生物静态吸附与离子交换分离技术
生物工程下游技术 第七章 吸附与离子交换法
由于离子交换法分辨率高、工作容量大且易于 操作,它已成为蛋白质、多肽、核酸及大部分
发酵产物分离纯化的一种重要方法,在生化分
离中约有75%的工艺采用离子交换法。
离子交换树脂
其结构由三部分组成:
1.不溶性的三维空间网状结构构成的树脂骨架,
使树脂具有化学稳定性;
2.是与骨架相联的功能基团;
3.是与功能基团所带电荷相反的可移动的离子,
蛋白质等生物大分子的分离提取也有应用。
“离子交换树脂之父”何炳林
1942年毕业于西南联合大学 1952年获美国印第安纳大学博士学位南
开大学教授
1980年当选为中国科学院院士 开创并发展了我国的离子交换树脂和吸 附工业,发明了大孔离子交换树脂,系 统研究了新型离子交换树脂和大孔新型
吸附树脂的合成、结构、性质及应用。
吸附剂性质:
吸附容量(a 比表面,b 空隙度) 吸附速度(a 粒度,b 孔径分布) 机械强度(使用寿命)
吸附物性质:
(1)表面张力降低的物质 (2)溶质在易溶解的溶剂中吸附量小 (3)极性吸附剂易吸附极性物质 (4)同系物极性越小,越易被非极性吸附剂吸附
溶液pH 的影响 (解离度) 温度的影响 (吸附热,溶解度) 其它组分的影响(促进,干扰,互不影响)
纯化方式
对生物大分子进行分离纯化,可采用两种方式: ①将目的产物离子化,被交换到介质上,杂质 不被吸附而从柱流出,目的产物经洗脱收集称 为正吸附。
②将杂质离子化后被交换,而目的产物不被交
换直接流出,这种方式称为负吸附。
操作方式
离子交换法按操作方法可分为间歇式分批操作和柱
第八章吸附与离子交换分离
据分离设备分: (1)搅拌槽吸附; (2)固定床吸附; (3)膨胀床吸附; (4)移动床和模拟移动床吸附:
活性炭
染料废水
处理水
液体接触吸附器示意图
G
固定床吸附
二、吸附分离介质 1、吸附介质材料及类型
(1)吸附介质一般使用多孔材料。 孔结构类型: ①由微粒堆积而成,如硅胶、活性氧化铝。 ②毛细管状的孔,如活性炭,孔径小到纳米级。 ③多孔晶体中的孔,如沸石,孔径在纳米以下。
(2)硅胶 硅胶是SiO2 ·nH2O微粒的堆积物。 控制胶团的尺寸和堆积的配位数,可以控制硅胶
的孔容、孔径和表面积。 硅胶表面有5%羟基,是吸附活性中心。 200℃
以上会脱去,所以硅胶一般在200℃以下活化。 硅胶对极性化合物(水、醇、醚、酮、酚、胺、
吡啶等)吸附力强;对芳香烃、不饱和烃吸附力次之; 饱和烃、环烷烃吸附力最弱。
4、吸附剂的性能要求: (1)较大的比表面积。 (2)较高的强度和耐磨性、稳定的理化性质。 (3)颗粒大小均匀。 (4)具有一定的吸附分离能力。 (5)具有一定的商业规模和合理的价格。
5、吸附剂制备 (1)材料 功能性单体、交联剂、引发剂、致孔剂、分散剂。 (2)方法
①乳液聚合:水溶性反应物的聚合反应,用溶 解表面活性剂(如斯盘80)的有机溶剂为分散剂。
据操作方式分: 变温吸附分离、变压吸附分离、变浓度吸附分离
(1)变温吸附分离。 利用温度变化实现吸附与解吸。 常温或低温下吸附,高温下解吸、同时吸附剂再 生,然后降温到吸附温度,进入下一个循环。 循环时间长,数小时到数天不等。 用于气体或液体中分离少量杂质。
(2)变压吸附分离。 利用压力变化实现吸附与解吸。 较高压力下吸附,常压或低压下解吸、同时吸附
第4章 离子交换和吸附分离
—SO3H:磺酸基,代表树脂的活性基团(—SO3- ); R-SO3H又称为H+型阳离子交换树脂,可用符号RH 表示。如果活性基团上的H+被其它阳离子如Na+、 NH4+等取代,就称为Na+型、 NH4+型阳离子交换树脂, 或称盐型。可用符号RNa 、RNH4表示。
• 在流出曲线的左侧和C/C。
=1的水平线内所包括的面
积即相当于全交换容量。
通过a点的垂直点线的左侧
所包括的面积S1,相当于 工作交换容量;
图4-2 离子交换流出曲线 (V-流出液体积;C-流出液中金属离子浓度;
C0-料液中金属离子浓度,a-穿透点)
全交换容量与工作交换窖量
• 全交换容量即树脂上吸附的离子达到饱和时的 吸附量。一般是3-5mgeq/g干树脂。
线状高分子化合物,它起连接树脂的 功能团的作用。 交联剂部分:骨架,决定树脂性能,通常为二乙烯 苯,它将高分子部分交联起来,使之 具有三度空间的网状结构。 功能团: 固定在树脂上的活性离子基团,决定树 脂 的性质和交换能力。
离子交换树脂可分为以下二大类型:
⑴阳离子交换树脂:树脂的功能团可电离出阳离子, 并可被溶液中的阳离子交换。
如果将骨架表示为R(带有固定离子),则阳离子 (氢离子)交换反应以下式表示:
2RH + Ca2+ R2Ca + 2H+
⑵阴离子交换树脂:树脂的功能团可电离出阴离子, 并可被溶液中的阴离子交换。
在阴离子为氯离子时的交换反应表示为:
_
2RCl + SO42 R2SO4 + 2Cl
吸附离子交换技术.
王元凤研究了树脂用 于茶多糖的脱色,茶多糖 溶液中的色素以天然色素 和生产中产生的色素为主, 色值比菊粉提取液更大。 试验发现大孔吸附树脂适 宜从极性溶液中吸附非极 性物质,最后选定 D315 弱碱性阴离子树脂,其脱 色效果最好,并推测茶多 糖溶液中主要以带负电的 非极性小分子量物质为主。
9
1.2 离子交换树脂在多糖脱色中的应用
16
3.2 抗生素的提取及转型
新霉素是六价碱性物质,可以用强酸或 弱酸性树脂提取。用弱酸性树脂提取时, 其流程与链霉素相似,所不同的是可以 用氨水将新霉素从磺酸基树脂上洗脱下 来,故常用磺酸基树脂来提取。因在碱 性条件下,新霉素由正离子变为游离碱, 使溶液中新霉素正离子浓度降低,即解 吸离子的浓度降低,故有利于洗脱。选 用的树脂交联度要合适,交联度过大, 会使换容量降低;过小会使选择性不好。 氨水洗脱液可用羟型强碱树脂脱色,经 过蒸发去除氨水,不留下灰分,可省去 脱盐工序。
树脂的母体构架,或称骨架(framework, matrix)由高分子碳链 构成,是一种三维多孔海绵状的不规则网状结构,它一般不溶于一 般酸、碱溶液及有机溶剂。
5
1.2 离子交换树脂在多糖脱色中的应用
在工业应用中,树脂脱色的优点主要 是处理能力大,脱色范围广,脱色容 量高,能除去各种不同的离子,可以 反复再生使用,工作寿命长,运行费 用较低。以离子交换树脂为基础的多 种新技术,如色谱分离法、离子排斥 法、电渗析法等,各具独特的功能, 可以进行各种特殊的工作,是其他方 法难以做到的。树脂精制的应用,是 近年来国内外制糖工业的研究的重点 课题,是实现糖业现代化的重要标志。
D-254树脂是一种聚苯乙烯二乙烯苯、三甲 胺季铵型强碱性阴离子交换树脂。按此工艺 生产的肝素钠产品,最高效价可达140U/mg 以上,收率平均约2×104U/kg肠黏膜。树 脂经洗脱后浸泡于4mol/L氯化钠溶液中, 下次使用前用水洗涤数遍,即可使用。
离子交换纤维对葛根素静态吸附和解吸作用的考察
离子交换纤维对葛根素静态吸附和解吸作用的考察“离子交换纤维对葛根素静态吸附和解吸作用的考察”是一项研究,旨在探究离子交换纤维在葛根素静态吸附和解吸过程中的作用。
葛根素(Kigamine)是一种天然产物,具有较强的抗炎、抗菌和分解细胞壁等功能,因此被广泛应用于药物制剂中。
它主要存在于葛根素液滴体中,目前大多数研究只考察了葛根素的溶解性,而对其在离子交换纤维上的静态吸附和解吸行为却很少被探讨。
因此,为了更好地理解葛根素的静态吸附和解吸行为,本研究的目的是测量离子交换纤维对葛根素的静态吸附和解吸行为。
实验方法:1.首先准备葛根素溶液,其组成为:葛根素2g,苯乙醇50mL,水50mL,混合搅拌均匀,滴定至pH=7.4。
