二次函数的最大值和最小值【爆款】.ppt

合集下载

二次函数的最值问题课件

二次函数的最值问题课件

顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。

二次函数的图像和性质PPT课件(共21张PPT)

二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.

二次函数的最大值和最小值

二次函数的最大值和最小值
二次函数的最大值和最小值
二次函数: yax2 bxc ( a0 )
a(x
b 2a
)2
4ac 4a
b2
a>0
a<0
y x b
2a
y
b 2a
0
x
4ac b 2
4a
0
x
二次函数的最大值和最小值
函数的最大值和最小值的概念
设函数f(x)在x0处的函数值是f(x0),如果不等式f(x) f(x0 )
对于定义域内任意x都成立,那么f(x0 )叫做函数y=f(x0 )的最小值。 记作ymin=f(x0 )
当x1时 ymax132 2
二次函数的最大值和最小值
(2 ) y1x22x1x [ 3,1 ]
5
x5
解:y1(x5)2 6
y
5
5 [ 3 ,1 ]
1
-3 0
x
函数 y = f(x) 在[-3,1]上为减函数
26 当x3时 ymax 5
当x1时
6
ymin
5
二次函数的最大值和最小值
(3) y1x22x1x [ 1,2]
ymin=t2-2t+3
当x=t+1 时 ymaxt2 2
y
1
x
0 t t+1
二次函数的最大值和最小值
小结
1、定义域为R的二次函数的最大值和最小值 2、定义域为某一闭区间上的最大值和最小值 3、关于带有字母参数的二次函数最值的讨论
二次函数的最大值和最小值
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
解: y2(x1)22
xR
当 x=1时,ym i n2

二次函数的极值问题. ppt课件

二次函数的极值问题.  ppt课件

26
做一做
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少?
解: 1.由4y 7x x 15. 得, y 15 7x x .
由(1)知6 x<15
当垂直于墙的边长为7.5米是,花圃
的面积最大为112.5平方米。
(3)由图象知:当6≤X ≤11时,面积 不小于88平方米.
PPT课件
25
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道 篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
y(件) 70 50 35
若销售量y是销售价格x的一次函数. (2)若要获得最大的销售利润,每件产品的销售价 格定为多少元?此时每日的销售利润是多少?
设销售利润为W,则 当x 320 160时,
W=(x-120)·y
2
=(x-120)·(-x+200) W=1600
=-x2+320x-2400 PPT课件 则:……
=-2x2+440x+158400
…… =-2(x-110)2+182600
所以,当x…=1…10时,yP有PT课件最大值182600
15
3.某旅社有客房120间,每间房间的日租金为50元, 每天都客满,旅社装修后要提高租金,经市场调查, 如果一间客房的日租金每增加5元,则客房每天出 租会减少6间,不考虑其它因素,旅社将每间客房的 日租金提高到多少元时,客房日租金总收入最高? 比装修前的日租金的总收入增加多少元?

二次函数的图像和性质PPT课件

二次函数的图像和性质PPT课件

二次函数的图像和性质(1)
观察函数y=-x2图像,说出图像的特征.
图像有最高点,过(0,0) y有最大值.
当x<0时,y随x增大而增大.
抛物线关于y轴对称. 当x>0时,y随x增大而减小.
抛物线开口向下.二次函数来自图像和性质(1)比较函数y=-x2与y=x2图像,说出图像 特征的异同点.
假如是函数y=2x2与y=-2x2 的图像呢?
二次函数的图像和性质ppt课件
二次函数的图像和性质(1)
画函数图像步骤:列表 描点 连线 研究函数性质方法:数形结合 二次函数的图像是怎样的? 试着画一画吧!
二次函数的图像和性质(1)
例1 画出函数y=x2的图像.
x ... -3 -2 -1 0 1 2 3 ... y=x² ... 9 4 1 0 1 4 9 ...
列表时自变量要 均匀和对称!
二次函数的图像和性质(1)
观察函数y=x2图像,说出图像特征.
当x<0时,y随x增大而减小.
图像有最低点,过〔0,0〕 y有最小值.
抛物线关于y轴对称. 当x>0时,y随x增大而增大.
抛物线开口向上.
二次函数的图像和性质(1)
例2 画出y=-x2图像.
x ... -3 -2 -1 0 1 2 3 ... y=-x² ... -9 -4 -1 0 -1 -4 -9 ...
二次函数的图像和性质(1)
在同一坐标系上画函数y=2x²,y=-2x²,
y=
1 2
x²和y= -
1 2
x²图像,并说出图像特征.
二次函数的图像和性质(1)
本节课我们学习了什么?你还有什么疑问?
谢谢!

