相交线与平行线典型例题.docx
(完整)人教版七年级下数学第五章-相交线与平行线典型例题.docx
第五章相交线与平行考点四:同位角、内错角、同旁内角的识别考点一:相关推理例题 1:如图2-44 ,∠ 1 和∠ 4 是 AB 、被 所截得的角,∠ 3 和∠ 5 是( 1)∵ a ∥c , b ∥ c (已知) ∴ ______ ∥ ______() 被 所截得的角,∠ 2 和∠ 5 是 、被所截得的( 2)∵∠ 1=∠ 2,∠ 2= ∠ 3(已知)∴______ =______ ()AC 、 BC 被 AB 所截得的同旁内角是.( 3)∵∠ 1+∠ 2=180°,∠ 2=30°(已知)∴∠ 1=______ () 如图 2-45 , AB 、DC 被 BD 所截得的内错角是, AB 、 CD 被 AC 所截是的内错角是( 4)∵∠ 1+∠ 2=90°,∠ 2=22°(已知)∴∠ 1=______ ( ) AD 、 BC 被 BD 所截得的内错角是,AD 、 BC 被 AC 所截得的内错角是。
( 5)如图( 1),∵∠ AOC=55 °(已知)∴∠ BOD=______ ( ) ( 6)如图( 1),∵∠ AOC=55 °(已知) ∴∠ BOC=______ ( )( 7)如图( 1),∵∠ AOC=1∠ AOD ,∠ AOC+ ∠AOD=180 °(已知)2∴∠ BOC=______ ()例题 3:如图1- 26 所示. AE ∥ BD ,∠ 1=3∠2,∠ 2=25°,求∠ C .ba考点五:平行线的判定、性质的综合应用(逻辑推理训练)11a例题 1:如图 9, 已知 DF ∥ AC,∠ C=∠ D, 要证∠ AMB=∠ 2, 请完善证明过程 ,?43ACBb并在括号内填上相应依据 :2( 1)( 2)( 3)( 4)证明:∵ DF ∥ AC(已知 ),D EF( 8)如图( 2),∵ a ⊥ b (已知) ∴∠ 1=______ () ∴∠ D= ()2N( 9)如图( 2),∵∠ 1=______ (已知)∴ a ⊥b ()M∵∠ C=∠ D1A( 10)如图( 3),∵点 C 为线段 AB 的中点 ∴ AC=______()∴∠ 1=∠ C( ?)B C(11) 如图( 3),∵ AC=BC ∴点 C 为线段 AB 的中点()(9)( 12)如图( 4),∵ a ∥ b (已知)∴∠ 1=∠2() ∴ DB ∥EC()( 13)如图( 4),∵ a ∥ b (已知)∴∠ 1=∠3()∴∠ AMB=∠ 2( )( 14)如图( 4),∵ a ∥ b (已知)∴∠ 1+∠4=()( 15)如图( 4),∵∠ 1=∠ 2(已知) ∴ a ∥b ( ) 例题 2,如图, EF ∥ AD ,∠ 1 =∠ 2 ,BAC ∠ = 70 °,将求∠ AGD 的过程填写完整,( 16)如图( 4),∵∠ 1=∠ 3(已知)∴ a ∥b ()( 17)如图( 4),∵∠ 1+∠ 4=(已知) ∴ a ∥ b ()并在括号内填上理由根据。
相交与平行线经典例题
相交与平行线经典例题
1. 有一条直线L和一条平行于L的线段AB,AB的长度为
5cm。
现在在L上选取一点C,再选取一个点D,并且D是
AC的中点。
求CD的长度。
解法:由题意可知,CD平行于AB,且AC=2CD。
根据比例
关系,我们可以得到:AC/CD = AB/BD。
由于AC=2CD,
AB=5cm,所以2CD/CD = 5/BD,简化得到2=5/BD。
解方程
得到BD=5/2=2.5cm。
所以CD=AC/2=2.5/2=1.25cm。
2. 在平面上有两条直线L1和L2,L1与L2的交点为A。
由A
分别向两条直线做垂线,分别与两条直线交于B和C。
已知
AB=6cm,AC=8cm。
求BC的长度。
解法:由题意可知,AB垂直于L1,AC垂直于L2。
所以
ABC是直角三角形。
根据勾股定理,得到BC的长度:BC^2
= AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100。
所以BC = 10cm。
3. 平面上有两条平行线L1和L2,L1上有一点P,分别向L1
和L2做两条垂线PA和PB,交于A和B。
已知AP=5cm,
PB=8cm。
求AB的长度。
解法:由题意可知,PA垂直于L1,PB垂直于L2。
所以PAB
是直角三角形。
根据勾股定理,得到AB的长度:AB^2 =
AP^2 + PB^2 = 5^2 + 8^2 = 25 + 64 = 89。
所以AB = √89 cm。
相交线与平行线典型例题
解:∵ EF与AB相交,∠1+∠2=180°,
∠2+∠3= 180°, ∴∠2的补角有∠1和∠3; E
12
4
∵ CD与MN相交,∠5+∠8=180°,
3
∠5+∠6=180 °且∠2=∠5,
∴∠2的补角有∠6和∠8; ∴∠2的补角有∠1、∠3、∠6和∠8.
