寻找一组数中的最大值时,我们要注意给出的数是否有界限。
如果给出的数中存在一个最大值,那么我们可以通过比较这些数的大小来找到最大值。
其次,我们需要分类讨论。
在问题中,往往会给出一些限定条件,这些条件具有不同的性质,可以通过分类讨论来加以利用。
例如,在寻找一段绳子的最大乘积问题中,我们可以分类讨论绳子剪断的位置,分别计算出在不同位置剪断下的乘积,最后比较得出最大乘积。
然后,我们需要建立数学模型。
在解决问题的过程中,我们可以将问题转化为数学模型,这样有助于我们进行具体计算。
例如,在求寻找一组数的最大值时,我们可以将问题抽象为“找到其中一个数,使得该数大于等于其他所有数”。
这样一来,我们可以用变量和不等式来表示该数与其他数之间的关系,进而进行求解。
接着,我们进行推理和计算。
在建立了数学模型后,我们根据问题的给出条件进行一系列的推理和计算,以求出最值。
例如,在寻找一段绳子的最大乘积问题中,我们可以根据分段位置进行推理,计算出不同位置下的乘积,最后比较大小得到最大乘积。
最后,我们需要进行合理的验证。
在求解最值问题后,我们应该对所得结果进行验证,看是否符合已知条件。
如果所得结果与已知条件相符,则说明我们的解是正确的。
总结起来,初中最值之瓜豆原理强调了通过充分利用已知信息来求解问题。
它提醒我们要审视已知信息、进行分类讨论、建立数学模型、进行推理和计算以及进行合理的验证。
3最值系列之瓜豆原理
3最值系列之瓜豆原理瓜豆原理是由我国古代数学家祖冲之提出的一种数学方法,被广泛应用于解决各种数学问题。
它主要用于求解最值问题,即找出一组数中的最大值或最小值。
瓜豆原理的核心思想是通过比较两组数中较大的数与较小的数的差值来判断最值的大小。
下面我们将详细介绍瓜豆原理及其应用。
瓜豆原理由瓜数和豆数组成,瓜数表示较大的数,而豆数表示较小的数。
根据祖冲之的定义,如果瓜数大于或等于豆数,那么瓜数减豆数的差值就是最值;如果瓜数小于豆数,那么瓜数减豆数的差值的相反数就是最值。
用数学公式表示为:最值=瓜数-豆数。
瓜豆原理主要应用于以下三种常见的数学问题:1.最大值问题:对于一组数中,我们要找出最大的数。
这时我们可以将其中的一个数作为瓜数,将其余所有数作为豆数,然后将瓜数减去豆数的差值作为最大值。
如果瓜数大于或等于豆数,那么最大值就是瓜数减豆数的差值;如果瓜数小于豆数,那么最大值就是瓜数减豆数的相反数。
举个例子,假设我们要找出以下一组数中的最大值:2,5,7,3,9、我们可以将9作为瓜数,将2,5,7,3作为豆数。
然后我们计算瓜数减豆数的差值9-2=7、因此,最大值为72.最小值问题:对于一组数中,我们要找出最小的数。
这时我们可以将其中的一个数作为瓜数,将其余所有数作为豆数,然后将瓜数减去豆数的差值作为最小值。
如果瓜数大于或等于豆数,那么最小值就是瓜数减豆数的差值的相反数;如果瓜数小于豆数,那么最小值就是瓜数减豆数的差值。
举个例子,假设我们要找出以下一组数中的最小值:4,8,3,6,1、我们可以将1作为瓜数,将4,8,3,6作为豆数。
然后我们计算瓜数减豆数的差值1-4=-3、因此,最小值为-33.最值范围问题:对于一组数中,我们要找出最大值和最小值的范围。
这时我们可以先找出最大值和最小值,然后将最大值减去最小值的差值作为最值范围。
举个例子,假设我们要找出以下一组数中的最值范围:6,9,2,5、我们可以先找出最大值和最小值,最大值为9,最小值为2、然后我们计算最值范围9-2=7、因此,最值范围为7总结起来,瓜豆原理是一种简单而有效的数学方法,适用于解决最值问题。
瓜豆原理模型
瓜豆原理模型
若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
瓜豆原理是主从联动轨迹问题。
主动点叫做瓜,从动点叫做豆,瓜在直线上运动,豆的运动轨迹也是直线。
瓜在圆周上运动,豆的运动轨迹也是圆。
关键是作出从动点的运动轨迹,根据主动点的特殊位置点,作出从动点的特殊点,从而连成轨迹。
在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.
本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.
一、轨迹之圆篇
引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
考虑:当点P在圆O上运动时,Q点轨迹是?
分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M 点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
【小结】确定Q点轨迹圆即确定其圆心与半径,
由A、Q、P始终共线可得:A、M、O三点共线,
由Q为AP中点可得:AM=1/2AO.
Q点轨迹相当于是P点轨迹成比例缩放.
根据动点之间的相对位置关系分析圆心的相对位置关系;
根据动点之间的数量关系
分析轨迹圆半径数量关系.
此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.。
初中数学瓜豆原理
初中数学瓜豆原理瓜豆原理是初中数学中一个非常重要的概念,它在代数中有着广泛的应用。
所谓瓜豆原理,就是指两个数的积等于它们的最小公倍数和最大公约数的乘积。
这个原理在解决一些代数问题时非常实用,下面我们就来详细介绍一下瓜豆原理的相关知识。
首先,我们来看最小公倍数和最大公约数的概念。
最小公倍数是指几个数公有的倍数中最小的一个数,而最大公约数则是几个数公有的约数中最大的一个数。
这两个概念在数学中有着非常重要的地位,它们在分数的化简、约分、分数的加减乘除等运算中都有着重要的作用。
接下来,我们来看瓜豆原理在代数中的应用。
假设有两个数a和b,它们的最小公倍数是m,最大公约数是n,那么根据瓜豆原理,我们可以得到以下等式,ab=mn。
这个等式在代数中有着广泛的应用,特别是在解决一些关于分数的问题时,瓜豆原理可以帮助我们快速地找到解题的方法。
举个例子,假设我们要计算两个分数的乘积,分别是a/b和c/d,其中a、b、c、d都是整数。
根据瓜豆原理,我们可以将这两个分数的乘积表示为ac/bd,其中ac表示分子的乘积,而bd表示分母的乘积。
接下来,我们可以利用最大公约数和最小公倍数的概念,将这个乘积化简到最简形式,从而得到最终的结果。
除了在分数运算中的应用,瓜豆原理还可以帮助我们解决一些关于整数的问题。
比如,如果我们要找到两个数的最小公倍数或者最大公约数,瓜豆原理可以帮助我们快速地找到这些数,从而简化计算的过程。
总的来说,瓜豆原理是初中数学中一个非常重要的概念,它在代数中有着广泛的应用。
通过学习和掌握瓜豆原理,我们可以更加轻松地解决一些与最小公倍数、最大公约数相关的问题,提高我们的数学解题能力。
希望通过本文的介绍,大家能对瓜豆原理有一个更加深入的理解,从而在数学学习中取得更好的成绩。
中考专题:最值问题之瓜豆原理
中考专题 ----- 路径之瓜豆原理知识必备一、旋转及性质1.旋转的定义:一个图形绕点沿定方向旋转定的角度;2.旋转三要素:①旋转中心(绕哪个点转);②旋转方向(顺时针或逆时针);③旋转角度;3.旋转的性质:①旋转不改变图形的大小与形状,只改变图形的位置,即旋转前后图形全等;②对应点与旋转中心所连线段间的夹角等于旋转角.二、位似及性质1.位似的定义:若两个图形F和F的点之间可以建立一对应关系,并且满足:①每组对应点的连线所在的直线都经过同一点O;②每组对应点都在点O的同侧或异侧;③对每组对应点A 和OAA',有4 k(k为常数),则称图形F和F位似,k叫位似比;OA2.位似三要素:①位似中心(关于哪个点位似);②位似方向(同侧或异侧);③位似比(等于相似比);3.位似的性质:成位似的两个图形必相似:把一个几何图形变换成与之位似的图形,叫做位似变换;利用位似变换可把一个图形放大或缩小,若位似比大于1,则通过位似变换把原图形放大;若位似比小于1.则通过位似变换把原图形缩小。
方法提炼一.旋转作图问题1:在平面内有两点A.B.请将点B绕点人按顺时针方向旋转40°.二、位似作图1问题2:如图:.已知线段AB,请以点A为位似中心1为位似比,在同侧将线段AB进行位似3变换。