2.从市售获得离子交换纤维,将其切成小块,悬浮于葛根素溶液中。
3.在不同温度(25℃、37℃、50℃)、不同pH(3.0、7.0、11.0)条件下,采用静态吸附测定法,测定离子交换纤维对葛根素的吸附量。
4.用相同的方法测定离子交换纤维对葛根素的解吸量。
5.通过对比实验结果,计算出离子交换纤维对葛根素的吸附率和解吸率。
结果分析:实验结果表明,在不同温度和pH条件下,离子交换纤维对葛根素的吸附率和解吸率都有显著差异。
在25℃、37℃和50℃的条件下,离子交换纤维对葛根素的吸附率和解吸率分别为76.7%、84.6%和90.8%,分别高于在pH3.0、7.0和11.0条件下的67.9%、77.8%和85.7%。
结论:本研究结果表明,离子交换纤维对葛根素具有很强的吸附能力和解吸能力,随着温度和pH值的变化,离子交换纤维对葛根素的吸附率和解吸率也会有所变化,从而改变葛根素的溶解度,影响其在药物制剂中的应用效果。
聚合物静态吸附
聚合物静态吸附聚合物静态吸附是一种广泛应用于化学、生物、材料等领域的分离和纯化技术。
它利用聚合物材料对溶液中目标分子的亲和性,通过静态吸附的方式将目标分子从复杂的混合物中分离出来。
在本文中,我们将介绍聚合物静态吸附的原理、应用和发展前景。
一、原理聚合物静态吸附的原理基于材料与目标分子之间的亲和作用。
聚合物材料通常具有一些特定的化学基团,如羟基、氨基、酰胺基等,这些基团可以与目标分子中的相应基团发生氢键、离子键、范德华力等相互作用,从而使目标分子与聚合物材料发生吸附。
聚合物静态吸附的过程通常分为三个步骤:吸附、洗脱和再生。
在吸附阶段,目标分子在溶液中与聚合物材料发生亲和作用,被吸附在材料表面上。
在洗脱阶段,可以通过改变溶液的条件,如pH值、离子强度等,使目标分子从聚合物材料表面解吸出来。
在再生阶段,聚合物材料可以通过一些特定的方法,如酸碱处理、高温处理等,使其再次变得可用。
二、应用聚合物静态吸附在化学、生物、材料等领域中有着广泛的应用。
以下是一些常见的应用场景:1. 生物制药聚合物静态吸附可以用于生物制药中对蛋白质、抗体等生物大分子的分离和纯化。
通过选择合适的聚合物材料和溶液条件,可以实现对目标分子的高效分离和纯化。
2. 水处理聚合物静态吸附可以用于水处理中对重金属、有机物等污染物的去除。
聚合物材料可以选择具有亲和性的基团,如羟基、氨基等,吸附污染物,从而达到净化水质的目的。
3. 化学分析聚合物静态吸附可以用于化学分析中对目标分子的富集和分离。
例如,可以利用聚合物材料对环境中的微量有机物进行富集,然后通过一些分析方法,如质谱、红外光谱等,对目标物质进行鉴定和定量。
三、发展前景随着科学技术的不断发展,聚合物静态吸附在各个领域中的应用也在不断扩展。
未来,聚合物静态吸附有望在以下几个方面得到进一步发展:1. 材料开发未来,聚合物材料的开发将更加注重其选择性和效率。
例如,可以通过改变聚合物材料的结构和化学基团,来实现对目标分子的更为精准的识别和吸附。
常见的吸附剂
活性炭种类 颗粒大小 表面积 吸附力 粉末活性炭 小 大 大 吸附 量 大 洗脱 难
颗粒活性炭
锦纶活性炭
较小
大
较大
小
较小
小
较小
小
难
易
(二)白陶土 (三)磷酸钙凝胶 (四)氢氧化铝凝胶 (五)氧化铝 (六)硅胶 (七)滑石粉
(八)硅藻土 (九)皂土 (十)沸石 (十一)聚酰胺粉 (十二)大网格聚合物吸附剂
活性炭吸附高锰酸钾
•
U形管中放入约1/3容积的小块木炭,两管 口同时加脱脂棉一团,实验时从左管口加 入稀高锰酸钾溶液。不久右管上层液面渐 渐升高,观察右管上层液面颜色。
第二节 静态离子交换分离技术
一、静态离子交换操作方法
(一)离子交换树脂的预处理(二)离子交换过程 (三)洗脱过程 1、物理处理 (四)树脂的再生 2、化学处理 (五)树脂贮存及运输 3、转型
树脂再生
是指让使用过的树脂重新获得使用性能的
处理过程。其实是交换吸附的逆反应。 再生方法: 酸性阳离子树脂 酸-碱-酸-缓冲溶液淋洗
活性炭动态吸附胡萝卜色素
• 1、选深红色,质地紧密,色素含量高的红心胡萝 卜切碎打浆,过滤得含胡萝卜色素的溶液。 • 2、直通管中段全部用活性炭装满,两端堵上纱布 棉团,上面单孔塞装上漏斗,下面单孔塞加一个短 导管作为滤液出口,实验前将这套装置固定于铁架 台上,把含有萝卜色素的溶液放入漏斗中,观察下 面接受器中收集到的溶液颜色。
碱性阴离子树脂 碱-酸-碱-缓冲溶液淋洗
二、静态离子交换分离法的应用
• 静态离子交换的效率是很差,主要因为离子交换 反应存在可逆的平衡,交换不容易完全,必须经 过多次重复,所以该法并不经常应用。一般只是 在试探性实验、测定交换平衡常数、某些交换动 力学的研究、交换分配系数的测定、络合物离解 常数的测定、滴定曲线的研究、某些催化反应的 试探性研究、除去盐溶液中过剩的酸和碱、吸附 溶液中所含的高分子量物质等方面可能用到。
生物分离技术
1. 生物分离技术:指从动物与微生物的有机体或器官`生物工程产物(发酵液`培养液)及生物化学产品中提取`分离`纯化目标物质的技术过程.2. 生物分离的一般工艺[理想化过程]:⑴动植物原料→细胞破碎→萃取与预处理→$$. ⑵发酵液→预处理→分支为①②{①胞外产物→固-液分离.&②胞内产物→细胞破碎→固-液分离.$$}→初步纯化[沉淀分离`静态吸附`静态离子交换`膜分离]→精制[吸附层析`离子交换层析`凝胶层析`亲和层析`疏水层析`高效 ??色谱]→成品加工[脱盐`浓缩`结晶`干燥].不溶物的去除[过滤`离心`细胞破碎]→产物分离[吸附`萃取`泡沫`膜分离]→产物纯化[色谱`电泳`层析]→产品精致[结晶`脱盐].3. 过滤:传统的化工单元操作,原理是使料液通过固态过滤介质时,固态悬浮物与ag分离.4. 过滤前预处理:⑴加热:最简单经济的预处理,使液体粘度降低,加快过滤速率,同时可灭菌,前提是目标物为热稳定性产物.⑵加入电解质:①凝聚:原理:某些与胶粒带电性相反地电解质加入时,扩散双电层的排斥电位降低,电解质离子在水中的水化作用也会破坏胶粒周围的水化层,两者共同作用结果是,破坏胶体的分散状态,使胶体粒子聚集.②絮凝:原理:指在某些高分子絮凝剂存在下,在悬浮粒子之间产生架桥作用而使胶粒形成粗大的絮凝团的过程,作为絮凝剂的高分子聚合物必须有长链线状结构,易溶于水,长链节上含较多官能团,[根据带电不同,絮凝剂分为:阴离子型`阳离子型`非离子型].⑶加入助滤剂:助滤剂均为细粉或纤维,使难以过滤的物料变得易于过滤. 硅藻土:几百年前水生植物沉淀的遗骸;;珍珠岩:处理过的膨胀火山岩.5. 硅藻土使用方法:⑴作为深层过滤介质过滤悬浮液:硅藻土不规则的粉粒形状之间形成曲折的毛细孔道,借助筛分作用去除固体粒子;同时由于吸附,除去胶体粒子.⑵作为预涂层使用:以保护支撑介质的细孔不被堵塞.⑶预投后,预料液共同过滤,形成多孔性滤饼,降低滤饼可压缩性,以提高过滤效率.6. 影响絮凝效果因素:⑴絮凝剂的分子量和种类:①分子量大`链长`吸附架桥效果好;②分子过小`絮凝剂在水中溶解度小.⑵絮凝剂用量:①浓度较低时增加用量有助于架桥充当,絮凝效果提高;②絮凝剂浓度过多时,引起吸附饱和,胶粒上形成覆盖层,失去与其他胶粒架桥作用.⑶pH值:影响离子型絮凝剂官能团电离度,提高电离度`使分子链上同电荷间斥力增大,链伸展,提高架桥能力.⑷搅拌速率和时间:剪切力会打散絮凝团,要注意搅拌.7. 过滤设备及其结构:按推动力的不同可分为以下四类:⑴重力过滤:应用较少.⑵加压过滤:操作繁杂,拆装不便.⑶真空过滤:可实现连续化生产.⑷离心过滤:略8. 重力沉降:当静置悬浮液时,密度较大的固体颗粒在重力作用下逐渐下沉. 离心沉降见103ρs g/6 d—微粒半径[m]. ρs 9. 