58 67
如图,直线AB,CD,EF相交于点O. (1)写出∠AOC, ∠BOE的邻补角; (2)写出∠DOA, ∠EOC的对 顶角; (3)如果∠AOC =50°,求∠BOD ,∠COB的度数.
=90°+55°=145°.
如图,直线BC与MN相交于点O,AO⊥BC,∠BOE=∠NOE,
若∠EON=20°,求∠AOM和∠NOC的度数.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=40°, ∴∠NOC=180°-∠BON =180°-40°=140°,
∠MOC=∠BON=40°. ∵AO⊥BC,∴∠AOC=90°, ∴∠AOM=∠AOC-∠MOC=90°-40°=50°, ∴∠NOC=140°,∠AOM=50°.
E
C
F
56°
B O
∴ ∠AOE=∠BOF=34°(对顶角相等) . D
如图,直线AB、CD相交于点O,OE⊥AB, ∠1=55°,求
∠EOD的度数.
CE
解: ∵ AB⊥OE (已知),
A 1(
O
B
∴ ∠EOB=90° (垂直的定义).
∵ ∠BOD =∠1=55° (对顶角相等), D
∴ ∠EOD =∠EOB +∠BOD
C
解:如图所示: F
A
B
人教版七年级数学下册期末复习:相交线与平行线(附练习答案).doc
期末复习(一) 相交线与平行线01各个击破命题点1命题【例1】已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个【思路点拨】命题①、③、④显然成立,对于命题②,当a=2、b=-2时,虽然有a≠b,但a2=b2,所以②是假命题.【方法归纳】要判断一个命题是假命题,只需要举出一个反例即可.和命题有关的试题,多以选择题的形式出现,以判断命题真假为主要题型.1.下列语句不是命题的是()A.两直线平行,同位角相等B.锐角都相等C.画直线AB平行于CDD.所有质数都是奇数2.(兴化三模)说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=________.3.(日照期中)命题“同旁内角互补”的题设是_____________________,结论是____________,这是一个________命题(填“真”或“假”).命题点2相交线中的角【例2】如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.【思路点拨】(1)根据∠DOE=∠BOD,OF平分∠AOE,求得∠FOD=90°,从而判断OF与OD的位置关系.(2)根据∠AOC,∠AOD的度数比以及邻补角性质,求得∠AOC.然后利用对顶角性质得∠BOD的度数,从而得∠EOD的度数.最后利用∠FOD=90°,求得∠EOF的度数.【解答】【方法归纳】 求角的度数问题时,要善于从图形中挖掘隐含条件,如:邻补角、对顶角,然后结合条件给出的角的和、差、倍、分等关系进行计算.4.(滕州校级模拟)如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 等于( )A .40°B .120°C .140°D .100°5.如图,直线AB ,CD 相交于点O ,已知:∠AOC =70°,OE 把∠BOD 分成两部分,且∠BOE ∶∠EOD =2∶3,求∠AOE 的度数.6.如图所示,O 是直线AB 上一点,∠AOC =13∠BOC ,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说出理由.命题点3平行线的性质与判定【例3】已知:如图,四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC 于点D,EF⊥DC于点F.求证:∠1=∠2.【思路点拨】由条件得∠A+∠ABC=180°,得AD∥BC,从而∠1=∠DBC.由BD⊥DC,EF⊥DC,可得BD∥EF,从而∠2=∠DBC,所以∠1=∠2,结论得证.【解答】【方法归纳】本题既考查了平行线的性质又考查了平行线的判定.题目的证明用到了“平行线迁移等角”.7.(燕山区一模)如图,∠1=∠B,∠2=25°,则∠D=()A.25°B.45°C.50°D.65°8.(山亭区期末)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于________时,BC∥DE.()A.40°B.50°C.70°D.130°9.已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.命题点4平移【例4】(晋江中考)如图,在方格纸中(小正方形的边长为1),三角形ABC的三个顶点均为格点,将三角形ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的三角形A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,三角形ABC扫过的面积.【思路点拨】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出坐标即可;(2)观察图形可得三角形ABC扫过的面积为四边形AA′B′B的面积与三角形ABC的面积的和,然后列式进行计算即可.【解答】【方法归纳】熟练掌握网格结构,准确找出对应点的位置是解题的关键.10.(宁德中考)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°11.如图,在直角三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB方向向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于________.12.如图,在长方形草地内修建了宽为2米的道路,则草地面积为________米2.02整合集训一、选择题(每小题3分,共30分)1.图中,∠1、∠2是对顶角的为()2.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A.∠1 B.∠2 C.∠4 D.∠5 3.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是()A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2 D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是() A.80°B.100°C.110°D.120°5.如图,“龟兔赛跑”的故事图案的形成过程叙述不正确的是()A.它可以看作是一个龟兔图案作为“基本图案”经过平移得到的B.它可以看作是上面三个龟兔图案作为“基本图案”经过平移得到的C.它可以看作是相邻两个龟兔图案作为“基本图案”经过平移得到的D.它可以看作是左侧两个龟兔图案作为“基本图案”经过平移得到的6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个7.