「三、模型建立1 / 13(一)旋转变换问题3:(1)如图14-2-5,已知等腰Rt^APQ.其中A为定点,根据旋转作图的经验,请你说说: 点Q可以看作点P经过怎样的变换得到?(2)如图14-2-6.若改为等边AAPQ呢?⑶如图1-27.若改为任意等腰4APQ(其顶角为o)呢?问题4:在问题3中,若点P在一条定直线l上运动,其他条件不变如图14-2-8至图14-2-10 所示,请问:点Q的运动路径是什么?它可以看作点P的路径如何而来?问题5:在问题4中,若将“定直线1”改为“定。
0〃 .其他条件不变,结果如何?反思:这里是“圆生圆”;注意:点Q所在的轨迹圆圆心0’也是原来的圆心0定点A经过相应的旋转而来;2 / 13总结:这里仅牵扯到“旋转变换”不妨称P 为主动点。
3最值系列之瓜豆原理
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
中考最值—瓜豆原理问题
中考数学最值——瓜豆原理问题【问题背景】古人云:“种瓜得瓜,种豆得豆”。
因此引申出“种圆得圆,种线得线”称之为瓜豆原理。
【知识储备】①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
【模型分析】①条件:○O外有一定点A,P为圆上一动点,连接AP,Q为线段AP的中点。
②问题:P在何处时,QP的值最小。
③方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值。
轨迹总结:常见的是线段和圆。
【经典例题】如图,点P(3,4),⊙P的半径为2,A(2.8,0),B(5.6,0),M是⊙P 上的动点,C是MB的中点,则AC的最小值是。
【巩固训练】类型一:轨迹是圆的最值问题练习1:如图,在等腰Rt△ABC中,AC=BC=2√2,点P在以斜边AB为直径的半圆上,M为PC的中点。
当点P沿半圆从点A运动至点B时,点M运动的路径长是( )A.√2πB.πC.2√2D.2练习2:如图,正方形ABCD中,AB=2√5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得到DF,连接AE,CF。
求线段OF长的最小值。
练习3:△ABC中, AB=4,AC=2,以BC为边在三角形外做正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为。
练习4:如图,在平面直角坐标系中,已知A(2,0),B(5,0),点P为线段AB外一动点,且PA=2,以PB为边作等边△PBM,则线段AM的最大值为()A.3B.5C.7D.√21练习5:如图,已知△ABC中,∠ACB=90°,BC=4,AC=8,点D在AC上,且AD=6,将线段AD绕点A旋转至AD’,F为BD’的中点,连结CF,则线段CF的取值范围。
类型二:轨迹是线段的最值问题练习6:如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是_ __。
最值系列之瓜豆原理
y
k
的图像上
运动,若tan∠CAB=2,则k的值为( )
y
x
A
C
A.2
B.4
C.6
D.8
O
x
B
【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴, 垂足分别为M、N,连接OC,易证△AMO∽△ONC,
∴CN=2OM,ON=2AM,
最值系列之瓜豆原理
在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动 点的最值. 本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问 题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值, 为常规思路.
可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以
QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线
【 引 例 】 如 图 , △ A P Q 是 等 腰 直 角 三 角 形 , ∠ PA Q = 9 0 ° 且 A P = A Q , 当 点 P 在 直 线 B C 上 运 动 时 , 求 Q
【小结】确定Q点轨迹圆即确定其圆心与半径, ●由A、Q、P始终共线可得:A、M、O三点共线, ●由Q为AP中点可得:AM=1/2AO. ●Q点轨迹相当于是P点轨迹成比例缩放. ●根据动点之间的相对位置关系分析圆心的相对位置关系; ●根据动点之间的数量关系分析轨迹圆半径数量关系.
引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
引 例 3 : 如 图 , △ A P Q 是 直 角 三 角 形 , ∠ PA Q = 9 0 ° 且 A P = 2 A Q , 当 P 在 圆 O 运 动 时 , Q 点 轨 迹 是?
初中数学瓜豆原理讲解
初中数学瓜豆原理讲解那么,瓜豆原理的基本意思是什么呢?简单来说,就是把一堆东西分成若干组,然后找出每组的特点,最后合起来得出结论。
就像你去超市买水果,看到一堆瓜和豆,你想知道它们的数量,先数一数瓜,再数豆,最后把这两者的数量相加,得到的就是总数。
这种方法在生活中随处可见,简直是人手一份的“数数游戏”嘛!如果你能把它运用自如,那真是牛逼闪闪了。
说到这里,有朋友可能会问:“这个瓜豆原理有什么用呢?”哎,别急,听我细细道来。
首先,它能帮助我们解决复杂的问题。
比如说,如果你在一个派对上,想知道有多少人来参加,那你可以把人分成不同的组,比如朋友、同学、家人,然后分别统计每组的人数,最后一合计,嘿,真是清清楚楚明明白白!这种方法不仅有效,还能让你在统计时不至于头大得要爆炸。
当然,瓜豆原理还有个“终极技能”,那就是它能帮我们在解决数学题时避免一些小陷阱。
比如说,如果题目问你“有多少种方式可以选出两个人”,如果你硬要一一列举,可能会弄得自己乱七八糟,但如果用瓜豆原理,分组思考,简直事半功倍!想象一下,你和朋友一组、同学一组,这样逐一分开,不久后就能找到答案。
真是个聪明的办法,完全不需要“头痛医头,脚痛医脚”。
而且,瓜豆原理在我们学习数学的过程中,还能培养我们的逻辑思维能力。
就像玩拼图一样,得一步一步把每个碎片拼到一起,才能形成一幅完整的画面。
通过分组、比较、总结,我们不仅能更好地理解题目,还能让数学变得更加有趣,就像在解密一样,脑袋里飞速转动,想到答案的那一刻,简直爽得飞起!那么,大家平时在学习中有没有遇到过瓜豆原理的应用呢?比如在解决一些组合问题时,可能大家都觉得麻烦,其实用瓜豆原理一分组,就会发现那些原本复杂的题目变得轻松许多。
就像面对一道难题,别怕,咱们可以把问题拆开,像剥洋葱一样,慢慢一层一层来,最后就能找到答案,真是乐在其中啊!总之,瓜豆原理就像是数学里的“武林秘籍”,掌握了它,就能在数理的江湖中游刃有余。
最值模型之瓜豆模型(原理)圆弧轨迹型(解析版)
最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】模型1、运动轨迹为圆弧模型1-1. 如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。
模型1-2. 如图,△APQ是直角三角形,∠PAQ=90°且AP=k⋅AQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。
则动点Q是以M为圆心,MQ为半径的圆。
模型1-3. 定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。
(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。
模型1-4. 定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。
2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。
【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
