数据结构与算法上机实验报告

合集下载

数据结构与算法实验报告

数据结构与算法实验报告

数据结构与算法实验报告一、实验目的1.学习并掌握线性表的链式存储结构和链表的基本操作;2.掌握链表的插入、删除、查找等基本操作算法的实现;3.了解链表的应用场景。

二、实验内容与过程本次实验主要包括以下实验内容:1.链表的定义与建立;2.链表的插入操作;3.链表的删除操作;4.链表的查找操作;5.链表的遍历操作;6.链表的逆序操作;7.链表的合并操作。

实验过程如下:1.链表的定义与建立首先,我们定义一个链表的结构,其中包括节点的定义,节点的数据域和指针域。

节点的数据域存放具体的数据,指针域用于指向下一个节点。

```typedef struct Nodeint data;struct Node* next;} Node;```然后,我们定义链表的头指针,并初始化为空链表。

```Node* head = NULL;```2.链表的插入操作插入操作是指在链表中间或末尾插入一个新节点。

首先,我们创建一个新节点,并为其分配内存空间。

```Node* newNode = (struct Node*) malloc(sizeof(Node));newNode->data = 10;newNode->next = NULL;```然后,我们遍历链表,找到插入位置。

```Node* current = head;while (current->next != NULL)current = current->next;```最后,我们将新节点插入到链表中。

```current->next = newNode;```3.链表的删除操作删除操作是指删除链表中的一些节点。

首先,我们找到要删除的节点的前一个节点。

```Node* current = head;while (current->next != NULL && current->next->data != data) current = current->next;```然后,我们将要删除的节点的指针域赋值给前一个节点的指针域。

数据结构与算法分析实验报告

数据结构与算法分析实验报告

数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

操作系统为 Windows 10。

三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。

通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。

2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。

体会到链表在动态内存管理和灵活操作方面的优势。

(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。

2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。

(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。

2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。

(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。

2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。

(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。

2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。

四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。

删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。

数据结构与算法实验报告

数据结构与算法实验报告

数据结构与算法实验报告数据结构与算法实验报告一、引言1.1 背景介绍:介绍数据结构与算法在现代科技领域中的重要性和应用。

1.2 实验目的:明确本实验的目标和需要解决的问题。

1.3 实验内容:详细描述本次实验所使用的数据结构和算法。

1.4 实验方法:阐述实验过程中所采用的步骤和方法。

1.5 实验环境:列出本次实验所使用的硬件和软件环境要求。

二、需求分析2.1 功能需求:详细描述实验所要求实现的功能和效果。

2.2 性能需求:阐述实验对资源利用率和运行效率的要求。

2.3 输入输出需求:明确实验所需输入和期望输出的格式和要求。

三、设计与实现3.1 数据结构设计:给出实验所需的数据结构定义和描述。

3.1.1 数据结构一:介绍数据结构一的定义和特点。

3.1.2 数据结构二:介绍数据结构二的定义和特点。

3.2 算法设计:描述实验所需的算法思路和流程。

3.2.1 算法一:阐述算法一的实现原理和步骤。

3.2.2 算法二:阐述算法二的实现原理和步骤。

3.3 实现过程:详细描述根据设计完成的实现过程。

3.3.1 步骤一:列出实现过程中的第一步骤。

3.3.2 步骤二:列出实现过程中的第二步骤。

3.4 算法优化:对实现过程中的算法进行优化和改进。

3.4.1 优化一:介绍所进行的优化操作和效果。

3.4.2 优化二:介绍所进行的优化操作和效果。

四、实验结果与分析4.1 实验数据:给出实验过程中所使用的测试数据。

4.2 实验结果:列出实验运行的结果和输出。

4.3 结果分析:对实验结果进行详细分析和解释。

五、实验总结5.1 实验心得:总结实验过程中所学到的知识和经验。

5.2 实验收获:列出实验中获得的成果和收获。

六、附件本文档涉及的附件包括但不限于:源代码、输入输出样例、实验数据等。

七、注释本文档中涉及的法律名词及其注释如下:- 法律名词一:注释一。

- 法律名词二:注释二。

数据结构与算法实验报告(线性表)