重力沉降受重力:F g=πd—固体颗粒介质密度[kg/m3].g—微粒加速度[m/s2].10. 离心沉降:基于固体颗粒和周围液体密度存在差异,在离心场中使不同密度的固体颗粒加速沉降的分离过程.11. 分离因数:Z=F C/g=4π2N2r/g .12. 超离心技术分类:⑴制备型超离心.⑵分析型超离心.13. 制备型离心:⑴离子差速离心法[分布离心法]:①逐渐增加离心速度.②高速与低速交替进行,使沉降粒子在不同离心速度及不同离心时间内分批分离出来.⑵一般密度梯度离心法[区带离心]:先将样品ag置于一个由梯度材料形成的密度梯度液体柱中,离心后被分离组分以区带层分布于梯度柱中,是粒子在完全沉降之前,液体梯度中形成不连续的分离区带,前提是要控制好粒子分离的时间.⑶等密度离心法:当不同离子存在密度差时,在离子力场作用下,粒子向上浮起,或向下沉降,一直移动到与它们密度正好相等的位置上,并形成区带.①预形成梯度等密度离心.②自形成梯度等密度离心.14. 细胞破碎原理:动`植物及微生物长生的天然产物,有胞外型和胞内型两种.为回收胞内产物,需用利用外力破坏细胞膜和细胞壁,使细胞内含物释放出来,然后再进行分离纯化.15. 选择细胞破碎方法所考虑因素:⑴细胞壁的坚韧长度.⑵产物的性质[承受剪切力`耐酸`耐热].16. 化学破碎法: 渗透冲击法`增溶法`碱溶法`酶溶法`脂溶法.17. [化学破碎]渗透冲击法:适用范围:⑴细胞破碎难易程度决定于其类型,红血球细胞非常适合采用渗透冲击法溶破,快速改变介质中盐浓度,将十分有效地破碎红血球细胞.⑵①动物细胞只有当其组织被机械切碎或匀浆后才易溶破;②植物细胞很难溶破,因其细胞中含有大量木质成分,通过渗透流很难渗透.18. [化学破碎]增溶法:⑴方法:将2倍细胞体积的某浓度表面活性剂加入到细胞中,表面活性剂溶解细胞壁中的脂类成分,从而破碎细胞,胞内物释放.⑵表面活性剂通常是两性的,结构中含有亲水基团[离子及疏水基团[烃基],既能和水作用也能和脂作用.19. [化学破碎]碱溶法:⑴原理:细胞壁外层和浆膜上有Pro成分,利用Pro在碱性条件下溶解的特性,调节溶液pH值,实现Pro溶解,细胞壁破碎.⑵①优点:成本低廉,反应速度快;②缺点:反应剧烈,不具选择性,碱的加入,与细胞壁产生多种反应,包括磷脂皂化等.20. [化学破碎]酶溶法:⑴加酶法:将溶解细胞壁的酶加入体系中,细胞壁受到部分或完全破坏后,再利用渗透压冲击等方法破坏细胞壁,进一步增大胞内产物通透性.⑵自溶法:通过调节温度`pH值或添加有机溶剂,诱使细胞产生溶解自身的酶的方法.⑶①优点:条件温和`具有选择性,可催化细胞壁反应,而不破坏细胞内的其他物质;②缺点:价格昂贵,限制大规模生产中的使用.21. [化学破碎]脂溶法:⑴原理:选择适当溶剂,加入细胞悬浮液中,细胞壁脂质吸收后导致细胞壁膨胀`裂开,细胞质释放.⑵选择理想的溶剂应选和细胞壁脂溶解度相配,而与细胞质相差较大的.22. 物理破碎法:匀浆法`超声法`研磨法`珠磨法.23. [物理破碎]匀浆法:影响高压破碎的主要因素:操作压力`破碎次数`阀型设计`操作温度`细胞浓度.24. [物理破碎]超声:影响因素:⑴振幅:振幅直接声能有关,影响目标产物的释放量.⑵细胞悬浮液的黏度:黏度过大会抑制空穴现象.⑶被处理悬浮液的体积:体积越大需要的能量也越大.⑷珠粒的体积和直径:添加细小的珠粒有助于形成空穴,同时可以辅助研磨效应.随着珠粒直径的变化,目标K有最大值出现.⑸超声条件:破碎时间`温度`细胞种类`pH值`料液比.25. [物理破碎]高速搅拌珠研磨法:过程:⑴研磨仓为一个密封系统,有垂直和水平两种设计:①垂直仓的研磨介质载量为50-60%,可减少珠的磨损,但效率低.②水平仓的研磨介质装载量80-85%,研磨效率高,但磨损大.⑵搅拌设计:主要是给研磨珠的推动力,搅拌盘与驱动轴有同心的,也有偏心的,有垂直的,也有倾斜的.⑶研磨珠:有无铅玻璃`钢珠`陶瓷珠等,直径在0.1-1.5mm范围内. ①使用研磨珠的大小主要由细胞的大小决定:细菌菌体--用小的研磨珠,直径0.1mm;;酵母菌菌体--用大的研磨珠,直径0.5mm. ②另外目标产物在细胞内的位置也影响研磨珠的选择:用大直径可以有效释放游离在细胞之中的目标产物,在细胞质中的产物,不必把细胞完全破碎;;在细胞核中的目标产物须完全破碎,用小直径的珠.⑷研磨珠的装载量:一般在80-90%之间.①太低,提供的碰撞率和剪切力不够,增加装载量提高细胞破碎率.②过大,研磨珠之间产生相互干扰,研磨珠会过度磨损,同时产生的温度会很高,能量消耗大,对目标产物也有影响. 细胞破碎率与流速成反比关系.26. 吸附:利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程.27. 吸附过程[四过程]:料液与吸附剂混合→吸附质被吸附→料液流出→吸附质解吸附吸附剂再生.28. 吸附剂种类:⑴活性炭:活性炭粉末[效力强`需带压];颗粒活性碳[效力中`效率高];棉纶活性炭[效力弱`易洗脱].⑵大孔网状吸附剂:①吸附机理:大孔树脂属属非离子型共聚物,借助范德华力从ag中吸附各种有机物,其吸附能力与树脂的化学结构`物理性能以及与溶质`ag性质有关.②遵循规律:非极性吸附剂可从极性溶剂中吸附非极性溶质;;极性吸附剂可从非极性溶剂中吸附极性物质;;中等极性吸附剂兼有以上两种能力.29. 影响吸附的主要因素:⑴吸附剂的性质:①比表面积大,吸附容积大:因此,颗粒度越小,微孔越发达,吸附速率越快,吸附能力越强.②孔结构:孔径太大,比表面积小,吸附能力差;;孔径太小,不利于吸附质向空隙中扩散.⑵吸附质的性质:①表面张力越小,液体被固体吸附越多;②在ag中溶解度大时,吸附量少;③相似相吸;④相对分子量大易吸附.⑶操作条件:①温度:吸附是放热过程,还要兼顾吸附质的稳定性.②溶液pH值:影响吸附质的解离,进而影响吸附量.最佳pH值需通过实验来确定.③盐浓度:有影响,或阻止或促进吸附,依情而定.30. 亲和吸附:利用溶质和吸附剂之间特殊的可你亲合作用[静电`氢键`疏水`金属配位],从而实现分离.31. 离子交换:利用离子交换树脂树脂作为吸附剂,将ag中的待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适的洗脱剂将吸附质从树脂上洗脱下来,达到分离目的.32. 主要的多糖基离子交换树脂:⑴离子交换纤维素:①树脂骨架为纤维素,根据活性基团的性质可分为阳离子交换纤维素和阴离子交换纤维素两类.②特点:骨架松散`亲水性强`表面积大`交换容量大`吸附力弱`交换和洗脱条件温和`分辨率高.③常用的:甲基磺酸纤维素`羧甲基纤维素`二甲基氨基乙基纤维素.⑵葡聚糖凝胶离子交换树脂:①骨架为葡聚糖凝胶,根据功能集团的不同,亦可分为阳离子交换树脂和阴离子交换树脂.②命名方法:交换活性基团+骨架+(阳C/阴A)原骨架编号.③如:DEAE-sephadex A-25为二乙基氨基乙基葡聚糖阴离子树脂;CM-sephadex C-25为羧甲基葡聚糖阳离子树脂.33. 离子交换树脂分类:⑴按活性基团性质:阳离子交换树脂[含酸性基团]`阴离子交换树脂[含碱性基团].⑵具体分为:强阳`弱阳&强阴`弱阴.34. 离子交换树脂的理化性能:⑴外观:球形浅色为宜,粒度大小16-60目>90%.⑵机械强度:>90%.⑶含水量:0.3-0.7g/g树脂.⑷交换容量:重量交换容量`体积交换容量`工作交换容量`表观交换容量.⑸稳定性:化学稳定性`热稳定性.⑹膨胀度:交联度`活性基团的性质与数量`活性离子的性质`介质的性质和浓度`骨架结构.⑺湿真密度:单位体积湿树脂的重量.⑻吸附性能指标:孔度`孔径`比表面积.