1(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4);Rt△COD中,∠COD=90°,OD=43,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA到E,使得AE=AB,连接OE,CE,根据点A的坐标为(-6,4)得到BE=8,再证明AM是△BCE的中位线,得到AM=12CE;解Rt△COD得到OC=4,进一步求出点C在以O为圆心,半径为4的圆上运动,则当点M在线段OE上时,CE有最小值,即此时AM有最小值,据此求出CE 的最小值,即可得到答案.【详解】解:如图所示,延长BA到E,使得AE=AB,连接OE,CE,∵Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4),∴AB=4,OB=6,∴AE=AB=4,∴BE=8,∵点M为BC中点,点A为BE中点,∴AM是△BCE的中位线,∴AM=12CE;在Rt△COD中,∠COD=90°,OD=43,∠D=30°,∴OC=33OD=4,∵将Rt△COD以点O为旋转中心按顺时针方向旋转,∴点C在以O为圆心,半径为4的圆上运动,∴当点M在线段OE上时,CE有最小值,即此时AM有最小值,∵OE=BE2+OB2=10,∴CE的最小值为10-4=6,∴AM的最小值为3,故选A.另解:取BO 的中点为Q (-3,0),根据中位线可确定MQ =12OC =2,故点M 为以Q 为圆心,MQ 为半径的圆上运动,故AM 的最小值为AQ -MQ =3【点睛】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2(2023·四川广元·统考一模)如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为.【答案】23+1/1+23【分析】作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,由△COP ∽△CED ,推出OP ED =CP CD=2,即ED =12OP =1(定长),由点E 是定点,DE 是定长,点D 在半径为1的⊙E 上,由此即可解决问题.【详解】解:如图,作△COE ,使得∠CEO =90°,∠ECO =60°,则CO =2CE ,OE =23,∠OCP =∠ECD ,∵∠CDP =90°,∠DCP =60°,∴CP =2CD ,∴CO CE =CP CD =2,∴△COP ∽△CED ,∴OP ED =CP CD=2,即ED =12OP =1(定长),∵点E 是定点,DE 是定长,∴点D 在半径为1的⊙E 上,∵OD ≤OE +DE =23+1,∴OD 的最大值为23+1,故答案为:23+1.【点睛】本题考查了相似三角形的判定和性质、两圆的位置关系、轨迹等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.3(2023·四川宜宾·统考中考真题)如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90°得到线段BQ ,连接MQ .若AB =4,MP =1,则MQ 的最小值为.【答案】210-1【分析】连接BM,将BM以B中心,逆时针旋转90°,M点的对应点为E,由P的运动轨迹是以M为圆心,1为半径的半圆,可得:Q的运动轨迹是以E为圆心,1为半径的半圆,再根据“圆外一定点到圆上任一点的距离,在圆心、定点、动点,三点共线时定点与动点之间的距离最短”,所以当M、Q、E三点共线时,MQ 的值最小,可求ME=2BM=210,从而可求解.【详解】解,如图,连接BM,将BM以B中心,逆时针旋转90°,M点的对应点为E,∵P的运动轨迹是以M为圆心,1为半径的半圆,∴Q的运动轨迹是以E为圆心,1为半径的半圆,如图,当M、Q、E三点共线时,MQ的值最小,∵四边形ABCD是正方形,∴CD=AB=BC=4,∠C=90°,∵M是CM的中点,∴CM=2,∴BM=CM2+BC2=22+42=25,由旋转得:BM=BE,∴ME=2BM=210,∴MQ=ME-EQ=210-1,∴MQ的值最小为210-1.故答案:210-1.【点睛】本题考查了正方形的性质,旋转的性质,勾股定理,动点产生的线段最小值问题,掌握相关的性质,根据题意找出动点的运动轨迹是解题的关键.4(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.【答案】11-2/-2+11【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P在AD上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.5(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD< BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【答案】29-2/-2+29【分析】设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,证明∠DFA=90°,可知点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O的交点F 时,线段BF有最小值,据此求解即可.【详解】解:设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,∴当点F运动到OB与⊙O的交点F 时,线段BF有最小值,AD=2,,∵AD=4,∴AO=OF =12∴BO=52+22=29,BF的最小值为29-2,故答案为:29-2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键.6(2023·浙江金华·九年级校考期中)如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为.【答案】3【分析】本题考查了垂径定理,90°的圆周角所对的弦为直径,勾股定理.熟练掌握弦中点,连接圆心与中点,明确点M 的运动轨迹是解题的关键.如图,连接CM ,由垂径定理可得,∠CMA =90°,则M 在以AC 为直径的⊙O 上运动,如图,连接ON 交⊙O 于M ,当O 、M 、N 三点共线时,线段MN 的值最小,由勾股定理得,ON =5,根据线段MN 的最小值为MN =ON -OM ,计算求解即可.【详解】解:如图,连接CM ,∵点M 为线段QP 的中点,∴由垂径定理可得,∠CMA =90°,∴M 在以AC 为直径的⊙O 上运动,如图,连接ON 交⊙O 于M ,∴当O 、M 、N 三点共线时,线段MN 的值最小,∴⊙O 的半径为12AC =2,由勾股定理得,ON =4-0 2+3-0 2=5,∴线段MN 的最小值为MN =ON -OM =3,故答案为:3.7(2023上·江苏连云港·九年级校考阶段练习)已知矩形ABCD ,AB =6,BC =4,P 为矩形ABCD 内一点,且∠BPC =135°,若点P 绕点A 逆时针旋转90°到点Q ,则PQ 的最小值为.【答案】237-4【分析】在矩形ABCD 外,以边BC 为斜边作等腰直角三角形BOC ,∠BOC =90°,再以点O 为圆心,OC 为半径作⊙O ,点P 为矩形ABCD 内一点,且∠BPC =135°,所以点P 在⊙O 的劣弧BC上运动,根据点P 绕点A 逆时针旋转90°到点Q ,所以AP =AQ ,∠PAQ =90°,则PQ =AP 2+AQ 2=2AP ,所以当AP 最小时,pQ 最小,然后连接AO ,交⊙O 于P ,此时,AP 最小,则PQ 也最小,最后过点O 作OE ⊥BC 于E ,OF ⊥AB 交AB 延长线于F ,利用勾股定理求出OA ,OP 的长,从而求得AP ,即可求解.【详解】解:在矩形ABCD 外,以边BC 为斜边作等腰直角三角形BOC ,∠BOC =90°,再以点O 为圆心,OC 为半径作⊙O ,如图,∵点P 为矩形ABCD 内一点,且∠BPC =135°,∴点P 在⊙O 的劣弧BC上运动,∵点P 绕点A 逆时针旋转90°到点Q ,∴AP =AQ ,∠PAQ =90°,∴pQ =AP 2+AQ 2=2AP∴当AP 最小时,pQ ,连接AO ,交⊙O 于P ,此时,AP 最小,则PQ 也最小,在Rt △BOC 中,∵BC =4,OB =OC ,∴OB =OC =22,∴OP =OB =22,过点O 作OE ⊥BC 于E ,OF ⊥AB 交AB 延长线于F ,∴BE =CE =OE =12BC =2,∵OE ⊥BC ,OF ⊥AB ,∴∠OEB =∠OFB =90°∵矩形ABCD ∴∠ABC =90°∴∠EBF =90°∴四边形OEBF 正方形,∴BF =OF =OE =2,∴AF =AB +BF =6+2=8,在Rt △AFO 中,由勾股定理,得OA =AF 2+OF 2=82+22=217,∴AP =OA -OP =217-22∴PQ =2AP =2217-22 =237-4,故答案为:237-4.