数据结构与算法实验报告(线性表)

一、实验目的1、深刻理解线性结构的特点以及线性表的概念。

2、熟练掌握线性表的顺序存储结构、链式存储结构及基本运算算法的实现,特别是查找、插入和删除等算法。

二、实验环境1) 硬件:每个学生需配备计算机一台,操作系统:Windows2000/XP。

2) 软件:visual c++6.0。

三、实验题目和实验内容实验题目:线性表的顺序、链式表示及其应用实验内容:1、基本题:实验2.1、实验2.2、实验2. 4、实验2.72、附加题:实验2.3、实验2.6(没做)四、实验数据和实验结果2.1a,b,c,d,e2.2a,b,c,d,e22.4a,b,c,d,e2.7第一个多项式:2x+6x^2-4x^3+3x^4 第二个多项式1x-3x^2+6x^3-3x^4五、附录(程序代码)2.1#include<iostream.h>#include<malloc.h>#define MaxSize 50typedef struct{char data[MaxSize];int length;}SqList;void CreateList(SqList *&L,char a[],int n) {int i;L=(SqList *)malloc(sizeof(SqList));for(i=0;i<n;i++)L->data[i]=a[i];L->length=n;}void InitList(SqList *&L){L=(SqList *)malloc(sizeof(SqList));L->length=0;}void DestroyList(SqList *&L){free(L);}int ListEmpty(SqList *L){return (L->length==0);}int ListLength(SqList *L){return (L->length);}void DispList(SqList *L){int i;for(i=0;i<L->length;i++)cout<<L->data[i];cout<<endl;}char GetElem(SqList *L,int i,char &e){if(i<1||i>L->length)return 0;e=L->data[i-1];return e;}第3 页共15 页int LocateElem(SqList *L,char e){int i=0;while(i<L->length&&L->data[i]!=e) i++;if(i>=L->length)return 0;elsereturn i+1;}int ListInsert(SqList*&L,int i,char e) {int j;if(i<1||i>L->length+1)return 0;i--;for(j=L->length;j>i;j--)L->data[j]=L->data[j-1];L->data[i]=e;L->length++;return 1;}int ListDelete(SqList *&L,int i,char &e) {int j;if(i<1||i>L->length)return 0;i--;e=L->data[i];for(j=i;j<L->length-1;j++)L->length--;return 1;}void main (){SqList *p;char b[10],e;int k;cout<<"元素个数:";cin>>k;cout<<"输入元素:";for(int m=0;m<k;m++)cin>>b[m];InitList(p);4CreateList(p,b,k);cout<<"输出顺序表:";DispList(p);cout<<"顺序表长度是:"<<ListLength(p)<<endl;if(ListEmpty(p))cout<<"顺序表为空"<<endl;elsecout<<"顺序表不为空"<<endl;cout<<"顺序表第3位元素是:"<<GetElem(p,3,e)<<endl;cout<<"元素a的位置是:第"<<LocateElem(p,'a')<<"位"<<endl;ListInsert(p,4,'f');cout<<"在第4个元素上插入元素f:";DispList(p);cout<<"删除顺序表第3个元素:";ListDelete(p,3,e);DispList(p);DestroyList(p);}2.2#include<iostream.h>#include<malloc.h>typedef struct LNode{char data;struct LNode *next;}LinkList;void CreateListR(LinkList *&L,char a[],int n){LinkList *s,*r;int i;L=(LinkList *)malloc(sizeof(LinkList));r=L;for(i=0;i<n;i++){s=(LinkList *)malloc(sizeof(LinkList));s->data=a[i];r->next=s;r=s;}r->next=NULL;}第5 页共15 页void InitList(LinkList *&L){L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;}void DestroyList(LinkList *&L){LinkList *pre=L,*p=pre->next;while(p){free(pre);pre=p;p=pre->next;}free(pre);}int ListEmpty(LinkList *L){return(L->next==NULL);}int ListLength(LinkList *L){int n=0;LinkList *p=L;while(p->next){n++;p=p->next;}return(n);}void DispList(LinkList *L){LinkList *p=L->next;while(p){cout<<p->data;p=p->next;}cout<<endl;}char GetElem(LinkList *L,int i,char &e) {int j=0;6LinkList *p=L;while(j<i&&p!