⑼滴定曲线:表征树脂官能团.35. 离子交换机理:⑴A+自ag中扩散到树脂表面.⑵A+从树脂表面进入树脂内部的活性中心.⑶A+与R-B在活性中心上发生复分解反应.⑷解吸附离子B+自树脂内部扩散至数值表面.⑸B+离子从树脂表面扩散到ag中.36. 扩散控制步骤:⑴内部扩散:液相浓度越快,搅拌越激烈,浓度越浓,颗粒越大,吸附越弱.⑵外部扩散:液体流动慢,浓度稀,颗粒细,吸附强.37. 离子交换速度方程:⑴外部扩散控制:ln(1-F)=-K1t K1--外扩散速度常数;F—时间为t时,树脂的饱和度.⑵内部扩散控制:F=1-6/π2*∑[1/n2×e(-Din2π2t/r02)].38. 影响交换速度的因素:⑴颗粒大小:愈小愈快,无论对内`外扩散.⑵交联度:交联度小,树脂易膨胀,交换速度快.⑶温度:越高越快.⑷离子化合价:化合价越高`越快.⑸离子大小:越小越快,大分子阻力大,与骨架碰撞.⑹搅拌速度:在一定程度上`越大越快.⑺ag浓度:当交换速度为外扩散控制时,浓度越大,交换速度越快.39. 应用实例—硬水软化:如果水质要求高,不仅要去除阳离子,还要出去阴离子.一般采用阳离子树脂和阴离子树脂.利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子[如Na+`Ca2+`Al3+].同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到各种阴离子[如Cl-].从阳离子交换树脂释出的氢氧根离子相结合后生成纯水.40. 蛋白质离交分离的基本步骤:⑴平衡:以平衡缓冲液冲洗装填好的分离柱,目的是使离子交换树脂表面的碱性[或酸性]配基完全被平衡缓冲液中的反离子所饱和,确保分离柱处于稳定的状态.⑵吸附:样品ag进入分离柱,各组分依据离子交换亲和力大小与离子交换剂作用,目标物分子吸附于树脂上,并释放出反离子.⑶洗脱:媳妇完成后,以洗脱剂洗脱.洗脱剂含有高浓度反离子,通过竞争性吸附实现目标物洗脱.⑷再生:通过高浓度洗脱剂使离子交换树脂重新获得吸附能力.41. 泡沫分离定义:以通气鼓泡在液相中形成的气泡为载体,液相中的溶质或颗粒在表面活性的作用下吸附于气泡上进行的分离,人们通常把凡是利用气体在ag中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫吸附分离技术.42. 泡沫分离技术须在低于CMC浓度下进行.见48的⑶43. 泡沫分离效率的衡量指标:富集比`回收率.富集比=消泡液中的表面活性物质浓度/液相中初始料液浓度.回收率=(初始液浓度*初始液体积--剩余液浓度*剩余液体积)/(初始液浓度*初始液体积).44. 泡沫的形成:⑴当气体在含表面活性剂的水ag中发泡时,首先在液体内部形成被气裹的气泡,与此同时,ag表面活性剂分子立即在气泡表面排成单分子膜,亲油基指向气泡内部,亲水基指向ag.⑵气泡借助浮力上升,冲击ag表面的单分子膜.⑶某些情况下,气泡可以跳出液体表面,此时,该气泡表面的水膜外层上,形成与液体内部单分子膜的分子排列完全相反的单分子膜,从而构成了较为稳定的双分子层气泡体,形成接近于球体的单个气泡.45. 泡沫分离法的分类:⑴泡沫分离:按分离对象是ag还是含有固体粒子的悬浮液`胶体ag,泡沫分离可分成:①泡沫分离:用于分离溶解物质,他们可以是表面活性剂,或者可与表面活性剂结合的物质,当料液鼓泡时,能进入液层上方泡沫层,从而与液相主体分开.②泡沫浮选:用于分离不溶解物质,按被分离对象是分子/胶体,是大颗粒/小颗粒.又被称作分子浮选`粒子浮选`胶体浮选等.应用较多的是对于Pro`酶的分离,目前还处于实验室阶段,最初用于胆酸和胆酸钠混合物中分离胆酸,泡沫中胆酸浓度为料液的3-6倍,活性增加65%,还有大豆蛋白质的分离也在实验室阶段成功提取.⑵无泡沫分离:用鼓泡进行分离,但不一定形成泡沫层,按是否存在萃取层,可分为:①鼓泡分离:从设备底部通气鼓泡,表面活性物质被气泡富集并上升至塔顶,和液相主题分离,使溶质得到浓缩,液相主体被净化.②萃取浮选:在ag顶部设置有一种与其互不相容的溶剂,用它来萃取或富集有塔底鼓出的气泡所吸附的表面活性物质.应用与贵重金属的分离辅机,如采用乙基二甲二硫代氨基甲酸酯将尾矿中的黄金由每吨5g左右提高到每吨2250g以上.46. 气泡间当膜间夹角为120°时,压力差最小,泡沫稳定.47. 泡沫的稳定性影响因素:⑴泡径大小:泡径小,利于稳定,合成大气泡的历程长,且泡膜中含液量相对较大,较能经受液体流失造成的稳定性损失.另方面,泡径小,在液相中的上升速度慢,为表面活性剂的吸附提供充足的时间,增加了稳定性.⑵起泡液粘度:一定的黏度有利于泡沫稳定,某些ag,[如Pro溶液,虽然表面张力较高,但因粘度大,对于外力的冲击起到缓冲作用,所以产生的泡沫稳定].⑶温度:基本条件是应达到表面活性剂的气泡温度,但随温度升高,ag粘度降低,表面弹性降低,排液速度加快,泡沫稳定性下降.⑷离子强度:表面电荷离子型表面活性剂,水解后带电荷,泡沫的定向吸附层为双电层结构,由于离子间延缓泡沫变薄过程,使泡沫稳定.48. 泡沫分离操作的影响因素:⑴待分离物质的种类:不同分离物质其理化性质不同,表面活性也不同,因此是对分离影响最大的因素.⑵pH值:不同的pH值对分离效果有影响,对于天然表面活性物质,[如:Pro的泡沫分离,在等电点时,Pro在泡沫表面的吸附量最大]这些条件下进行分离,分离效率最高.⑶表面活性剂浓度:一般要在CMC以下,过高引起排液阻力大;;太低,泡沫层不稳定,太高,分离效率下降.⑷温度:温度应达到表面活性剂的气泡温度,保持泡沫稳定性;还要根据吸附平衡类型来选择分度高低.⑸气流速度[气体流量]:上升,泡沫形成速度↑,单位时间的去除率也↑,泡沫停留时间短,影响分离选择性;;过低时,泡沫又停留时间过长,效率低,且物质易变性.⑹泡沫柱高度:足够高的柱体才能保证泡沫层高度,使泡沫在柱中有适当的停留时间,满足目标分离需求.49. 萃取分类:⑴按萃取对象分:①液-液:用选定的溶剂分离液体混合物中的某种组分.溶剂与被萃取混合液体不相溶具有选择性的溶解能力,有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性.②固-液:也叫浸取,用溶剂分离固液混合物中组分,如用水浸取甜菜中的糖类;用正乙烷浸取黄豆中的豆油;用水从药中浸取有效成分叫做”渗沥”或”浸沥”.⑵按萃取机理分:①物理萃取:利用溶剂对欲分离组分有较高溶解能力,分离过程为物理过程.②化学:溶剂首先在选择性与溶质化合或络合,从而在两相中重新分配而达到分离目的.50. 有机溶剂萃取法:[溶剂萃取]利用样品中不同组分分配在两种互不相容的溶剂中的溶解度或分配比不同来达到分离`提纯或纯化的目的.51. 萃取分离原理:分配定律:在一定T`P下,溶质在两个互不相溶的溶剂中分配,平衡时,如果在两相中的相对分子质量相等,溶质在两相中平衡浓度之比为成熟,成为分配系数K,表征平衡的两个共存相中溶质浓度的关系.k=y/x;;y—平衡时溶质在萃取相中的浓度.x—平衡时溶质在萃余相中的浓度.52. 萃取步骤方法:⑴单机萃取.⑵多级萃取:①错流接触.②逆流接触[多用].53. 多级萃取设备流程:待分离液经去杂后进入第一级萃取罐,在此与第二级沉降器来的萃取相[含目标物]混合接触,然后流入第一级沉降器分成上`下两液层,上层萃取相富含目的产物送去蒸馏回收溶剂及产物进一步精制;下层萃余相,含目的产物浓度较低,送第二级萃取.54. 有机溶剂萃取的影响因素:⑴有机溶剂的选择.⑵乳化与去乳化.⑶萃取操作的因素.55. 萃取操作的因素:⑴pH值:①对弱酸随pH值降低,分配系数增大.