以下关于距离的几种说法中,正确的有()①连接两点间的线段长度叫做这两点的距离;②连接直线外的点和直线上的点的线段叫做点到直线的距离;③从直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.1个B.2个C.3个D.4个8.下列图形中,由AB∥CD,能得到∠1=∠2的是()9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°10.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是_______________________________.12.将线段AB平移1 cm,得到线段A′B′,则点A到点A′的距离是________.13.(1)如图1,村庄A到公路BC最短的距离是AD,根据是________________;(2)如图2,建筑工人常在一根细绳上拴上一个重物,做成一个“铅锤”,挂铅锤的线总垂直于地面内的任何直线,当这条线贴近墙壁时,说明墙与地面垂直,请说出它的根据是________________________________________.图1图214.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=________.15.(温州中考)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=________度.三、解答题(共50分)16.(7分)如图,∠1=60°,∠2=60°,∠3=85°,求∠4的度数.解:∵∠1=60°,∠2=60°,∴∠1=∠2.∴a∥________(________________).∴∠4=∠________(________________).∵∠3=85°,∴∠4=________.17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE,垂足为E;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD 和∠DOE 互余,且∠AOD =13∠AOE ,请求出∠AOD 和∠COE 的度数.19.(12分)如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF.(1)AE 与FC 平行吗?说明理由;(2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么?20.(12分)探究题:(1)如图1,若AB ∥CD ,则∠B +∠D =∠E ,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?图1图2图3图4参考答案各个击破例1 C例2 (1)∵OF 平分∠AOE ,∴∠AOF =∠EOF =12∠AOE. 又∵∠DOE =∠BOD =12∠BOE , ∴∠DOE +∠EOF =12(∠BOE +∠AOE)=12×180°=90°,即∠FOD =90°.∴OF ⊥OD. (2)设∠AOC =x °,∵∠AOC ∶∠AOD =1∶5,∴∠AOD =5x °.∵∠AOC +∠AOD =180°,∴x +5x =180,解得x =30.∴∠DOE =∠BOD =∠AOC =30°.又∵∠FOD =90°,∴∠EOF =90°-30°=60°.例3 证明:∵∠A =106°-α,∠ABC =74°+α,∴∠A +∠ABC =180°.∴AD ∥BC.∴∠1=∠DBC.∵BD ⊥DC ,EF ⊥DC ,∴∠BDF =∠EFC =90°.∴BD ∥EF.∴∠2=∠DBC.∴∠1=∠2.例4 (1)平移后的三角形A′B′C′如图所示;点A′、B′、C′的坐标分别为(-1,5)、(-4,0)、(-1,0).(2)由平移的性质可知,四边形AA′B′B 是平行四边形,∴S =S 四边形AA′B′B +S 三角形ABC =B′B·AC +12BC ·AC =5×5+12×3×5=652. 题组训练1.C 2.-3 3.两个角是两条直线被第三条直线所截得到的同旁内角 这两个角互补 假4.C5.解:∵∠AOC =70°,∴∠BOD =∠AOC =70°.∵∠BOE ∶∠EOD =2∶3,∴∠BOE =22+3×70°=28°. ∴∠AOE =180°-28°=152°.6.解:(1)∵∠AOC +∠BOC =180°,∠AOC = 13∠BOC , ∴13∠BOC +∠BOC =180°.∴∠BOC =135°.∴∠AOC =45°. ∵OC 平分∠AOD ,∴∠COD =∠AOC =45°.(2)OD ⊥AB.理由如下:∵∠COD =∠AOC =45°,∴∠AOD =∠COD +∠AOC =90°.∴OD ⊥AB.7.A 8.B9.解:AB ⊥CD.理由:∵∠1=132°,∠ACB =48°,∴∠1+∠ACB =180°.∴DE ∥BC.∴∠2=∠DCF.又∵∠2=∠3,∴∠3=∠DCF.∴FH ∥CD.∴∠BHF =∠BDC.又∵FH ⊥AB ,∴∠BHF =90°.∴∠BDC =90°.∴AB ⊥CD.10.B 11.8 12.144整合集训1.C 2.B 3.B 4.B 5.C 6.C 7.A 8.B 9.A 10.D11.如果两直线平行,那么同位角相等12.1 cm13.(1)垂线段最短 (2)过一点有且只有一条直线与已知直线垂直14.42°15.8016.b 同位角相等,两直线平行 3 两直线平行,同位角相等 85°17.解:(1)、(2)如图.(3)PE<PO<FO ,依据是垂线段最短.18.解:(1)∵OD 平分∠AOC ,∠AOC =60°,∴∠AOD =12×∠AOC =30°,∠BOC =180°-∠AOC =120°.(2)∵∠AOD 和∠DOE 互余,∴∠AOE =∠AOD +∠DOE =90°.∵∠AOD =13∠AOE ,∴∠AOD =13×90°=30°. ∴∠AOC =2∠AOD =60°.∴∠COE =90°-∠AOC =30°.19.解:(1)AE ∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB =180°,∴∠1=∠CDB.∴AE ∥FC.(2)AD ∥BC.理由:∵AE ∥CF ,∴∠C =∠CBE.又∠A =∠C ,∴∠A =∠CBE.∴AD ∥BC.(3)BC 平分∠DBE.理由:∵DA 平分∠BDF ,∴∠FDA =∠ADB.∵AE ∥CF ,AD ∥BC ,∴∠FDA =∠A =∠CBE ,∠ADB =∠CBD.∴∠CBE =∠CBD. ∴BC 平分∠DBE.20.解:(1)理由:过点E 作EF ∥AB ,∴∠B =∠BEF.∵CD ∥AB ,∴CD ∥EF.∴∠D =∠DEF.∴∠B +∠D =∠BEF +∠DEF =∠BED.(2)AB ∥CD.(3)∠B +∠D +∠E =360°.(4)∠B =∠D +∠E.(5)∠E +∠G =∠B +∠F +∠D.。