【点睛】本题考查旋转的性质,等腰直角三角形的性质,圆满的性质,勾股定理,作出辅助圆,得出AP 取最小值的点P 位置是解题的关键.8(2023下·陕西西安·九年级校考阶段练习)问题提出:(1)如图①,在△ABC 中,AB =AC ,∠BAC =120°,BC =43,则AB 的长为;问题探究:(2)如图②,已知矩形ABCD ,AB =4,BC =5,点P 是矩形ABCD 内一点,且满足∠APB =90°,连接CP ,求线段CP 的最小值;问题解决:(3)如图③所示,我市城市绿化工程计划打造一片四边形绿地ABCD ,其中AD ∥BC ,AD =40m ,BC =60m ,点E 为CD 边上一点,且CE :DE =1:2,∠AEB =60°,为了美化环境,要求四边形ABCD 的面积尽可能大,求绿化区域ABCD 面积的最大值.【答案】(1)4;(2)29-2;(3)20003m 2【分析】(1)作AH ⊥BC 于点H ,利用等腰三角形的性质可得∠B =30°,BH =23,然后利用锐角三角函数的知识可求得AB 的长;(2)由题意可知,点P 在以AB 为直径,以AB 的中点O 为圆心的圆上运动,当O ,P ,C 共线时,线段CP 的值最小,利用勾股定理求出OC 的长即可求解;(3)延长AE 、BC ,相交于点F .由△CEF ∽△DEA ,求出CF =20m ,作EG ∥AD 交AB 于点G ,作AN ⊥BC 于点N ,交EG 于点M ,可得MN :AM =1:2,设MN =x ,AM =2x ,求出S 梯形ABCD =154S △BEF,所以当△BEF 的面积最大时,绿化区域ABCD 的面积最大,求出△BEF 的面积即可求解.【详解】(1)如图1,作AH ⊥BC 于点H .∵AB =AC ,∠BAC =120°,BC =43,∴∠B =30°,BH =12BC =23.∵cos B =BH AB,∴AB =2332=4.故答案为:4;(2)如图2,∵∠APB =90°,∴点P 在以AB 为直径,以AB 的中点O 为圆心的圆上运动,当O ,P ,C 共线时,线段CP 的值最小.∵AB =4,∴OB =12AB =2,∴OC =52+22=29,∴段CP 的值最小值=29-2;(3)如图3,延长AE 、BC ,相交于点F .∵AD ∥BC ,∴△CEF ∽△DEA ,∴CF AD=CEDE ,∵CE :DE =1:2,AD =40m ,∴CF =20m ,∴BF =60+20=80m .作EG ∥AD 交AB 于点G ,作AN ⊥BC 于点N ,交EG 于点M ,∵AD ∥BC ,∴AD ∥EG ∥BC ,∵CE :DE =1:2,∴MN :AM =1:2,设MN =x ,AM =2x ,则S 梯形ABCD =12×40+60 ⋅3x =150x ,S △BEF =12×80⋅x =40x ,∴S 梯形ABCD =154S △BEF,∴当△BEF 的面积最大时,绿化区域ABCD 的面积最大.当E 在BF的中点时,△BEF 的面积最大.连接BE ,FE ,OE ,OE 交BF 于点H ,则BH =FH =12BF =40m .∵∠AEB=60°,∴∠BE F=∠BEF=120°,∴∠E BH=30°.∵tan30°=E HBH,∴E H=33×40=4033m,∴S△BE F =12×80×4033=160033m2,∴S梯形ABCD=154S△BEF=20003m2.【点睛】本题考查了等腰三角形的性质,解直角三角形,垂径定理,圆周角定理,相似三角形的判定与性质,勾股定理等知识,难度较大,属中考压轴题.课后专项训练1(2023·安徽合肥·校考一模)如图,在△ABC中,∠B=45°,AC=2,以AC为边作等腰直角△ACD,连BD,则BD的最大值是()A.10-2B.10+3C.22D.10+2【答案】D【分析】如图所示,以AC为斜边,在AC右侧作等腰直角△AOC,过点O作OE⊥AD交DA延长线于E,连接OD,则∠AOC=90°,OC=OA=2,∠OAC=45°,先证明点B在以O为圆心,2为半径的圆周上运动(AB右侧),故当点O在线段BD上时,BD最大,再求出OE,DE的长,进而利用勾股定理求出OD的长即可得到答案.【详解】解:如图所示,以AC为斜边,在AC右侧作等腰直角△AOC,过点O作OE⊥AD交DA延长线于E,连接OD,∴∠AOC=90°,OC=OA=22AC=2,∠OAC=45°,∵∠ABC=45°,∴点B在以O为圆心,2为半径的圆周上运动(AB右侧),∴当点O在线段BD上时,BD最大,∵△ACD是以AC为边的等腰直角三角形,∴∠CAD=90°,AD=AC=2,∴∠OAE=45°,∴△AOE是等腰直角三角形,∴AE=OE=22OA=1,∴DE=AE+AD=3,在Rt△DOE中,由勾股定理得OD=OE2+DE2= 10,∴BD的最大值=DO+BO=10+2,故选D.【点睛】不能退主要考查了圆外一点到圆上一点距离的最大值问题,勾股定理,等腰直角三角形的性质与判定,正确作出辅助线确定点B的轨迹是解题的关键.2(2023春·广东·九年级专题练习)已知:如图,在△ABC中,∠BAC=30°,BC=4,△ABC面积的最大值是( ).A.8+43B.83+4C.83D.8+83【答案】A【分析】作△ABC 的外接圆⊙O ,连接OB ,OC ,当△ABC 的BC 边上的高经过点O 时,△ABC 面积的最大,此时△OBC 是等边三角形,进而即可求解.【详解】解:作△ABC 的外接圆⊙O ,连接OB ,OC ,当△ABC 的BC 边上的高经过点O 时,△ABC 面积的最大,如图,过点O 作OD ⊥BC ,并延长DO 交⊙O 于点A ,连接A B ,A C ,∵∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠BOD =30°,OB =OA =BC =4,∴OD =23,∴S △ABC =12×4×4+23 =8+43,故选A .【点睛】本题主要考查圆周角定理,等边三角形的判定和性质,勾股定理,找出△ABC 面积的最大时点A 的位置时关键.3(2022秋·江苏扬州·九年级校考阶段练习)如图,A 是⊙B 上任意一点,点C 在⊙B 外,已知AB =2,BC =4,△ACD 是等边三角形,则△BCD 的面积的最大值为()A.43+4B.4C.43+8D.6【答案】A【分析】以BC 为边向上作等边三角形BCM ,连接DM ,证明△DCM ≌△ACB 得到DM =AB =2,分析出点D 的运动轨迹是以点M 为圆心,DM 长为半径的圆,在求出点D 到线段BC 的最大距离,即可求出面积的最大值.【详解】解:如图,以BC 为边向上作等边三角形BCM ,连接DM,∵∠DCA =∠MCB =60°,∴∠DCA -∠ACM =∠MCB -∠ACM ,即∠DCM =∠ACB ,在△DCM 和△ACB 中,DC =AC∠DCM =∠ACB MC =BC,∴△DCM ≌△ACB SAS ,∴DM =AB =2,∴点D 的运动轨迹是以点M 为圆心,DM 长为半径的圆,要使△BCD 的面积最大,则求出点D 到线段BC 的最大距离,∵△BCM 是边长为4的等边三角形,∴点M 到BC 的距离为23,∴点D 到BC 的最大距离为23+2,∴△BCD 的面积最大值是12×4×23+2 =43+4,故选A .【点睛】本题考查了动点轨迹是圆的问题,解决本题的关键是利用构造全等三角形找到动点D 的轨迹圆,再求出圆上一点到定线段距离的最大值.4(2023·山东济南·一模)正方形ABCD 中,AB =4,点E 、F 分别是CD 、BC 边上的动点,且始终满足DE =CF ,DF 、AE 相交于点G .以AG 为斜边在AG 下方作等腰直角△AHG 使得∠AHG =90°,连接BH .