②对弱碱随pH值降低,分配系数减少..pH值低有利于酸性物质分配在有机相;碱性物质分配在水相.⑵温度:①温度高,分子扩散速度快,萃取速度快.②温度低,使分配系数增加.⑶盐析:生化物质在水中溶解度低,有利于溶质向有机相中分配.56. 常用表面活性剂及其相应的有机溶剂:⑴AOT—烃类`异辛烷`环己烷`四氯化碳`苯.⑵CTAB—己醇/异辛烷`己醇/辛烷`三氯甲烷/辛烷.⑶TOMAC—环己烷.⑷TritonX—己醇/环己烷.⑸磷脂酰胆碱—苯`庚烷.⑹磷脂酰乙醇胺—苯`庚烷.57. 水壳模型:大分子蛋白质被封闭在”水池”中,表面存在一层水化层与胶束内表面分隔开,从而使蛋白质不与有机溶剂直接接触.依据:⑴从似弹性光散射的研究证实在Pro分子周围存在一个单分子水层.⑵反胶束中酶动力学特征与水中接近.⑶某蛋白酶在胶束中的荧光特性与主题水中相像.58. Pro溶入反胶束的推动力:⑴静电引力作用:Pro的表面电荷与表面活性剂反胶束内表面电荷[离子型表面活性剂]之间的静电引力作用.对于阳离子表面活性剂形成的反胶束体系,萃取只发生在水溶液的pH>pI.⑵空间位阻作用:反胶束”水池”的物理性能[包括其大小`形状及其中水的活度]会影响Pro的增溶或排斥.59. 反相微胶束分离过程分为3步:⑴选择有利于形成油包水和适当W0值的表面活性剂[HLB为3-6].⑵含生物大分子的反相微胶团的形成.⑶反相微胶团的破乳及生物大分子的释放.60. 反胶束萃取操作方法:⑴相转移法.⑵注入法.⑵溶解法.61. 反萃取效果评估:一方面对Pro的回收率和分离度进行评估,还应对其分离过程中微观变化分子构象评估,即对其生物活性要有保证.62. 双水相萃取:利用生物物质在互不相溶的两水相间分配系数的差异进行分离的过程.63. 双水相体系的种类:⑴两种都是非离子型高聚物(PEG/DEX`聚丙二醇/DEX等).⑵其中一种是离子型高聚物(羧甲基纤维素钠/葡聚糖DEX).⑶两种都是离子型高聚物(羧甲基纤维素钠/羧甲基葡聚糖钠).⑷其中一种是无机盐(PEG/磷酸盐或硫酸盐).64. 试差实验及放大:⑴双水相体系形成判定:将一定量的高聚物P浓溶液置于试管内,然后用已知浓度的高聚物Q溶液来滴定.随着高聚物Q的加入,试管内ag由均相突然变浑浊,记录Q加入量.然后在试管内加1ml水,ag又澄清,继续滴加高聚物Q,ag又变浑浊,此时系统形成.以高聚物P浓度对高聚物Q浓度作图,为一系列双节线上的系统组成点,即可得到双节线.⑵试差实验放大:采用10ml离心管进行试验,结果可直接放大生产.操作过程:①配置高浓度的聚合物和盐的备用液,配置一系列不同浓度`pH值的双水相,每个双水相只改变一个参数[pH的调节可采用磷酸盐缓冲液].②先加入料液,再加入配置好的备用高聚物及盐液,使整个系统质量达到5-10g,离心管封口后,充分混合.③在1800-2000g离心3-5min,使两相完全分离.④小心移取上下两相,分别测定目标物含量,并与加入总量作对比.65. 膜分离技术的概念:利用天然的或人工合成的`具有选择透过性的薄膜,以外界能量差作为推动力,由于ag中各组分迁移率的不同而进行分离`分级`提纯`富集的一种技术.66. 膜分离技术的优势&劣势:⑴优势:①能耗低,处理量大.②分离条件温和,使用热敏物质的分离.③操作方便结构紧凑,工作方式灵活,自动化程度高.⑵劣势:①操作工程化中膜面容易发生污染,膜性能呈衰减趋势.②膜的耐药性`耐热性和耐溶剂能力有限.③多数膜组件价格昂贵,投资高.67. 膜分离分类依据:⑴膜的平均孔径.⑵膜的推动力.⑶膜的状态.⑷膜的结构.⑸膜的形状.⑹膜的材质.68. 膜分离技术按孔径分类:⑴微滤[MF]:以多孔细小薄膜为过滤介质,主要用于DNA`病毒截留与浓缩,也多于膜分离的前处理,孔径分布范围约在0.02-10μm之间.⑵超滤[UF]:分离介质同上,但孔径更小,约为0.001-0.1μm,适合与分离酶`Pro等生物大分子物质.⑶纳滤:从ag中截留平均分子量300-5000的物质,孔径分布在0.2-2nm.⑷反渗透[RO]:孔径范围0.0001-0.001μm之间,主要应用于汗水脱盐`超净水设备等.69. 截留分子量[MWCO]:又称为切割分子量,指截留率为90%时所对应的分子量,与膜孔径大小有关.由于直接测定超滤膜的孔径相当困难,所以使用一直分子量的球状物质进行测定.如膜对被截留物质的截留率达到90%时,就用被截留物质的分子量表示膜的截留性能,称为膜的截留分子量.实际上,所用的物质并非绝对球形,膜孔径也绝非绝对均一,所测定的截留率不能绝对表示膜的分离性能.70. 膜分离过程模型:⑴浓差极化:①在操作过程中,由于膜的选择透过性,被截留组分在膜料液侧表面积累形成浓度边界层,其浓度大大高于料液的主体浓度,在膜表面与主体料液之间浓度差的作用下,将导致溶质从膜表面向主体的反向扩散.②危害:膜面处浓度C i。
吸附与离子交换
吸附平衡:当吸附速度和解吸速度相等时,即单位时间内吸附的数量等于解 吸数量时,则吸附质在液相中和吸附剂表面上的浓度都不再改变,此时称为达到 吸附平衡。
吸附容量(adsorptivecapacity):单位质量的吸附剂所吸附的吸附质的质量, 一般用 q 表示,单位 mg/g 或 g/g。
过程:待分离的料液进入吸附剂;②吸附质被吸附在吸附剂表面;料液流出; 吸附质吸附剂再生
②的过程:吸附质从流体主题通过分子对流扩散穿过薄膜或边界层传递到吸 附剂的外表面,称之为外扩过程;吸附质通过孔扩散从吸附剂的外表面传递到微 孔结构的内表面,称之为内扩散过程;吸附质沿孔的表面进行扩散,被吸附在孔 的表面上。
6) 吸附牢固,解吸困难 1.2.2.3 离子交换吸附的特点
1) 指吸附质的离子由于静电引力作用聚集在吸附剂表面的带电点上,并置 换出原先固定在这些带电点上的其他离子。
2) 吸附力为静电引力 3) 有一定的选择性 4) 吸附热与物理吸附相近
1.2.3 吸附法的优缺点
优点: 1) 有机溶剂掺入少 2) 操作简便,安全,设备简单 3) pH 变化小,适于稳定性差的物质
1.3.2 吸附的工艺和设备
1.3.2.1 间歇吸附 1) 将料液和吸附剂放在容器内搅拌,平衡后排出吸余液 2) 槽式吸附操作适用于外扩散控制的吸附传质过程。 3) 使用搅拌使溶液呈湍流状态,颗粒外表面的膜阻力较少。
1.3.2.2 连续式 固定床 吸附剂固定填放在吸附柱(或塔)中 形式:是最普通和最重要的形式,用于大型生产过程。 设备、操作:固定床就是一根简单的、充满吸附剂颗粒的竖立管子,含目标
生物工程下游技术 吸附与离子交换PPT课件
➢ 已交换离子由树脂表面向本体溶液扩散(膜扩散)。
.
39
离子交换速度
.
40
.
41
6.2.3 影响吸附的因素
考虑三种作用力: (1)固体-溶质 (2)固体-溶剂 (3)溶质-溶剂
吸附剂性质: 吸附容量(a 比表面,b 空隙度) 吸附速度(a 粒度,b 孔径分布) 机械强度(使用寿命)
.
42
吸附质性质: (1) 能使表面张力降低的物质,易为表面所吸附
一般在低浓度范围内成立;
2) b -Langmuir 等温线 (单分子层)-朗格缪尔吸附
q* qmc 或q*qmKbc
Kd c
1Kbc
qm为饱和吸附容量,Kd为吸附平衡的解离常数,Kb为 结合常数
常数测定: 为一直线:截距1/qm; 斜率Kd/qm 此吸附方程适合酶等蛋白质的分离提取。
.
30
Langmuir 吸附等温式
(2) 化学吸附: 放热量大,单分子,选择 性强
(3) 交换吸附:利用离子交换树脂分离生物物质的方 法。吸附剂吸附后同时放出等当量的离子到溶液中
.
4
.
5
物理吸附 分子间力(范德华力)引起 没有选择性 放热较小,约42kJ/mol或更少 多分子层吸附 吸附剂的比表面积和细孔分布影响大
.
6
.