相交线平行线经典例题
相交线平行线经典例题英文回答:Parallel Lines and Intersecting Lines.Parallel lines are lines that never intersect, no matter how far they are extended. Intersecting lines are lines that cross each other at a single point.There are a few different ways to determine if two lines are parallel or intersecting. One way is to look at the slopes of the lines. If the slopes of the lines are equal, then the lines are parallel. If the slopes of the lines are not equal, then the lines are intersecting.Another way to determine if two lines are parallel or intersecting is to look at the intercepts of the lines. If the intercepts of the lines are equal, then the lines are parallel. If the intercepts of the lines are not equal, then the lines are intersecting.Example 1。
Determine if the lines y = 2x + 1 and y = 2x 3 are parallel or intersecting.Slopes: The slope of both lines is 2.Intercepts: The intercept of the first line is 1. The intercept of the second line is -3.Since the slopes of the lines are equal, the lines are parallel.Example 2。
人教版苏科版初中数学—相交线与平行线(经典例题)
班级小组姓名成绩(满分120)一、两条直线的位置关系(一)相交线与平行线(共4小题,每题3分,题组合计12分)例1.当光线从空气中射入水中时,光线的传播方向发生了改变,这就是折射现象(如图所示),图中1∠与2∠是对顶角吗?例1.变式1.如图是一把剪刀,其中1=40∠︒,则2∠=,其理由是.例1.变式2.下列说法正确的是()A.相等的角是对顶角B.对顶角相等C.两条直线相交所成的角是对顶角D.有公共顶点且又相等的角是对顶角例1.变式3.如图,直线AB ,CD 相交于点O ,=80EOC ∠︒,OA 平分EOC ∠,求BOD ∠的度数.(二)互为余角和互为补角的概念及应用(共4小题,每题3分,题组合计12分)例2.如果,1∠与2∠互为余角,则1+2=∠∠;若1=58∠︒,则2=∠.例2.变式1.判断题.(1)一个角的余角一定是锐角.()(2)一个角的补角一定是钝角.()(3)若1+2+3=90∠∠∠︒,那么1∠,2∠,3∠互为余角.()例2.变式2.一个角的余角度数是这个角的补角的13,这个角的余角度数是.例2.变式3.已知α∠是锐角,α∠与β∠互补,α∠与γ∠互余,则βγ∠-∠的值等于()A.45°B.60°C.90°D.180°(三)垂线定义及性质(共4小题,每题3分,题组合计12分)例3.下列说法正确的有()①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③过一点有且只有一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个 B.2个C.3个D.4个例3.变式1.如图所示,CD AB ⊥,则点D 是,ADC CDB ∠=∠=.例3.变式2.如图,OD BC ⊥,垂足为D ,3BD cm =,4OD cm =,5OB cm =,那么点B 到OD 的距离是,点O 到BC 的距离是,O ,B 两点之间的距离是.例3.变式3.如图,在ABC ∆中,AC BC ⊥,CD AB ⊥,则AB ,AC ,CD 之间的大小关系是(用“<”号连接起来).二、探索直线平行的条件(一)同位角、内错角、同旁内角的概念(共4小题,每题3分,题组合计12分)例4.如图,∠1和∠2是同位角的是()例4.变式1.如图,能与∠1构成同位角的角有个.例4.变式2.如图所示,∠1与∠2是内错角的是()例4.变式3.如图,直线AB,CD被直线EF所截,则∠3的同旁内角是() A.∠1 B.∠2 C.∠4 D.∠5(二)判定两直线平行的方法(共4小题,每题3分,题组合计12分)例5.如图,∠1=55°,当∠C为多少度时,能使直线AB∥CD?例5.变式1.如图,∠1=120°,∠2=60°,问直线a与b的位置关系如何?例5.变式2.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠3=180°,其中能判断a∥b的是()例5.变式3.如图所示,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠5(三)平行线的判定定理的综合应用(共4小题,每题3分,题组合计12分)例6.如图,已知直线AB,CD被直线EF所截,如果BMN DNF∠=∠,那么MQ∥NP,∠=∠,12试写出推理.例6.变式1.如图,AB BC ⊥于点B ,BC CD ⊥于点C ,∠1=∠2,那么EB ∥CF 吗?为什么?例6.变式2.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线1l ,2l 平行吗?为什么?例6.变式3.如图,B C ∠=∠,B ,A ,D 三点在同一直线上,DAC B C ∠=∠+∠,AE 是DAC ∠的平分线,试说明AE ∥BC .三、平行线的性质(一)平行线的性质(共4小题,每题3分,题组合计12分)例7.下列说法中正确的是()①两直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④两直线被第三条直线所截,同位角、内错角相等.A.①②③ B.②③C.④ D.②和④例7.变式1.下列图形中,由AB ∥CD ,能得到∠1=∠2的是()例7.变式2.如图,梯子的各条横杆互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.110°D.120°例7.变式3.如图,直线a∥b,直线c分别与a,b相交于点A,B.