则BH 的最小值为()A.25-2B.25+2C.10-2D.10+2【答案】C 【分析】首先证明∠AGD =90°,从而OG =12AD =2,再根据∠OAG =∠HAM ,可求MH =2,可知点H 的运动轨迹为以点M 为圆心,MH 为半径的圆,从而可求BH 最小值.【详解】解:如图,取AD 中点O ,连接OG ,以AO 为斜边作等腰直角三角形AOM ,则AM =22AO =2,在△ADE 和△DCF 中,AD =CD∠ADE =∠DCF DE =CF,∴△ADE ≌△DCF (SAS ),∴∠DAG =∠CDF ,∵∠ADG +∠CDF =90°,∴∠ADG +∠DAG =90°,∴∠AGD =90°,△ADG 是直角三角形,∴OG =12AD =2,∵△AHG 为等腰直角三角形,∴∠OAG +∠GAM =∠HAM +∠GAM ,∴∠OAG =∠HAM ,又∵AH AG =MA OA=22,∴△AMH ∽△AOG ,∴MH OG =22,∴MH =2,∴点H 的运动轨迹为以点M 为圆心,MH 为半径的圆,如图,连接BM ,交圆M 于H ,过点M 作MP ⊥AB 于点P ,∵∠DAE +∠BAH =45°,∠OAG =∠MAH ,∴∠PAM =∠MAH +∠BAH =45°,∴△APM 为等腰直角三角形,∵AM =2,∴AP =MP =22×2=1,∴BP =4-1=3,在Rt △BPM 中,BM =BP 2+PM 2=10,∴BH =BM -MH =10-2.∴BH 的最小值为10-2.故选:C .【点睛】本题考查最短路径问题,解题的关键是准确构造辅助线,利用三角形相似以及点和圆的知识解决.5(2023上·江苏连云港·九年级统考期中)如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与点B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,连接CM ,则CM 的最小值为.【答案】2【分析】本题考查圆外一点到圆上一点的最值,轴对称的性质,矩形的性质.连接AM ,得到AM =AB =3,进而得到点M 在以点A 为圆心,3为半径的圆上,当A ,M ,C 三点共线时,线段CM 的长度最小,求出此时CM 的长度即可.解题的关键是确定点M 的运动轨迹.【详解】解:连接AM ,∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵AC =32+42=5,AM =AB =3,∴CM =5-3=2,故答案为:2.6(2023春·广东深圳·九年级专题练习)如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形,若BC=3,则FG的最大值为.【答案】23【分析】如图,作△BFC的外接圆⊙O,连接OG,OF,OC,过点O作OH⊥CF于点H.说明B,F,C,G 四点共圆,求出OF,利用三角形三边关系可得结论.【详解】解:如图,作△BFC的外接圆⊙O,连接OG,OF,OC,过点O作OH⊥CF于点H.∵△BCF是等边三角形,∴∠BFC=∠FBC=60°,CB=CF=3,∵∠BGC=120°,∴点G在△BCF的外接圆上,∴OG=OF=OC,∵OH⊥CF,∴FH=CH=32,∵∠FOC=2∠FBC=120°,∴∠OFC=∠OCF=30°,∴OF=FH=3,cos30°∵FG≤OF+OG=23,∴FG的最大值为23.故答案为:23.【点睛】本题考查等边三角形的性质,解直角三角形,圆的有关知识等知识,解题的关键是学会添加常用辅助线,构造辅助圆解决问题,属于中考常考题型.7(2023·江苏泰州·九年级专题练习)如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180°,则线段DE的最大值为.【答案】13+41/41+13【分析】以BP 的中点O 为圆心,OB 为半径画圆,可得所画圆是Rt △BCP 的外接圆,弦BC 右侧圆弧上任意一点E 与BC 构成的∠BEC ,使得四边形BPCE 是圆内接四边形,,可得∠BEC +∠BPC =180°,连接DO 并延长与圆的交点即为DE 的最长距离,作OH ⊥DC 于点H ,OH 是△PBC 的中位线,,根据勾股定理求出OP 和OD 的值,进而可得DE 的最大值.【详解】解:如图,以BP 的中点O 为圆心,OB 为半径画圆,在矩形ABCD 中,AD =BC =10,AB =CD =16,,∵∠BCP =90°,∴所画圆是Rt △BCP 的外接圆,弦BC 右侧圆弧上任意一点E 与BC 构成的∠BEC ,使得四边形BPCE 是圆内接四边形,∴∠BEC +∠BPC =180°,连接DO 并延长与圆的交点即为DE 的最长距离,作OH ⊥DC 于点H ,∴H 是PC 的中点,∴OH 是△PBC 的中位线,∴OH =12BC =5,∵P 为CD 的中点,∴CP =DP =12CD =8,∴PH =12CP =4,∴DH =DP +PH =8+4=12,∴OP =OH 2+PH 2=52+42=41,∴OE =OP =41,∵OD =DH 2+OH 2=122+52=13,∴DE =OD +OE =13+41.故答案为:13+41【点睛】本题考查了矩形的性质,勾股定理,三角形中位线定理,圆周角定理,最短路线问题,解决本题的关键是综合利用以上知识找到点E .8(2023·陕西渭南·三模)如图,在矩形ABCD 中,AB =6,BC =5,点E 在BC 上,且CE =4BE ,点M 为矩形内一动点,使得∠CME =45°,连接AM ,则线段AM 的最小值为.【答案】5-22##-22+5【分析】作△ECM 的外接圆⊙O ,得到点M 的轨迹是矩形内以O 为圆心,OE 为半径的⊙O ,连接OA 、OE 、OC ,OA 交⊙O 于M ,分析得到当M 与M 重合时,AM 取得最小值.分别过点O 作OH ⊥EC 于点H ,过点O 作OG ⊥AB 于点G ,根据圆的性质和矩形的性质即可求解.【详解】∵BC =5,CE =4BE ∴CE =4,如图,作△ECM 的外接圆⊙O ,点M 的轨迹是矩形内以O 为圆心,OE 为半径的⊙O ,连接OA 、OE 、OC ,OA 交⊙O 于M ,当M与M 重合时,AM取得最小值.过点O作OH⊥EC于点H,∵∠CME=45°∴∠EOC=90°,∴OM =OE=OC=22,OH=EH=CH=2,过点O作OG⊥AB于点G,∴BG=OH=2,OG=BH=BE+EH=3,AG=6-2=4,∴OA=AG2+OG2=5,则AM =OA-OM =5-22.故答案为:5-22.【点睛】本题考查动点问题.涉及圆的性质、矩形的性质和勾股定理.解题的关键是找到点M的轨迹.9(2023江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是.【答案】63-4【分析】过点F作GF∥CD,过点C作GC∥DF,二线交于点G,根据平行四边形的性质,得到点F在以G 为圆心,以CD长为半径的圆上,利用圆的性质,确定最小值即可.【详解】如图,过点F作GF∥CD,过点C作GC∥DF,二线交于点G,∴四边形DFGC是平行四边形,∴GF=CD=4,∴点F在以G为圆心,以CD长为半径的圆上,∴当A、F、G三点共线时,AF最小,∵四边形DFGC是平行四边形,四边形ABFD是平行四边形,∴AB∥DF∥CG,AB=DF=CG,∴四边形ABGC是平行四边形,∵AB=AC,∴四边形ABGC是菱形,∴AG,BC互相垂直平分,设交点为H,∵△ABC是等边三角形,∴∠ABC=60°,∴AH=AB sin60°=33,∴AG=2AH=63,∴AF=AG-FG=63-4故答案为:63-4.【点睛】本题考查了等边三角形的性质,平行四边形的判定和性质,菱形的判定和性质,圆的最值性,特殊角的三角函数值,熟练菱形的判定和性质,圆的性质是解题的关键.10(2023秋·湖北武汉·九年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°,AB= AC=22,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为.【答案】25-2/-2+25【分析】延长AE 交BD 于点F ,根据平行四边形的性质可得AE ∥CD ,可得∠AFB =∠BDC =90°,可以证明△AFB ≌△DFE ,可得∠AEB =135°,点E 的运动轨迹为圆的运动轨迹,假设点E 所在圆的圆心为M ,连接MB ,MA ,MC ,MC 与⊙M 交于点E ,根据圆外的点到圆上的点的距离最值可得,CE 即为CE 的最小值,利用勾股定理可得CM 的值,进而可得CE 的最小值.