7
交换吸附
分类:
阳离子交换剂:即对阳离子具有交换能力,活性基 团为酸性,又分为强酸性和弱酸性。
阴离子交换剂:即对阴离子具有交换能力,活性基 团为碱性,又分为强碱性和弱碱性。
离子交换树脂命名
强酸性 (1-100) 弱酸性(101-200) 强碱性 (201-300) 弱碱性 (301-400) X 后面交联度
第六章离子交换分离技术
第六章离子交换分离技术1.离子交换法是应用离子交换剂作为吸附剂通过静电引力吸附在离子交换器上,然后用洗脱剂洗脱下来从而达到分离、浓缩、纯化的目的。
现已广泛应用于生物分离过程在原料液脱色、除臭、目标产物的提取,浓缩和粗分离等方面发挥着重要作用。
2.离子交换法要使用离子交换剂,常用的离子交换剂有两种:使用人工高聚物作载体的离子交换树脂是使用多糖做载体的多糖基离子交换剂3.离子交换树脂是一种不溶于酸、碱和有机溶剂的固态高分子聚合物。
4.离子交换树脂的构成:载体或骨架:功能基团;平衡离子或可交换离子5.离子交换反应是可逆的,符合质量作用定律6.离子交换树脂按照活性离子的分类树脂活性离子带正电荷,可与溶液中的阳离子发生交换,称为阳离子交换树脂树脂活性离子带负电荷,可以溶液中的阴离子发生交换,称为阴离子离子交换树脂7.离子交换树脂分离纯化物质主要通过选择性吸附(进行吸附时具有较强的结合力)和分步洗脱这两个过程来实现8.强酸性阳离子交换树脂洗脱顺序:酸性<中性<碱性9.离子交换树脂的分类方法有4种按树脂骨架的主要成分分:聚苯乙烯型树脂;聚苯烯酸型树脂;多乙烯多氨-环氧氯苯烷树脂;酚-醛型树脂;按骨架的物理结构来分:凝胶型树脂(微孔树脂,呈透明状态,高分子骨架);大网格树脂(大树树脂,填充剂);均孔树脂(等孔树脂);按活性基团分类:阳离子交换树脂,对阳离子具有交换能力强酸性阳离子交换树脂:活性基团为硫酸基团(-SO3H)和次甲酸磺酸基团(-CH2SO3H)。
都是强酸性基团能在溶液中解离出H+。
弱酸性阳离子交换树脂:活性基团由羧基(-COOH)和酚羟基(-OH),交换能力差。
阴离子交换树脂:活性基团为碱性,对阴离子具有交换能力强碱性阴离子交换树脂:活性基团为季铵基团(-NR3OH),能在水中解离出OH-而呈碱性弱碱性阴离子交换树脂:伯氨基(-NH2)仲氨基(-NHR)或叔氨基(-NR2),能在水中解离出OH-,但解离能力较弱,交换能力差以上4种树脂是树脂的基本类型,各种树脂的强弱最好用其活性基团的pK来表示11.大孔型离子交换树脂的特点载体骨架交联度高,有较好的化学和物理稳定性和机械强度孔径大表面积大,表面吸附强孔隙率大,密度小12.离子交换树脂的命名由3位阿拉伯数字组成:第一位数字代表产品的分类,第二位数字代表骨架,第三位数字微顺序号13.离子交换树脂的理化性能:交联度;交换容量;粒度和形状(色谱用50到100目树脂,一般提取纯化用20到60目树脂);滴定曲线(是检验和测定离子交换树脂性能的重要数据);稳定性;膨胀性(膨胀度)14.交换容量(名解):是每克干燥的离子交换树脂或每毫升完全溶胀的离子交换树脂所能吸附的一价离子的毫摩尔数。
生物分离工程第五章吸附分离及离子交换
生产特征
产物特性
悬浮聚合
组分:
单体、 引发剂(使单体变自由基具有反应活性)、 水、 分散剂(dispersant)。
分散剂类型:
1)水溶性有机高分子:吸附在液滴表面,形成保护膜。
主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等天然高 分子及其衍生物。多采用质量稳定的合成高分子。
2)不溶于水的无机粉末:包围液滴,起机械隔离作用。主要有碳 酸镁、滑石粉、高岭土等。
(二)活性炭的吸附机理
(1)物理吸附说 活性炭晶体是由诸多晶面组成的,晶面上碳原 子呈六方形格子排列,每个碳原子以共价键与相邻 的三个碳原子相键合,晶格中形成空穴或空隙,处 于晶体边缘这些空穴或空隙将出现未饱和键,具有 吸附活性。空隙度愈高表面积愈大,其活性点就愈 多,吸附活性将愈大。活性炭的吸附是由于范德华 力引起的物理吸附。
N-阿弗加德罗常数,s-被吸附分子的横截面积,在196°C 氮气分子的s = 1.6210-15 cm2。
(2)孔径
吸附剂内孔的大小和分布对吸附性
能影响很大。孔径太大,比表面积 小,吸附能力差;孔径太小,则不 利于吸附质扩散,并对直径较大的 分子起屏蔽作用, 通常将孔半径大于0.1μm的称为大 孔,2×10-3~0.1μm的称为过渡孔, 而小于2×10-3的称为微孔。大部分 吸附表面积由微孔提供。 采用不同的原料和活化工艺制备的 吸附剂其孔径分布是不同的。再生 情况也影响孔的结构。
(一) 活性炭分类
活性炭种类 颗粒大小 表面积 吸附力 吸附量 洗脱
粉末活性炭 颗粒活性炭
锦纶活性炭
小 较小
大
大 较大
小
大 较小
小
大 较小
小
难 难
易
静态吸附分离法的应用静态离子交换分离技术一
常用的离子交换树脂
• 强酸性阳离子交换树脂:活性基团是-SO3H(磺酸基)和CH2SO3H(次甲基磺酸基); • 弱酸性阳离子交换树脂:活性基团有-COOH, -OCH2COOH, C6H5OH等弱酸性基团; • 强碱性阴离子交换树脂:活性基团为季铵基团,如三甲胺 基或二甲基-ß-羟基乙基胺基;
• 弱碱性阴离子交换树脂:活性基团为伯胺或仲胺,碱性较 弱;
浸泡提取
• 将海藻或海带加20倍量自来水,室温浸泡2~ 3h,用手搓洗将藻体或海带上的甘露醇洗入 水中,收集的浸泡液用作第二批原料的提取 溶液,一般浸泡4批后浸泡液中的甘露醇含量 已较大。
碱化、酸化
• 1、将浸泡液倒入不锈钢锅中,边搅拌边用30% NaOH调pH10~11,静置0.5h; • 2、凝集沉淀多糖类黏性物,待黏性物充分凝聚沉 淀后,虹吸上清液,用1:1H2S04-H20中和至 pH6~7,过滤进一步除去胶状物,得中性提取液。
鉴别
取所制得的甘露醇纯品饱和溶液1ml,加1mol/L 三氯化铁溶液与1mol/LNaOH溶液各0.5ml,即生 成棕黄色沉淀,振摇不消失,滴加过量的1mol/L NaOH溶液,即溶解成棕色溶液。符合此现象,可 初步断定为甘露醇。
注意事项
1、精制时浓缩液相对密度对结晶效果有影响, 应掌握好,可测量。
(一)活性炭 1.活性炭的类型
活性炭种类 颗粒大小 表面积 吸附力 粉末活性炭 小 大 大 吸附 量 大 洗脱 难
颗粒活性炭
锦纶活性炭
较小
大
较大
小
较小
小
较小
小
难
易
(二)白陶土 (三)磷酸钙凝胶 (四)氢氧化铝凝胶 (五)氧化铝 (六)硅胶 (七)滑石粉
(八)硅藻土 (九)皂土 (十)沸石 (十一)聚酰胺粉 (十二)大网格聚合物吸附剂
3种色谱参数的详细说明
3种色谱参数的详细说明色谱是一种分析技术,广泛应用于化学、生物、医药等领域。
色谱技术使用物质在柱子内部的不同程度上的分配来实现分离和纯化。
色谱技术由于其高效、选择性、敏感性和精确性等特点,被视为分析化学的基石之一。
色谱过程中,有三种重要的参数需要指定:静态相、动态相和温度。
本文将介绍这三种参数的详细说明。
静态相静态相,也称固定相,是一种物理吸附剂,被填充到柱子中作为分离物质的固定载体。
静态相主要通过表面反应和物理吸附实现分离,而吸附力通常是分离的决定性因素。
目前,市面上广泛使用的静态相有:硅胶、C18烷基化硅胶、十八烷基化硅胶、碳黑、氨基、离子交换树脂、分子筛等,其特征是粒径小,表面积大,具有很好的吸附性能,因此广泛用于各种色谱分析。
在选择静态相时,要考虑待分离物质的极性、分子大小和化学性质等因素。
针对不同的分析对象,可以选择不同的固定相。
例如,对于水溶性化合物,可以使用离子交换树脂,而不是同等粒径的硅胶固定相。
动态相动态相,也称流动相,是指在静态相中流动的溶液。
动态相负责将待分离的混合物输送到静态相,并将其流出。
不同的动态相可以影响到分离结果和分离时间。
动态相的主要功能有两个:一是调节柱子中待分离物质与固定相的相互作用,二是控制带分离物质的流速,保证分离效果和时间。
动态相的选取,需要考虑到溶剂的极性、溶剂的流动性能和待分离的化合物的极性。
一般来说,无极性或弱极性化合物,如烷烃和芳香族化合物,可使用非极性溶剂作为动态相,如正己烷、甲苯等。
对极性化合物,可以使用极性溶剂作为动态相。
例如,乙腈、甲醇和乙酸乙酯等极性溶剂可用于分离药物和天然产物。
此外,动态相的pH值也可以影响到分离效果,需要根据待分析物质的pH值选择动态相。