二次函数的应用 ppt课件

二次函数的应用 ppt课件


-2
-1
y
6 5 4 3 2 1

0
1
2020/11/24
2x
想到……
近似解 图象解
其它解法?
18
Байду номын сангаас
f x x 2 = g x =
抛出地的水平距离为 30m 时,达到最大高10m。 ⑴ 求球运动路线的函数解析式和自变量的取值范围;
⑵ 求球被抛出多远;
⑶ 当球的高度为5m时,球离抛出地面的水平距离
是多少m?
y
提出问题远比解
决问题更有价值
2020/11/24
15 10 5
10 20 30 40 50
x 17

已知一元二次方程X²+X-1= 0 .
A
2、探究活动:
已知有一张边长为10cm的正三角形纸板,若要从
中剪一个面积最大的矩形纸板,应怎样剪?最大面
积为多少?
B
C
A
2020/11/24
D
E
BK
FC
9
例:用长6m的铝合金条制成如图形状的矩形窗框,问 宽和高各是多少m时,窗户的透光面积最大?最大面积 是多少?
解:设窗框的宽为 x m, 则高为
6
例1:用8 m长的铝合金型材做一个形状如图所示的矩形窗框.
应做成长、宽各为多少时,才能使做成的窗框的透光面积最大? 最大透光面积是 多少?
解:设矩形窗框的面积 为y,由题意得,
y
83x
•x
3
2
x2
4x
(0
x
8) 3
2
3(x4)2 8
2 33
当窗框的宽x 4 m,窗框的长为7 m时,

二次函数图像与性质(共44张PPT)

二次函数图像与性质(共44张PPT)
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1

闭区间二次函数求最值PPT课件

闭区间二次函数求最值PPT课件

S(x) 2(x a 2)2 a2 12a 4 ; x 0, 2
4
8
得到问题——即求含参数二次函数在区间[0,2]的最小值。
第1页/共12页
例1:已知函数 y x2 2x 3 求函数 y f (x) 在下列区间上的最值。
(1)x 2,0
(2) x 2,4
( 3)
x
1 2
,
5 2
当a 0时f (x)在[-2, 0]上是减函数,在区间[-2, 0]上 f (x)min f (0),即a2 5 a 5或a 5. 从而在区间[-2, 0]上f (x)max f (2) a2 4a 5 4 5.
综上a 0时函数f (x)在区间[-2,0]上的最大值25 a 0时函数f (x)在区间[-2,0]上的最大值5 4 5.
第7页/共12页
综上所述M
(a)
a2
4a
1,
a2 2a 2,
a (, 1] 2
a (1 , ) 2
a2 2a 2, m(a) 3,
a2 4a 1,
a (, 1) a [1, 2], a (2, )
第8页/共12页
回归课题:
求函数 S(x) 2(x a 2)2 a2 12a 4 ; x 0, 2 的最小值.
第6页/共12页
例3例己知函数y x2 2ax a2 3, x [1, 2]求y的最大值M (a) 及最小值m(a) 解:y x2 2ax a2 3 (x a)2 3,其对称轴为x a (1)当a -1时, f (x)在[1, 2]上单调递增
(2)当1 a 1 时f (x)在[1, a]上单调递减;在(a, 2]上单调递增; 2
axbx其对称轴为给定区间其对称轴为又函数开口向上在区间求函数例函数在区间上的最小值为时区间在对称轴的左侧在此区间上是减函数所以时对称轴为在此区间内又函数开口向上所以时区间在对称轴的右侧在此区间上是增函数所以axax例已知二次函数在区间上有最小值求函数在区间上的最大值上是增函数在区间舍去从而在区间上是减函数在区间综上时函数在区间上的最大值时函数在区间上的最大值的最大值及最小值minmaxminmaxminmax求函数的最小值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当x t 时 ymax t 2 2t 3
当x=t+1时 ymin=t2+2
.精品课件.
11
(2)当t 1 即0 t 1时 t 1 1
1[t , t 1]
当x 1时 ymin 2
当t 1 1即t 1 时
2
2
当x t 1时 ymax t 2 2
当t 1 1即t 1 时
01
x
(2) y 2x 2 4x
解: y 2( x1)2 2
xR
当 x=1时,ymin 2
.精品课件.
y x=1
1
0
x
-2
4
例2、求下列函数的最大值与最小值
(1) y x2 3x 2 (3 x 1)
解: y ( x 3)2 2 9
2
4
3 x
2
y
( x 3)2 4 1
当x 3时 当x 1时
26 ymax 5
6
ymin
5
.精品ห้องสมุดไป่ตู้件.
6
( 3 ) y 1 x2 2x 1 x [1, 2]
2
x 2
y
解: y 1 ( x 2)2 3
2
-1
2 [1, 2]
02 x
函数 y = f(x)在[-1,2]上为增函数
5 当x 1时 ymin 2
当x 2时 ymax 5
如果不等式f(x) f(x0 ), 对于定义域内任意x都成立,
那么f(x0 )叫做函数y=f(x0 )的最大值。记作ymax=f(x0 )
.精品课件.
3
例1、求下列二次函数的最大值或最小值
(1) y x 2 2x 3
解: y ( x 1)2 4
xR
当x=1时,ymax 4
y x=1 4
4
对称轴为x a
2
xa 2
y
(1) 当 a 1 即a 2时
2
1
y x2 ax 3在[1,1]上单调递增 -1 0
x
当x 1时 ymin 4 a 当x 1时 ymax 4 a
.精品课件.
9
(2)当 1 a 2
1