【详解】如图,延长AE 交BD 于点F ,连接BE ,∵四边形ACDE 是平行四边形,∴AE ∥CD ,AC =ED ,∠EAC =∠CDE ,∵∠BAC =90°,AB =AC =22,∠BDC =90°,∴ED =AB =AC =22,∠BAF +∠CAE =90°,∠CDE +∠EDF =90°,∠AFB =∠CDB =∠DFE =90°,∴∠BAF =∠EDF ,∠ABC =∠ACB =45°,BC =2AC =2×22=4,在△AFB 和△DFE 中,∠BAF =∠EDF∠AFB =∠DFE AB =DE,∴△AFB ≌△DFE AAS ,∴BF =EF ,∴∠BEF =45°,∴∠AEB =135°,∴点E 的运动轨迹为圆的运动轨迹,假设点E 所在圆的圆心为M ,连接MB ,MA ,MC ,MC 与⊙M 交于点E ,则根据圆外的点到圆上的点的距离最值可得:CE 即为CE 的最小值,如图,∴∠AMB =90°,∵AM =BM ,AB =22,∴∠MBA =45,BM =22AB =22×22=2,∴∠MBC =∠MBA +∠ABC =90°,在Rt △MBC 中,有勾股定理得:MC =MB 2+BC 2=22+42=25,∴CE =CM -ME =25-2,即CE 的最小值为:25-2,故答案为:25-2.【点睛】此题考查了平行四边形的性质、全等三角形的判定与性质、矩形的判定与性质、勾股定理、最短路径问题、等腰直角三角形的性质,解题的关键是综合运用以上知识.11(2023·福建泉州·统考模拟预测)如图,点E 是正方形ABCD 的内部一个动点(含边界),且AD =EB =8,点F 在BE 上,BF =2,则以下结论:①CF 的最小值为6;②DE 的最小值为82-8;③CE =CF ;④DE +CF 的最小值为10;正确的是.【答案】①②④【分析】由题意可得点E 在以B 为圆心,8为半径的圆上运动,点F 在以B 为圆心,2为半径的圆上运动,则当点F 在BC 上时,CF 有最小值为6,当点E 在BD 上时,DE 有最小值为82-8,故①②正确;由“SAS ”可证△BGE ≌△BFC ,可得CF =EG ,则当E ,G ,D 三点共线时,DE +CF 取得最小值,最小值为DG 的长,由勾股定理可求DG 的长,可判断④正确;即可求解.【详解】解:在BC 上截取BG =BF ,连接BE ,CE ,BD ,如图所示:∵四边形ABCD 是正方形,AD =8,∴BC =AD =8,BD =82,∵BF =BG =2,∴CG =BC -BG =6,∵EB =8,BF =2,∴点E 在以B 为圆心,8为半径的圆上运动,点F 在以B 为圆心,2为半径的圆上运动,∴当点F 在BC 上时,CF 有最小值为6,当点E 在BD 上时,DE 有最小值为82-8,故①②正确;在△BGE 和△BFC 中,BG =BF∠EBG =∠CBF BE =BC,∴△BGE ≌△BFC SAS ,∴CF =EG ,当E ,G ,D 三点共线时,DE +CF 取得最小值,最小值为DG 的长,∴DG =CD 2+CG 2=64+36=10,∴故DE +CF 的最小值为10,故④正确;当点F 在BC 上时,CF 有最小值为6,此时CE =0,∴CE 与CF 不一定相等,故③不一定正确;故答案为:①②④.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理,点与圆上点距离最值问题等知识,灵活运用这些性质解决问题是解题的关键.12(2021·广东·中考真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D 为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为.【答案】5-2【分析】由已知∠ADB =45°,AB =2,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO -OD .【详解】如图:以12AB 为半径作圆,过圆心O 作ON ⊥AB ,OM ⊥BC ,以O 为圆心OB 为半径作圆,则点D 在圆O 上,∵∠ADB =45°∴∠AOB =90°∵AB =2AN =BN =1∴AO =12+12=2∵ON=OM=1AB=1,BC=3∴OC=12+(3-1)2=52∴CO-OD=5-2线段CD长度的最小值为:5-2.故答案为:5-2.【点睛】本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.13(2023·广东·深圳市二模)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE 中点,G为DE上一点,BF=FG,则CG的最小值为.【答案】13-2【分析】如图1,连接AG,先证明AF=FG=EF,则∠AGE=∠AGD=90°;再根据圆周角定理可可得点G 在以AD为直径的圆上运动,取AD的中点O,当O、G、C三点共线时,CG的值最小;连接OG,由圆的性质可得OD=OG=2,再用勾股定理求得OC的长,即可求得CG的长.【详解】解:如图1,连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠ADC=90°,DC=AB=3,∵F是AE的中点,∴BF=1AE=AF=EF,2∵BF=FG,∴AF=FG=EF,∴∠AGE=∠AGD=90°,∴点G在以AD为直径的圆上运动,取AD的中点O,如图2:当O,G,C三点共线时,CG的值最小,连接OG,∴OD=OG=2,∴OC=22+32=13,∴CG的最小值为13-2,故答案为:13-2.【点睛】本题主要考查旋转的性质、矩形的性质、圆周角定理、线段的性质等知识点,正确添加常用辅助线、构造动点G的轨迹成为解答本题的关键.14(2023秋·广东汕头·九年级校考期中)如下图,在正方形ABCD中,AB=6,点E是以BC为直径的圆上的点,连接DE,将线段DE绕点D逆时针旋转90°,得到线段DF,连接CF,则线段CF的最大值与最小值的和.【答案】65【分析】连接EO、DO,将DO绕点D逆时针旋转90°,得到线段DP,连接PF,PC,根据旋转的性质得出△EDO≌△FDP,进而可得点F在以P为圆心,3为半径的圆上运动,则线段CF的最大值与最小值的和为PC-3+PC+3=2PC,进而勾股定理求得PC的长,即可求解.【详解】解:如图所示,连接EO、DO,将DO绕点D逆时针旋转90°,得到线段DP,连接PF,PC,∵线段DE绕点D逆时针旋转90°,DO绕点D逆时针旋转90°,∴DE=DF,DO=DP,∠EDF=∠ODP=90°,∴∠EDO+∠ODF=∠ODF+∠FDP,∴∠EDO=∠FDP,∴△EDO≌△FDP∴PF=OE=12BC=3则点F在以P为圆心,3为半径的圆上运动,∴线段CF的最大值与最小值的和为PC-3+PC+3=2PC在Rt△ODC中,OC=3,CD=6∴DP=OD=32+62=35,如图所示,过点P作PH⊥AD交AD的延长线于点H,过点P作PG⊥CD于点G,则四边形DGPH是矩形,∴PG=DH,在Rt△HDP与Rt△CDO中,DP=DO HP=OC,∴Rt△HDP≌Rt△CDO∴DH=DC=GP=6,DG=HP=3,在Rt△PGC中,PC=GC2+PG2=35,∴线段CF的最大值与最小值的和为65,故答案为:65.【点睛】本题考查了全等三角形的性质与判定,旋转的性质,求一点到圆上的距离的最值,熟练掌握旋转的性质是解题的关键.15(2023·陕西渭南·统考一模)如图,在矩形ABCD中,AB=2,BC=4,Q是矩形ABCD左侧一点,连接AQ 、BQ ,且∠AQB =90°,连接DQ ,E 为DQ 的中点,连接CE ,则CE 的最大值为.【答案】3【分析】延长DC 至F ,使CD =CF ,连接FQ ,点O 为AB 的中点,以点O 为圆心,AB 为直径作圆,连接FO ,FO 延长线交⊙O 于点Q ,交BC 于点G ,连接DQ ;由∠AQB =90°且点Q 在矩形的左侧知,点Q 是在AOB上运动,由题意及辅助线作法知,CE 为△DQF 的中位线,则FQ ≤FO +OQ ,当F 、O 、Q 三点共线时,FQ 最长,最大值为FQ 的长度;利用相似三角形的性质可求得BG 、CG 的长,从而求得OG 、FG ,最后求出FO 的长,从而可求得CE 的最大值.