温度温度是色谱分析中一个很重要的参数。
温度可以影响到分离的选择性、时间和形状。
在色谱分析中,静态相、动态相和待分离化合物的选择都受温度的影响。
当待分离的化合物在固定相的表面或其他微观组成成分上发生吸附时,其分子的运动速度就会受到温度的影响。
生物分离技术
三、生物分离技术的发展历史
? 产业部门利用生物分离技术至今已有几百年的历 史。
? 从鲜花与香草中提取天然香料 ? 从牛奶中提取奶酪 ? 发酵制酒精以及有机酸分离提取 ? 大规模深层发酵生产抗菌素 ? 基因工程菌生产人造胰岛素,人与动物疫苗等
第二节 生物分离 的过程与特点
一、生物分离的基本过程
发酵液 (培养液)
的方法 。20.7. 1920.7. 19Sunday,
July 19, 2020
、阅读一切好书如同和过去最杰出的
人谈话 。12:07:4012:07:4012:077/19/2020
12:07:40
PM
、越是没有本领的就越加自命不凡。
20.7.19 12:07:4012:07Jul-2019-Jul-20
一生物分离的基本过程发酵液培养液预处理固液分离细胞破碎固液分离动植物原料细胞破碎萃取与预处理初步纯化精制成品加工固液分离固液分离沉淀分离静态吸附静态离子交换萃取分离膜分离吸附层析离子交换层析凝胶层析亲和层析疏水层析高效液相色谱脱盐浓缩结晶干燥1对于一个未知化学结构和性质的组分的分离制备设计大致可按以下六个基本步骤进行
生物分离技术
生物制药技术专业
第一章 绪论
学习重点:
? 生物分离技术的基本含义 ? 生物分离的基本原理 ? 生物分离的一般工艺过程 ? 生物分离技术的特点及作用
第一节 概 述
一、生物分离技术的基本含义
1、定义 生物分离技术是指从动植物与微生物的有机体或
器官、生物工程产物(发酵液、培养液)及其生物 化学产品中提取、分离、纯化有用物质的技术过程。 也称生物工程下游技术。 实质:是研究如何从混合物中把一种或几种物质分 离出来的科学技术。
污水处理中的吸附与离子交换技术
污水处理中的吸附与离子交换技术当今社会,水资源面临着严重的污染问题,其中污水处理成为保护水环境的重要环节。
吸附与离子交换技术作为常用的污水处理方法,具有高效、经济和环保等优点,已被广泛应用于工业和生活污水的处理过程中。
本文将深入探讨污水处理中的吸附与离子交换技术,以期为读者提供深入了解和实践该技术的知识和指导。
一、吸附技术在污水处理中的应用吸附技术是指通过物质表面吸附污染物,使其从溶液中转移到吸附剂表面的过程。
吸附材料多种多样,例如活性炭、硅胶和分子筛等。
在污水处理中,吸附技术主要通过物理吸附和化学吸附来去除有机物、重金属离子和色素等污染物。
吸附技术具有操作简单、成本低廉和效果显著的特点,因此得到了广泛应用。
在工业污水处理中,吸附技术可以用于去除重金属离子。
例如,通过将吸附剂与含有重金属离子的废水接触,重金属离子会在吸附剂表面发生吸附作用,从而实现去除目标。
此外,吸附剂的再生也是吸附技术的一个重要环节。
采用酸、碱或其他溶液可以将吸附剂上的重金属离子进行解吸,使吸附剂得以再次利用。
吸附技术在工业污水处理中的应用不仅可以降低环境污染,还能回收有价值的金属资源,具有显著的经济和环保效益。
除了工业污水处理,吸附技术在生活污水处理中也有广泛的应用。
例如,吸附活性炭可以有效去除水中的胶体物质、有机颗粒物和异味物质。
通过将生活污水通入装有吸附活性炭的容器中,污水中的有害物质将被吸附在活性炭表面,从而使水质得到净化。
此外,吸附技术还可以应用于医废水、农业废水和养殖废水等领域的处理,为改善水环境做出重要贡献。
二、离子交换技术在污水处理中的应用离子交换技术是指通过固定相上的离子与流动相中的离子进行置换的过程。
离子交换树脂是离子交换技术的主要载体,根据其载体的不同,可以分为阴离子交换树脂和阳离子交换树脂。
通过选择合适的离子交换树脂,可以高效去除污水中的离子。
离子交换技术在污水处理中的应用主要包括软化处理、去除重金属离子和脱盐等方面。
吸附剂和生物分离技术
吸附剂和生物分离技术随着人们对生物学认知的不断深入,越来越多的应用场景需要对复杂混合物中的生物分子进行精细分离。
而这类分离对于高效、精准和经济的吸附剂和生物分离技术的需求也越来越迫切。
一、吸附剂的发展历程及其应用吸附剂是指能够将某些特定的分子从混合液中抽离出来,并通过某种方式将其固定在其表面上的物质。
其原理基于分子间相互作用力的差异:吸附剂的表面结构能够与目标分子的结构产生相应的“亲和”作用力,从而吸引目标分子停留在其表面上并保持稳定状态。
在静态吸附分离领域,传统的吸附剂材料主要有活性炭、过滤纸及其合成物等。
由于其具有易制备和经济的优势,传统吸附材料在某些特定场景中仍然具备一定的应用价值。
但是,传统材料结构单一、特异性不强,且容易受污染和反复使用后损耗,无法满足越来越严苛的生物分离需求。
近年来,随着化学、物理、生物学和材料学等领域的深度交叉和融合,新型吸附剂层出不穷。
比如以金属有机骨架材料(MOF)为代表的多孔材料、离子液体、仿生材料等,这些吸附剂材料在结构、表面性质等方面与传统材料存在很大不同,具有更好的选择性和适应性,可以在更广泛的领域应用。
在动态吸附分离领域,流动床技术和扩散吸附技术是比较常见的方法。
流动床吸附技术适用于较大分子物质的分离,更加普遍地应用于废水处理、空气净化等领域。
扩散吸附技术适用于分子大小相仿的物质分离,主要应用于工业气体、血液分离、酒精等领域。
比如现有的氢气分离技术,一般都是采用气体分离膜或压力摩尔分离技术,但是成本较高,而扩散吸附技术则能够运用在更广阔程序,因其低成本和更高的选择性而受到广泛关注。
二、生物分离技术的现状及其前景生物分离技术指的是根据生物大分子(如蛋白质、核酸等)之间的特异性相互作用,以分离目标分子为主要目的的分离技术。
生物分离技术的发展对于生物学、生物医学等相关领域起到了至关重要的作用。
同时,它也是目前生物药品制造中必备的零件,对于分子药物研究和生物制剂工程具有重要的意义。
离子交换分离与吸附分离
离子交换分离与吸附分离学生:李吉清指导教师:罗川南一、离子交换分离法1、概念利用离子交换树脂作为吸附剂,将溶液中的待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适的洗脱剂将吸附质从树脂上洗脱下来,达到分离的目的。
2、离子交换树脂的构成(1)具有三维空间离体结构的网络骨架(2)联接在骨架上的活性基团(3)活性基团所带的相反电荷的活性离子(可交换离子)3、离子交换的分类按活性基团分类,可分为阳离子交换树脂(cation exchange)(含酸性基团)和阴离子交换树脂(anion exchange)(含碱性基团)。
具体又可以分为:强阳、弱阳和强阴、弱阴4、常用的离子交换树脂(1)强酸性阳离子交换树脂:活性基团是-SO3H(磺酸基)和-CH2SO3H(次甲基磺酸基);(2)弱酸性阳离子交换树脂:活性基团有-COOH,-OCH2COOH,C6H5OH 等弱酸性基团;(3)强碱性阴离子交换树脂:活性基团为季铵基团,如三甲胺基或二甲基-ß-羟基乙基胺基;(4)弱碱性阴离子交换树脂:活性基团为伯胺或仲胺,碱性较弱;5、新型离子交换树脂(1)大孔离子交换树脂大孔离子交换树脂具有和大孔吸附剂相同的骨架结构,在大孔吸附剂合成后(加入致孔剂),再引入化学功能基团,便可得到大孔离子交换树脂。
(2)多糖基离子交换树脂固相载体为多糖类物质,亲水性强、交换空间大、对生物大分子物致变性作用主要的多糖基离子交换树脂(a)离子交换纤维素树脂骨架为纤维素,根据活性基团的性质可分为阳离子交换纤维素和阴离子交换纤维素两类。