已知∠1=35°,则∠2的度数为()A.165°B.155°C.145°D.135°(二)平行线的性质的应用(共4小题,每题3分,题组合计12分)例8.如图,已知直线a∥b,∠1=40°,则∠2=.例8.变式1.如图,已知∠1=∠2=∠3=62°,则∠4=.例8.变式2.如图,BC AE∠=48°,则B⊥,垂足为C,过C作CD∥AB.若ECD∠=.例8.变式3.如图,∠1=∠2,C D∠=∠,那么A F∠=∠,为什么?(三)平行线的判定与平行线的性质的综合运用(共4小题,每题3分,题组合计12分)例9.如图,已知180BAE AED ∠+∠=︒,AM 平分BAE ∠,EN 平分AEC ∠,试说明M ∠=N ∠.例9.变式1.如图所示,AB ∥CD ∥EF ,BC ∥DE ,70B ∠=︒,则E ∠的度数为多少?例9.变式2.如图,AB ∥CD ,EM 平分角GEB ∠,EN 平分MEH ∠,4AEG MEB ∠=∠,设MEB x ∠=,求EPC ∠的度数.例9.变式3.如图,AB ∥CD ,探究B ∠,D ∠,P ∠之间的关系.四、用尺规作角(共4小题,每题3分,题组合计12分)例10.用直尺和圆规画CMD ∠等于已知角AOB ∠.例10.变式1.已知α∠,β∠,求作一个角,使它等于2α∠+β∠.(保留作图痕迹,不写作法)例10.变式2.如图,已知∠1,∠2,求作一个角,使它等于2∠1-∠2.例10.变式3.已知线段a ,α∠,β∠.求作:分别过点A ,点B 作ABC ∆,使ABC ∠=α∠,ACB ∠=β∠,BC =a .。
(完整版)相交线与平行线典型例题
第五章 相交线与平行线专题复习考点一:对相关概念的理解 对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等 例1:判断下列说法的正误。
对顶角相等; 相等的角是对顶角; 邻补角互补; 互补的角是邻补; 同位角相等; 内错角相等;同旁内角互补; 直线外一点到直线的垂线段的长度叫做点到直线的距离; 过一点有且只有一条直线与已知直线垂直; 过一点有且只有一条直线与已知直线平行; 两直线不相交就平行; 互为邻补角的两个角的平分线互相垂直。
考点二:相关推理(识记)(1)∵a ∥c ,b ∥c (已知) ∴______ ∥______( )(2)∵∠1=∠2,∠2=∠3(已知) ∴______ =______( )(3)∵∠1+∠2=180°,∠2=30°(已知) ∴∠1=______( )(4)∵∠1+∠2=90°,∠2=22°(已知) ∴∠1=______( )(5)如图(1),∵∠AOC=55°(已知) ∴∠BOD=______( )(6)如图(1),∵∠AOC=55°(已知) ∴∠BOC=______( )(7)如图(1),∵∠AOC=21∠AOD ,∠AOC+∠AOD=180°(已知) ∴∠BOC=______( )(1) (2) (3) (4)(8)如图(2),∵a ⊥b (已知) ∴∠1=______( )(9)如图(2),∵∠1=______(已知) ∴a ⊥b ( )(10)如图(3),∵点C 为线段AB 的中点 ∴AC=______( )(11) 如图(3),∵ AC=BC ∴点C 为线段AB 的中点( )(12)如图(4),∵a ∥b (已知) ∴∠1=∠2( )(13)如图(4),∵a ∥b (已知) ∴∠1=∠3( )(14)如图(4),∵a ∥b (已知) ∴∠1+∠4= ( )(15)如图(4),∵∠1=∠2(已知) ∴a ∥b ( )(16)如图(4),∵∠1=∠3(已知) ∴a ∥b ( )(17)如图(4),∵∠1+∠4= (已知) ∴a ∥b ( )考点三:对顶角、邻补角的判断、相关计算例题1:如图5-1,直线AB 、CD 相交于点O ,对顶角有_________对,它们分别是_________,∠AOD 的邻补角是_________。
(完整版)相交线与平行线常考题目及答案(绝对经典)
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
相交线与平行线典型考题(附答案及解析)
A BDC第5题图 平行线相交线常见题型过关练习一、选择题一、如图,l 1∥l 2,∠1=120°,那么∠2= . (第1题图)二、如图,AB ∥CD ,∠DCE=80°,那么∠BEF=3、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E 的大小为 (第2题图) (第3题图) (第4题图)4、如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.那么∠C 等于 五、如图,AB ∥CD ,∠C =80°,∠CAD =60°,那么∠BAD 等于 六、如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,那么∠BCE 等于(第6题图) (第7题图) (第8题图) (第9题图)7、如图,AB∥CD,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.那么∠D 的大小是 八、如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于九、如图,己知AB∥CD,BE 平分∠ABC,∠CDE=150°,那么∠C 的度数是 10、如图,已知AB ∥CD ,那么图中与∠1互补的角有 个。
1一、如图,CD ∥AB ,∠1=120°,∠2=80°,那么∠E 的度数是(第10题图)(第11题图) (第12题图) (第13题图)1二、如图,已知直线a ∥b ,∠1=40°,∠2=60°.那么∠3等于13、如图,已知AB∥CD,∠E=︒28,∠C=︒52,那么∠EAB 的度数是 14、如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,那么∠BCE 等于 1五、如下图,AB ∥CD ,∠E =37°,∠C =20°,那么∠EAB 的度数为1六、如图,已知AB ∥CD ,∠A =60°,∠C =25°,那么∠E 等于 (第15题图)B AD CEF 15446 (第14题图)(第16题图)(第17题图)(第18题图)17、如下图,直线a∥b.直线c与直线a,b别离相交于点A、点B,AM b⊥,垂足为点M,假设158∠=︒,那么2∠=_________1八、如图:CD平分∠ACB,DE∥AC且∠1=30°,那么∠2=度.1九、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.(辅助线已画)(第19题图)答案及解析一、分析:由邻补角的概念,即可求得∠3的度数,又由l1∥l2,依照两直线平行,同位角相等,即可求得∠2的度数.解答:∵∠1=120°,∴∠3=180°﹣∠1=60°,∵l1∥l2,∴∠2=∠3=60°.点评:此题考查了平行线的性质与邻补角的概念.注意两直线平行,同位角相等.二、分析:依照平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.