2a2
当 x a 时 2
a2 ymin 3 4
2
2
当x t 时
ymax t 2 2t 3
.精品课件.
y
0
t t+1 x
y
0
t t+1 x
12
(4) 当 t 1时
y x2 2x 3 在 [t , t 1] 上单调递增
当x=t时
ymin=t2-2t+3
当x=t+1 时 ymax t 2 2
y
1
x
0 t t+1
.精品课件.
13
0
a 2
1

2
a
0时
当 x 1时 ymax 4 a
1 a 0 即0 a 2时
2
当 x 1时 ymax 4 a
(3)当 a 1 即a 2时 2 y x2 ax 3在[1,1]上单调递减
当x 1时 当x 1时
ymax 4 a ymin 4 a
.精品课件.
y -1 0 1 x
小结
1、定义域为R的二次函数的最大值和最小值 2、定义域为某一闭区间上的最大值和最小值 3、关于带有字母参数的二次函数最值的讨论
.精品课件.
14
y -1 0 1 x
y - 01 x 1
10
例4: 求函数 y x2 2 x 3 在 [t , t 1] 上的最大值
和最小值
解: y x2 2x 3 ( x 1)2 2
对称轴 x 1
(1) 当 t 1 1 即 t 0 时
y
01
t t+1 x
y x2 2x 3 在 [t , t 1] 上单调递减
.精品课件.
7
1、 配方,求二次函数的顶点坐标。 2、判断顶点的横坐标是否在闭区间内。 3、计算闭区间端点的函数值,并比较大小。
.精品课件.
8
例3:求函数y x2 ax 3 (a R) 在区间[1,1]
上的最大值与最小值
解: y x2 ax 3 ( x a )2 3 a2
2
2
4
-3
1
3 3 ,1
0x
2
当 x 3 时 2
1
ymin
4 4
当 x 1时 ymax 1 3 2 2
.精品课件.
5
(2) y 1 x 2 2x 1 x [3 ,1]
5
x 5
解:y 1 ( x 5)2 6
y
5
5[3,1]
1
-3 0
x
函数 y = f(x) 在[-3,1]上为减函数
.精品课件.
1
二次函数: y ax2 bx c ( a0 )
a( x
b 2a
)
2
4ac 4a
b2
a>0
a<0
y x b
2a
y
b 2a
0
x
4ac b 2
4a
0
x
.精品课件.
2
函数的最大值和最小值的概念
设函数f(x)在x0处的函数值是f(x0),如果不等式f(x) f(x0 )
对于定义域内任意x都成立,那么f(x0 )叫做函数y=f(x0 )的最小值。 记作ymin=f(x0 )
相关文档
最新文档