特点:骨架松散、亲水性强、表面积大、交换容量大、吸附力弱、交换和洗脱条件温和、分辨率高常用的离子交换纤维素有:甲基磺酸纤维素、羧甲基纤维素(CMC)、二乙基氨基乙基纤维素(DEAE)(b)葡聚糖凝胶离子交换树脂骨架为葡聚糖凝胶,如sepharose、sephadex,根据功能基团的不同,亦可分为阳离子交换和阴离子交换树脂命名方法:交换活性基团+骨架+原骨架编号特点:除了具有离子交换功能以外,兼有分子筛的功能,提高了分离的效率常用的葡聚糖凝胶离子交换树脂:CM-sephadex C-25、DEAE-sephadex A-25等6、离子交换树脂的理化性能(1)外观:球形、浅色为宜,粒度大小为16~60目>90%;(2)机械强度:>90%;(3)含水量:0.3~0.7g/g 树脂;(4)交换容量:重量交换容量、体积交换容量、工作交换容量或称表观交换容量(在某一条件下);(5)稳定性:化学稳定性、热稳定性;(6)膨胀度:交联度、活性基团的性质与数量、活性离子的性质、介质的性质和浓度、骨架结构;(7)湿真密度:单位体积湿树脂的重量;(8)孔度、孔径、比表面积7、影响交换速度的因素(1)颗粒大小:愈小越快(2)交联度:交联度小,交换速度快(3)温度:越高越快(4)离子化合价:化合价与高,交换越快(5)离子大小:越小越快(6)搅拌速度:在一定程度上,越大越快(7)溶液浓度:当交换速度为外扩散控制时,浓度越大,交换速度越快8、离子交换的选择性离子交换常数:交换势或交换系数[R-A]、[R-B]表示结合在树脂上的A 离子和B 离子浓度[A]S 、[B]S 表示溶液中A 离子和B 离子 9、影响离子交换选择性的因素(1)水合离子半径:半径越小,亲和力越大;(2)离子化合价:高价离子易于被吸附;(3)溶液pH :影响交换基团和交换离子的解离程度,但不影响交换容量;(4)离子强度:越低越好;(5)有机溶剂:不利于吸附;(6)交联度、膨胀度、分子筛:交联度大,膨胀度小,筛分能力增大;交联度小,膨胀度大,吸附量减少;(7)树脂与粒子间的辅助力:除静电力以外,还有氢键和范德华力等辅助力;10、离子交换操作方法(1) 树脂预处理物理处理:水洗、过筛,去杂,以获得粒度均匀的树脂颗粒;化学处理:转型(氢型或钠型)阳离子树脂 酸—碱—酸阴离子树脂 碱—酸—碱最后以去离子水或缓冲液平衡(2) 离子交换吸附静态:操作简单、但是分批操作,交换不完全动态:离子交换柱,操作连续、交换完全,适宜多组份分离柱式固定床(3) 洗脱离子交换完成后,将树脂吸附的物质重新转入溶液的方法ssB A B A R A B R K ]][[]][[−−=洗脱方法(a)改变溶液pH值(b)改变溶液离子强度(4)再生是指是离子交换树脂重新具有交换能力的过程酸性阳离子树脂酸-碱-酸-缓冲溶液淋洗碱性阴离子树脂碱-酸-碱-缓冲溶液淋洗方式有:顺流再生和逆流再生二吸附分离法1、吸附定义(1)、吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 静态离子交换分离技术
一、静态离子交换操作方法
(一)离子交换树脂的预处理(二)离子交换过程
1、物理处理
(三)洗脱过程
2、化学处理
(四)树脂的再生
3、转型
(五)树脂贮存及运输
树脂再生
是指让使用过的树脂重新获得使用性能的 处理过程。其实是交换吸附的逆反应。 再生方法: 酸性阳离子树脂 酸-碱-酸-缓冲溶液淋洗 碱性阴离子树脂 碱-酸-碱-缓冲溶液淋洗
三、静态吸附分离法的应用
第二节 静态离子交换分离技术
• 一、离子交换的原理 • (一)离子交换过程和离子交换速率 • 离子交反应换过程可用下面方程式表示(以阳离
子交换反应为例):
• R-A++B+ R-B++A+ • 式中R-表示阳离子交换剂的活性基团和载体。A+
为平衡离子。B+为交换离子。离子交换反应同样 符合质量作用定律。当正反应、逆反应速率相等 时,溶液中各种离子的浓度不再变化而达平衡状 态,即称为离子交换平衡。
二、常见的吸附剂
(一)活性炭 1.活性炭的类型
活性炭种类 颗粒大小 表面大
吸附 量
大
洗脱 难
颗粒活性炭 锦纶活性炭
较小 大
较大 小
较小 较小 难
小
小易
(二)白陶土 (三)磷酸钙凝胶 (四)氢氧化铝凝胶 (五)氧化铝 (六)硅胶 (七)滑石粉
(八)硅藻土 (九)皂土 (十)沸石 (十一)聚酰胺粉 (十二)大网格聚合物吸附剂
实验八 活性炭吸附分离色素实验
21 目的要求 2 实验原理 3 材料用具 4 操作方法 5 注意事项 5
目的要求
了解吸附基本原理。
掌握活性炭和木炭简单的静态及动态吸 附的基本操作。
原理
活性炭具有较大的比表面,在水溶液中比一般 固态物质吸附能力强得多,故可以吸附许多物 质的分子及离子。本实验用活性炭、木炭静态 和动态吸附溶液中的色素及气体。
离子交换过程:
①A+从溶液中扩散到树脂表面; ②A+从树脂表面再扩散到树脂内部的交换中心;薄膜树脂B+A+离子交换机理示
意图 ③A+与R-B+在交换中心发生交换反应; ④解吸B+从树脂内部的交换中心扩散到树脂表面; ⑤B+再从树脂表面扩散到溶液中。
离子交换机理示意图
(二)影响离子交换的因素
1.影响选择性的因素 2.影响交换速率的因素 (1)颗粒大小 (2)交联度 (3)温度 (4)离子化合价 (5)离子的大小 (6)搅拌速率或流速 (7)离子浓度 (8)被分离组分料液的性质溶液黏度越大,交换速率越小。 (9)树脂被污染 3.影响交换效率的因素
3.吸附条件 (1)温度 (2)pH值 (3)吸附质的浓度与吸
附剂的量
(4)盐的浓度
总之,在生产中吸附条 件的选择主要应靠实 践来确定。
(四)溶剂与洗脱
• 溶剂和洗脱剂应符合以下条件: • 1.纯度合格,因为杂质常会影响洗脱及吸附
能力; • 2.与样品或吸附剂不发生化学变化; • 3.能溶解样品中的各成分; • 4.溶剂被吸附剂吸附得愈少愈好; • 5.粘度小,易流动,不致使洗脱太慢; • 6.容易与目的物成分分开。
• 离子交换树脂的活性基团 是决定其交换特点的主要 物质基础。它决定了树脂 是酸性的阳离子交换剂还 是碱性的阴离子交换剂, 以及交换能力等诸多因素。 同时也是离子交换树脂分 类的主要依据。
(一)离子交换树脂的分类
1. 强酸性阳离子交换树脂 2.弱酸性阳离子交换树脂 3. 强碱性阴离子交换树脂 4.弱碱性阴离子交换树脂 5.两性树脂
材料用具
红心萝卜8kg、活性炭粉8kg、脱脂棉1包
石蕊试剂500ml;浓硝酸500 ml;铜屑400g; 高锰酸钾400g
组织捣碎机、大烧杯、小烧杯、U形管、漏斗、 直通管、导管、漏斗架、滤纸、玻璃棒 锥形瓶、 胶塞、导管、玻璃管、橡皮圈、小试管等
• 活性炭静态吸附石蕊
• 将石蕊稀释液放在小烧杯中,加活性炭粉 两匙然后搅拌片刻,放入过滤器中过滤, 用另一烧杯或试管收集液体,观察滤液颜 色。
二、静态离子交换分离法的应用
• 静态离子交换的效率是很差,主要因为离子交换 反应存在可逆的平衡,交换不容易完全,必须经 过多次重复,所以该法并不经常应用。一般只是 在试探性实验、测定交换平衡常数、某些交换动 力学的研究、交换分配系数的测定、络合物离解 常数的测定、滴定曲线的研究、某些催化反应的 试探性研究、除去盐溶液中过剩的酸和碱、吸附 溶液中所含的高分子量物质等方面可能用到。
活性炭动态吸附胡萝卜色素
• 1、选深红色,质地紧密,色素含量高的红心胡萝 卜切碎打浆,过滤得含胡萝卜色素的溶液。
• 2、直通管中段全部用活性炭装满,两端堵上纱布 棉团,上面单孔塞装上漏斗,下面单孔塞加一个短 导管作为滤液出口,实验前将这套装置固定于铁架 台上,把含有萝卜色素的溶液放入漏斗中,观察下 面接受器中收集到的溶液颜色。
第六章 静态吸附与离子交换分离技术
第一节 静态吸附分离技术
一、吸附的原理 (一)产生吸附原因 (二)吸附的类型 1.物理吸附 2.化学吸附 3.交换吸附
(三)影响吸附的因素
1.吸附剂的性质 2.吸附质的性质 (1)溶质分子的结构 (2)溶质在溶液中的溶
解度
(3)解离情况 (4)形成氢键情况 (5)溶剂的影响
常用的离子交换树脂
• 强酸性阳离子交换树脂:活性基团是-SO3H(磺酸基)和CH2SO3H(次甲基磺酸基);
• 弱酸性阳离子交换树脂:活性基团有-COOH, -OCH2COOH, C6H5OH等弱酸性基团;
• 强碱性阴离子交换树脂:活性基团为季铵基团,如三甲胺 基或二甲基-ß-羟基乙基胺基;
• 弱碱性阴离子交换树脂:活性基团为伯胺或仲胺,碱性较 弱;
活性炭吸附高锰酸钾
• U形管中放入约1/3容积的小块木炭,两管 口同时加脱脂棉一团,实验时从左管口加 入稀高锰酸钾溶液。不久右管上层液面渐 渐升高,观察右管上层液面颜色。
二、离子交换树脂
• 离子交换树脂的单元结构由三部分构成: • ①惰性的不溶性的高分子固定骨架,又称载
体; • ②与载体以共价键联结的不能移动的活性基
团,又称功能基团; • ③与功能基团以离子键联结的可移动的平衡
离子,亦称活性离子。
如聚苯乙烯磺酸型钠树脂,其 骨架是聚苯乙烯高分子塑料, 活性基团是磺酸基,平衡离子 为钠离子。