解答:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.点评:此题要紧考查对平行线的性质,邻补角的概念等知识点的明白得和把握,依照平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.3、分析:依照两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.4、分析:由∠A=40°,∠AOB=75°,依照三角形内角和定理,即可求得∠B的度数,又由AB∥CD,依照两直线平行,内错角相等,即可求得∠C的值.解答:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.五、分析:依照三角形的内角和为180°,即可求出∠D的度数,再依照两直线平行,内错角相等即可明白∠BAD的度数.解答:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°。
(完整版)初一平行线与相交线经典试题
第一章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B 互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB 于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟) (答案:220 ) 1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1―2―3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2004贵阳,3分)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟) (答案:220 ) 1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
平行线与相交线经典题
平行线与相交线经典题一、经典题示例1. 已知直线a,b被直线c所截,∠1与∠2是同位角,若∠1 = 50°,求∠2的度数。
这题很简单啦,因为两直线平行,同位角相等嘛。
可这里没说a和b平行哦,所以∠2的度数是不能确定的呢。
2. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。
首先我们知道AB∥CD,所以∠1+∠BEF = 180°(两直线平行,同旁内角互补)。
因为∠1 = 72°,所以∠BEF = 180° - 72° = 108°。
又因为EG平分∠BEF,所以∠BEG = 1/2∠BEF = 54°。
而∠2 = ∠BEG(两直线平行,内错角相等),所以∠2 = 54°。
二、较难题型1. 有两条直线l1和l2,l1上有A、B两点,l2上有C、D两点,连接AC、BD,若∠CAB和∠ABD的平分线相交于点E,∠CAB = 100°,∠ABD = 120°,求∠AEB的度数。
这题有点绕呢。
我们可以先根据三角形内角和定理来做。
因为AE平分∠CAB,所以∠EAB = 1/2∠CAB = 50°。
同理,∠EBA = 1/2∠ABD = 60°。
在△AEB中,根据三角形内角和为180°,可得∠AEB = 180° - 50° - 60° = 70°。
2. 已知直线a∥b,直线c与a、b相交,点A在直线a上,点B在直线b上,点M在直线c上,且AM⊥c,BM与c的夹角为30°,求∠AMB的度数。
这题要分情况讨论哦。
当点M在a、b之间时,∠AMB = 90°+30° = 120°;当点M不在a、b之间时,∠AMB = 90° - 30° = 60°。
相交线与平行线练习题(带解析)
第二章 相交线与平行线练习题(带解析)1、如图,直线a 、b 、c 、d ,已知c ⊥a ,c ⊥b ,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【???】(1) (2)(5)(6)(7)2、如图,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是?????????(??)?3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能(????)A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是(??????)①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =(????)A .60°B .50°C .30°D .20°6、如图,如果AB ∥CD ,则角α、β、γ之间的关系为(???)A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°7、如图,由A 到B 的方向是(???)8、如图,由AC ∥ED ,可知相等的角有(?????)(8) (9)A .6对B .5对C .4对D .3对9、如图,直线AB 、CD 交于O ,EO ⊥AB 于O ,∠1与∠2的关系是( )A .600B .500C .400D .300A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等 A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60°A.互余????????????B.对顶角???????????????C.互补????????????D.相等?10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行)12、图中与∠1是内错角的角的个数是(A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为()A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,)③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是(A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC =___°,∠CDB=____°。
七年级下册平行线与相交线.docx
1.(1) AABC 中,ZA : ZB : ZC=2 : 3 : 4,则ZA=度,ZB=度,ZC= 度。
(2)______________________________________________ AAB C中,/A=2/B=2/C,则此三角形为三角形。
(3)若AABC 中,如果/C=4/A , ZA +/B=100°,期么 /A =,/B=, ZC=。
2.在AABC中,AB=AC, 平分ZABC交AC于。
,垂直平分AB,垂足为E,则/C=3.等腰三角形中有一个角是50。