【详解】如图,延长DC 至F ,使CD =CF ,连接FQ ,点O 为AB 的中点,以点O 为圆心,AB 为直径作圆,连接FO ,FO 延长线交⊙O 于点Q ,交BC 于点G ,连接DQ ,∵AB =2,∠AQB =90°,∴点Q 是在以点O 为圆心,AB 为直径的圆上运动,∵Q 是矩形ABCD 左侧一点,∴点Q 是在AOB 上运动,∵CD =CF ,∴点C 为DF 的中点,∵点E 为DQ 的中点,∴CE 为△DQF 的中位线,∴CE =12FQ ,∵FQ ≤FO +OQ ,∴当F 、O 、Q 三点共线时,FQ 最长,此时FQ 的最大值为FQ 的长度,∵AB =2,∴OQ =OA =OB =1,∵四边形ABCD 为矩形,AB =2,BC =4,∴AB =CD =2,AD =BC =4,AB ∥CD ,∠ABC =90°,∴CF =CD =2,∵AB ∥DF ,∴△OBG ∽△FCG ,∴OG FG =BG CG =OB CF=12,∴FG =2OG ,CG =2BG ,设BG =x ,则CG =2x ,∴x +2x =4,解得:x =43,∴BG =43,CG =83,在Rt △OBG 中,由勾股定理得OG =OB 2+BG 2=12+43 2=53,∴FG =2OG =103,∴FQ =OQ +OG +FG =1+53+103=6,∴CE 最大=12FQ =3.故答案为:3.【点睛】本题考查了矩形的性质,三角形中位线定理,相似三角形的判定与性质,勾股定理,圆的基本知识,确定出点Q 的运动路径、求CE 的最大值转化为求FQ 的最大值是解题的关键与难点.16(2023·安徽亳州·统考模拟预测)等腰直角△ABC 中,BAC =90°,AB =5,点D 是平面内一点,AD =2,连接BD ,将BD 绕D 点逆时针旋转90°得到DE ,连接AE ,当DAB =(填度数)度时,AE 可以。
初中几何模型与解法--瓜豆原理
初中几何模型与解法——瓜豆原理例1、如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O 上运动时,Q点轨迹是什么?点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?【分析】考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,根据三角形的中位线性质,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P共线可得:A、M、O三点共线,由Q 为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.例2、如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P 在圆O上运动时,Q点轨迹是?Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.例3、如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型要素】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.【条件】两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.思考1如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠PAQ=45°;(2)AP:AQ=根号2:1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM=根号2:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.真题战场1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.2.如图,在等腰Rt△ABC中,AC=BC=2倍根号2,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.3.如图,正方形ABCD中,AB=2倍根号5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.4.△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.【真题解析】1.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.2.【分析】考虑C、M、P共线及M是CP中点,可确定M点轨迹:取AB中点O,连接CO取CO中点D,以D为圆心,DM为半径作圆D分别交AC、BC于E、F两点,则弧EF即为M点轨迹.当然,若能理解M点与P点轨迹关系,可直接得到M点的轨迹长为P点轨迹长一半,即可解决问题.3.【分析】E是主动点,F是从动点,D是定点,E点满足EO=2,故E点轨迹是以O为圆心,2为半径的圆.考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.4.【分析】考虑到AB、AC均为定值,可以固定其中一个,比如固定AB,将AC看成动线段,由此引发正方形BCED的变化,求得线段AO的最大值.根据AC=2,可得C点轨迹是以点A为圆心,2为半径的圆.接下来题目求AO的最大值,所以确定O点轨迹即可,观察△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等腰直角三角形,直角顶点M即为点O轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以根据——等边共顶点,构造旋转型全等,如下构造旋转,当A、C、A’共线时,可得AO最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 / 19
Q
A
P
O
【分析】Q 点满足(1)∠PAQ=45°;(2)AP:AQ= 2 :1,故 Q 点轨迹是个圆. 连接 AO,构造∠OAM=45°且 AO:AM= 2 :1.M 点即为 Q 点轨迹圆圆心,此时任意时 刻均有△AOP∽△AMQ.即可确定点 Q 的轨迹圆.
Q
M
P
A
O
【练习】如图,点 P(3,4),圆 P 半径为 2,A(2.8,0),B(5.6,0),点 M 是圆 P 上的 动点,点 C 是 MB 的中点,则 AC 的最小值是_______.
引例 2:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,作 AQ⊥AP 且 AQ=AP. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
Q
A
P
O
【分析】Q 点轨迹是个圆,可理解为将 AP 绕点 A 逆时针旋转 90°得 AQ,故 Q 点轨迹 与 P 点轨迹都是圆.接下来确定圆心与半径.
P F
E
B
D
C
【分析】根据△DPF 是等边三角形,所以可知 F 点运动路径长与 P 点相同,P 从 E 点
运动到 A 点路径长为 8,故此题答案为 8.
13 / 19
【2013 湖州中考】如图,已知点 A 是第一象限内横坐标为 2 3 的一个定点,AC ⊥x 轴于点 M,交直线 y=-x 于点 N,若点 P 是线段 ON 上的一个动点,∠APB=30°,
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
【思考 1】:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,以 AP 为一边作等边△APQ. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
4 / 19
Q
A
P
O
【分析】 Q 点满足(1)∠PAQ=60°;(2)AP=AQ,故 Q 点轨迹是个圆: 考虑∠PAQ=60°,可得 Q 点轨迹圆圆心 M 满足∠MAO=60°; 考虑 AP=AQ,可得 Q 点轨迹圆圆心 M 满足 AM=AO,且可得半径 MQ=PO. 即可确定圆 M 位置,任意时刻均有△APO≌△AQM.