=NULL){j++;p=p->next;}if(!p)return 0;else{e=p->data;return e;}}int LocateElem(LinkList *L,char e){int i=1;LinkList *p=L->next;while(p&&p->data!=e){p=p->next;i++;}if(!p)return(0);elsereturn(i);}int ListInsert(LinkList *&L,int i,char e){int j=0;LinkList *p=L,*s;while(j<i-1&&p){j++;p=p->next;}if(!p)return 0;else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;第7 页共15 页p->next=s;return 1;}}int ListDelete(LinkList *&L,int i,char &e){int j=0;LinkList *p=L,*q;while(j<i-1&&p){j++;p=p->next;}if(!p)return 0;else{q=p->next;if(!q)return 0;e=q->data;p->next=q->next;free(q);return 1;}}void main(){LinkList *h;char b[10],e;int k;cout<<"元素个数:";cin>>k;cout<<"输入元素:";for(int m=0;m<k;m++)cin>>b[m];InitList(h);CreateListR(h,b,k);cout<<"输出单链表:";DispList(h);cout<<"单链表长度是:"<<ListLength(h)<<endl;if(ListEmpty(h))cout<<"单链表为空"<<endl;else8cout<<"单链表不为空"<<endl;cout<<"单链表第3位元素是:"<<GetElem(h,3,e)<<endl;cout<<"元素a的位置是:第"<<LocateElem(h,'a')<<"位"<<endl;ListInsert(h,4,'f');cout<<"在第4个元素上插入元素f:";DispList(h);cout<<"删除单链表第3个元素:";ListDelete(h,3,e);DispList(h);DestroyList(h);}2.4#include<iostream.h>#include<malloc.h>typedef struct LNode{char data;struct LNode *next;}LinkList;void CreateListR(LinkList *&L,char a[],int n){LinkList *s,*r;int i;L=(LinkList *)malloc(sizeof(LinkList));r=L;for(i=0;i<n;i++){s=(LinkList *)malloc(sizeof(LinkList));s->data=a[i];r->next=s;r=s;}r->next=L;}void InitList(LinkList *&L){L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;}void DestroyList(LinkList *&L){第9 页共15 页LinkList *pre=L->next,*p=pre->next;L->next=NULL;while(p){free(pre);pre=p;p=pre->next;}free(pre);}int ListEmpty(LinkList *L){return(L->next==NULL);}int ListLength(LinkList *L){int n=0;LinkList *p=L;while(p->next!=L&&p->next){n++;p=p->next;}return(n);}void DispList(LinkList *L){LinkList *p=L->next;while(p!=L&&p){cout<<p->data;p=p->next;}cout<<endl;}char GetElem(LinkList *L,int i,char &e) {int j=1;LinkList *p=L->next;while(j<i&&p!=L&&p){j++;p=p->next;}10return 0;else{e=p->data;return e;}}int LocateElem(LinkList *L,char e){int i=1;LinkList *p=L->next;while(p!=L&&p->data!=e&&p){p=p->next;i++;}if(!p)return(0);elsereturn(i);}int ListInsert(LinkList *&L,int i,char e){int j=1;LinkList *p=L->next,*s;while(j<i-1&&p&&p!=L){j++;p=p->next;}if(!p)return 0;else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;p->next=s;return 1;}}int ListDelete(LinkList *&L,int i,char &e) {第11 页共15 页LinkList *p=L->next,*q;while(j<i-1&&p&&p!