,它的一条腰上的高与底边的夹角是()A. 25°B. 40°C. 25°或40。
D.大小无法确定4.如图,AABE和AADC是AABC分别沿着AB、AC边翻折180°形成的,若匕1: Z2:Z3=28: 5: 3,则Na 的度数为5.在AABC 中,D 为BC 上一点,且/DAC=/B,若ZADC=70°,则/BAC=。
6.根据下列证明过程填空。
(1)如图D-1甲所示,已知:AB〃CD, ZB=120° , CA平分ZBCD,求证:Zl=30°•.•AB〃CD ( ) Z. ZB+ZBCD=( )ZB=( ) .I ZBCD=,又CA 平分ZBCD ( )Z2=° ( )•..AB〃CD ( ) /.Zl==30° ( )(第4题)(2)如图D-1乙所示,已知:AB//CD, AD 〃BC,求证:ZBAD=ZBCDo•: AD//BC ().Z4=Z3 ()•: AB//CD ().r.zi=Z2( )A Z1+Z3=Z2+Z4 ()即ZBAD=ZBCD(3)如图D-1 丙所示,已知:ZADE=ZB, Z1 = Z2, FG±AB,求证:CD_LAB。
VZADE=ZB ():.DE//( )AZ1=Z3 ()VZ1=Z2 ():.Z2=Z3 ().・・GF〃()又VABXFG ()Z. CD±AB ()7.具备下列条件的两个三角形,全等的是()A.两个角分别相等,且有一边相等B. 一边相等,且这边上的高也相等C.两边分别相等,且第三边上的中线也相等D.两边且其中一条对应边的对角对应相等8.有四根木条的长度分别是11cm, 9cm, 8cm和3cm,任选其中3条组成三角形,则可能组成三角形的组数是()A.1组B.2组C.3组D.4组9.在△ABC 中,a=4x, b = 3x, c=14,贝U ()A. 2<r<14B. .r>2C..r<14D. 7<x<1410.如图,将纸片ZkABC沿DE折叠,点A落在点A,处,已知Zl+Z2=100°,求ZA的度数。
相交线与平行线-典型例题
第五章 相交线与平行线1. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.2. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.3. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.4. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD与OE 的位置关系,并说明理由.5. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .6. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.7. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )8. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.9. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.10. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
相交线与平行线 典例和训练题
A相交线与平行线 典例和训练题例1例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
解:过E 作EF ∥AB∵ AB ∥CD (已知) ∴ EF ∥CD (平行公理)∴ ∠BEF=∠B=40° ∠DEF=∠D=70°(两直线平行,内错角相等) ∵ ∠DEB=∠DEF -∠BEF∴ ∠DEB =∠D -∠B=30°评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。
图(3)例4.平面上n 条直线两两相交且无3条或3条以上直线共点,有多少个不同交点? 解:2条直线产生1个交点,第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点;第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点; …则 n 条直线共有交点个数:1+2+3+…+ (n-1)=21n(n-1) 评注:此题是平面上n 条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。
例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?解:6条不同的直线最多确定:5+4+3+2+1=15条直线,除去共线的3点中重合多算的2条直线,即能确定的直线为15-2=13条。
另法:3点所在的直线外的3点间最多能确定3条直线,这3点与直线上的3点最多有3×3=9条直线,加上3点所在的直线共有:3+9+1=13条 评注:一般地,平面上n 个点最多可确定直线的条数为:1+2+3+…+(n-1)=21n(n-1)例6.10条直线两两相交,最多将平面分成多少块不同的区域?解:2条直线最多将平面分成2+2=4个不同区域;3条直线中的第3条直线与另两条直线相交,最多有两个交点,此直线被这两点分成3段,每一段将它所在的区域一分为二,则区域增加3个,即最多分成2+2+3=7个不同区域; 同理:4条直线最多分成2+2+3+4=11个不同区域;…∴ 10条直线最多分成2+2+3+4+5+6+7+8+9+10=56个不同区域 推广:n 条直线两两相交,最多将平面分成2+2+3+4+…+n=1+21n(n+1)=21(n 2+n+2)块不同F的区域思考:平面内n 个圆两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n 条直线相交于一点时,有多少对对顶角,多少对邻补角? 二、巩固练习 1( )条A .6B . 7C .8D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )(A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°第 5 题第 6 题第7题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ; 8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点9.平面上3条直线最多可分平面为 个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线
1.如图,BC AC, CB8cm, AC6cm, AB10cm, 那么点
A 到 BC的距离是_____,点
B 到 AC的距离是_______,点 A、
B 两点的距离是_____,点 C到 AB的距离是________.