利用两点间距离公式求得 OA,再减去 OC 即可.
y
P
M
O
C
O
A
B
x
【2016 武汉中考】如图,在等腰 Rt△ABC 中,AC=BC= 2 2 ,点 P 在以斜边 AB 为直径
的半圆上,M 为 PC 的中点,当半圆从点 A 运动至点 B 时,点 M 运动的路径长为________.
P A
M
C
B
【分析】考虑 C、M、P 共线及 M 是 CP 中点,可确定 M 点轨迹: 取 AB 中点 O,连接 CO 取 CO 中点 D,以 D 为圆心,DM 为半径作圆 D 分别 交 AC、BC 于 E、F 两点,则弧 EF 即为 M 点轨迹.
1 / 19
P Q
A
M
O
【小结】确定 Q 点轨迹圆即确定其圆心与半径, 由 A、Q、P 始终共线可得:A、M、O 三点共线, 由 Q 为 AP 中点可得:AM=1/2AO. Q 点轨迹相当于是 P 点轨迹成比例缩放.
根据动点之间的相对位置关系分析圆心的相对位置关系; 根据动点之间的数量关系分析轨迹圆半径数量关系.
段长,再利用勾股定理求得 OM,减去 MF 即可得到 OF 的最小值.
A
D
E
B
O
C
F
M
【练习】△ABC 中,AB=4,AC=2,以 BC 为边在△ABC 外作正方形 BCDE,BD、CE 交于点 O,则线段 AO 的最大值为_____________.
A
B
C
O
E
D
【分析】考虑到 AB、AC 均为定值,可以固定其中一个,比如固定 AB,将 AC
直线上运动,故可知 P 点轨迹也是直线.
取两特殊时刻:(1)当点 B 与点 O 重合时,作出 P 点位置 P1;(2)当点 B 在
x 轴上方且 AB 与 x 轴夹角为 60°时,作出 P 点位置 P2.连接 P1P2,即为 P 点
14 / 19
轨迹.
y B
O A
P2 x
P1
根据∠ABP=60°可知:P1P2 与 y 轴夹角为 60°,作 OP⊥ P1P2 ,所得 OP 长度即为 最小值,OP2=OA=3,所以 OP= 3 .
9 / 19
看成动线段,由此引发正方形 BCED 的变化,求得线段 AO 的最大值.
根据 AC=2,可得 C 点轨迹是以点 A 为圆心,2 为半径的圆.
A B
C
O
E
D
接下来题目求 AO 的最大值,所以确定 O 点轨迹即可,观察△BOC 是等腰直角
三角形,锐角顶点 C 的轨迹是以点 A 为圆心,2 为半径的圆,所以 O 点轨迹也
Q
M
60° A
P O
【小结】可以理解 AQ 由 AP 旋转得来,故圆 M 亦由圆 O 旋转得来,旋转角度与缩放 比例均等于 AP 与 AQ 的位置和数量关系.
【思考 2】如图,P 是圆 O 上一个动点,A 为定点,连接 AP,以 AP 为斜边作等腰直 角△APQ. 考虑:当点 P 在圆 O 上运动时,如何作出 Q 点轨迹?
3 / 19
此类问题的必要条件:两个定量 主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP:AQ 是定值).
Q
α A
P O
Q M
α Aα
P O
【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠PAQ=∠OAM; (2)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP:AQ=AO:AM,也等于两圆半径之比. 按以上两点即可确定从动点轨迹圆,Q 与 P 的关系相当于旋转+伸缩.
11 / 19
可以这样理解:分别过 A、Q 向 BC 作垂线,垂足分别为 M、N,在运动过程 中,因为 AP=2AQ,所以 QN 始终为 AM 的一半,即 Q 点到 BC 的距离是定值, 故 Q 点轨迹是一条直线.
A
Q
BP
NM
C
【引例】如图,△APQ 是等腰直角三角形,∠PAQ=90°且 AP=AQ,当点 P 在直
Q P
A
O
【分析】考虑 AP⊥AQ,可得 Q 点轨迹圆圆心 M 满足 AM⊥AO; 考虑 AP:AQ=2:1,可得 Q 点轨迹圆圆心 M 满足 AO:AM=2:1. 即可确定圆 M 位置,任意时刻均有△APO∽△AQM,且相似比为 2.
M Q
A
P O
【模型总结】 为了便于区分动点 P、Q,可称点 P 为“主动点”,点 Q 为“从动点”.
一、轨迹之圆篇 引例 1:如图,P 是圆 O 上一个动点,A 为定点,连接 AP,Q 为 AP 中点. 考虑:当点 P 在圆 O 上运动时,Q 点轨迹是?
A
Q
P
O
【分析】观察动图可知点 Q 轨迹是个圆,而我们还需确定的是此圆与圆 O 有什么关系?
考虑到 Q 点始终为 AP 中点,连接 AO,取 AO 中点 M,则 M 点即为 Q 点轨迹圆圆心, 半径 MQ 是 OP 一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
考虑 AP⊥AQ,可得 Q 点轨迹圆圆心 M 满足 AM⊥AO; 考虑 AP=AQ,可得 Q 点轨迹圆圆心 M 满足 AM=AO,且可得半径 MQ=PO.
2 / 19
即可确定圆 M 位置,任意时刻均有△APO≌△AQM.
M Q
P
A
O
引例 3:如图,△APQ 是直角三角形,∠PAQ=90°且 AP=2AQ,当 P 在圆 O 运动时,Q 点轨迹是?
2
y B
O A
P
P1
P2 x
【2019 宿迁中考】如图,正方形 ABCD 的边长为 4,E 为 BC 上一点,且 BE=1,F 为
AB 边上的一个动点,连接 EF,以 EF 为边向右侧作等边△EFG,连接 CG,则 CG 的
最小值为 .
A
D
F
G
B
E
C
【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求 CG 最小值, 可以将 F 点看成是由点 B 向点 A 运动,由此作出 G 点轨迹:
初中数学解题模型专题讲解 专题 42 最值系列之瓜豆原理
在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹, 即可求出关于动点的最值.
本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点 P, 但最终问题问的可以是另一点 Q,当然 P、Q 之间存在某种联系,从 P 点出发探讨 Q 点运动轨迹并求出最值,为常规思路.
7 / 19
P A
M
E
O
D
C
F
B
当然,若能理解 M 点与 P 点轨迹关系,可直接得到 M 点的轨迹长为 P 点轨迹
长一半,即可解决问题.
【2018 南通中考】如图,正方形 ABCD 中, AB = 2 5 ,O 是 BC 边的中点,点 E 是正方形内一动点,OE=2,连接 DE,将线段 DE 绕点 D 逆时针旋转 90°得 DF,连接 AE、CF.求线段 OF 长的最小值.
是圆,以 AB 为斜边构造等腰直角三角形,直角顶点 M 即为点 O 轨迹圆圆心.
A
B
C
M
O
E
D
连接 AM 并延长与圆 M 交点即为所求的点 O,此时 AO 最大,根据 AB 先求 AM, 再根据 BC 与 BO 的比值可得圆 M 的半径与圆 A 半径的比值,得到 MO,相加 即得 AO.
10 / 19