2.设 a 、b、c为平面上三条不同直线,
a)若 a // b,b // c ,则a与c的位置关系是_________;
b)若 a b, b c ,则a与c的位置关系是_________;
c)若 a // b , b c,则a与c的位置关系是________.
3.如图,已知 AB、CD、EF相交于点 O,AB⊥ CD,OG平分∠ AOE,∠ FOD=28°,求∠
COE、∠ AOE、∠ AOG的度数.
4.如图,AOC 与BOC 是邻补角,OD、OE分别是AOC 与BOC 的平分线,试判
断 OD与 OE的位置关系,并说明理由.
5.如图, AB∥ DE,试问∠ B、∠ E、∠ BCE有什么关
系.解:∠ B+∠ E=∠ BCE
过点 C作 CF∥ AB,
则B____()
又∵ AB∥ DE, AB∥ CF,
∴ ____________ ()
∴∠ E=∠____()
∴∠ B+∠ E=∠1+∠2
即∠ B+∠ E=∠ BCE.
6. ⑴如图,已知∠ 1=∠ 2求证:a∥b.⑵直线 a // b ,求证:1 2 .
7.阅读理解并在括号内填注理由:
如图,已知AB∥ CD,∠1=∠2,试说明 EP∥ FQ.
证明:∵ AB∥ CD,
∴∠ MEB=∠ MFD()
又∵∠ 1=∠ 2,
∴∠ MEB-∠1=∠ MFD-∠2,
即∠MEP=∠______
∴ EP∥ _____.()
8.已知 DB∥ FG∥ EC, A 是 FG上一点,∠ ABD=60°,∠ ACE=36°, AP平分∠
BAC,求:⑴∠ BAC的大小;⑵∠ PAG的大小.
9. 如图,已知ABC , AD BC 于D,E 为 AB 上一点, EF BC 于F,DG // BA 交
CA于G. 求
证12 .
10.已知:如图∠1=∠ 2,∠C=∠D,问∠A与∠F相等吗试说明理由.
参考答案
1. 邻补角
2.对顶角,对顶角相等
3. 垂直有且只有垂线段最短
4. 点到直线的距离
5. 同位角内错角同旁内角
6.平行相交平行
7. 平行这两直线互相平行
8. 同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行 .
9. 平行10. 两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.11. 命题题设结论由已知事项推出的事项
题设结论真命题假命题12. 平移相同平行且相等8cm
10cm .14. 平行平行垂直15. 28° 118° 59°16. OD⊥OE理由略17. 1(两直线平行,内错角相等)DE∥ CF(平行于同一直线的两条直线平行)2(两直线平行,内错角相等) .18.⑴∵∠ 1=∠ 2,又∵∠ 2=∠ 3(对顶角相等),∴∠ 1=∠ 3∴a∥b(同位角相等两直线平行)⑵∵ a∥ b∴∠ 1=∠ 3( 两直线平行,同位角相等 ) 又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 2.19.两直线平行,同位角相等 MFQ FQ同位角相等两直线平行20.96 °, 12° .
21. Q AD BC, FE BC EFB ADB90o EF // AD23
Q DG // BA,311 2.22.∠A=∠ F.∵∠1=∠DGF(对顶角相等)又∠1=∠ 2∴∠ DGF=∠2∴ DB∥EC(同位角相等,两直线平行)∴∠ DBA=∠ C(两
直线平行,同位角相等)又∵∠ =∠
D ∴∠=∠
D
∴∥(内错角相等,两
C DBA DF AC 直线平行)∴∠=∠ ( 两直线平行 , 内错角相等 ).
A F。