=L){j++;p=p->next;}if(!p)return 0;else{q=p->next;if(!q||q==L->next)return 0;e=q->data;p->next=q->next;free(q);return 1;}}void main(){LinkList *h;char b[10],e;int k;cout<<"元素个数:";cin>>k;cout<<"输入元素:";for(int m=0;m<k;m++)cin>>b[m];InitList(h);CreateListR(h,b,k);cout<<"输出循环单链表:";DispList(h);cout<<"循环单链表长度是:"<<ListLength(h)<<endl;if(ListEmpty(h))cout<<"循环单链表为空"<<endl;elsecout<<"循环单链表不为空"<<endl;cout<<"循环单链表第3位元素是:"<<GetElem(h,3,e)<<endl;cout<<"元素a的位置是:第"<<LocateElem(h,'a')<<"位"<<endl;ListInsert(h,4,'f');cout<<"在第4个元素上插入元素f:";DispList(h);12cout<<"删除循环单链表第3个元素:";ListDelete(h,3,e);DispList(h);DestroyList(h);}2.7#include<iostream.h>#include<malloc.h>typedef struct polynomial{int coef; //系数int index; //指数struct polynomial *next;}LinkList;void CreateList(LinkList *&L, int n){LinkList *s,*r;int i;L=(LinkList *)malloc(sizeof(LinkList));r=L;for(i=0;i<n;i++){s=(LinkList*)malloc(sizeof(LinkList));cout<<"依次输入多项式系数和指数:";cin>>s->coef>>s->index;s->next = NULL;r->next=s;r=s;}}void InitList(LinkList *&L){L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;}void AddList(LinkList *&list1,LinkList *&list2,int m,int n) {LinkList *s,*r,*t;int i;s=list1->next;r=list2->next;t=list1;第13 页共15 页for(i=0;i<n;i++){if(s==NULL){s=list1->next;t=list1;}while(s!=NULL){if(s->index!=r->index){s=s->next;t=t->next;}else break;}if(!s){s=(LinkList*)malloc(sizeof(LinkList));s->coef=r->coef;s->index=r->index;s->next=NULL;t->next=s;s=s->next;r=r->next;continue;}else{if(s->index==r->index)s->coef=s->coef+r->coef;if(s->coef==0){LinkList *temp1;temp1=s;s=s->next;t->next=s;delete temp1;}}r=r->next;s=NULL;}cout<<"多项式相加的结果是:";14list1=list1->next;while(list1){cout<<list1->coef<<"x^"<<list1->index;if(list1->next!=NULL)cout<<"+";list1=list1->next;}}void DispList(LinkList *L){L=L->next;while(L){cout<<L->coef<<"x^"<<L->index;if(L->next!=NULL)if(L->next->coef>0)cout<<"+";L=L->next;}}void main(){LinkList *list1,*list2;InitList(list1);InitList(list2);int m,n;cout<<"请输入第一个多项式的项数:";cin>>m;CreateList(list1,m);cout<<"多项式表示是:";DispList(list1);cout<<endl;cout<<"请输入第二个多项式的项数:";cin>>n;CreateList(list2,n);cout<<"多项式表示是:";DispList(list2);cout<<endl;AddList(list1,list2,m,n);cout<<endl;}第15 页共15 页。

数据结构与算法实验报告(一)

数据结构与算法实验报告(一)

数据结构与算法实验报告(二)实验人: 学号: 时间:2013.4.23实验名称:迷宫问题实验原理:利用一个二维数组maze[i][j]表示迷宫,其中,. 数组元素值为1,表示该位置是墙壁,不能通行;元素值为0,表示该位置是通路。

假定从maze[1][1]出发,出口位于maze[m] [n]。

移动方向可以是8个方向(东,东南,南,西南,西,西北,北和东北)。

实验过程记录:(1)//比较A, B是否是同一点if (A.x==B.x&&A.y==B.y){return 1;}else{return 0;}(2) case 2:B.x=A.x+1;B.y=A.y+1;break;case 3:B.x=A.x;B.y=A.y+1;break;case 4:B.x=A.x-1;B.y=A.y+1;break;case 5:B.x=A.x-1;B.y=A.y;break;case 6:B.x=A.x-1;B.y=A.y-1;break;case 7:B.x=A.x;B.y=A.y-1;break;case 8:B.x=A.x+1;B.y=A.y-1;break;(3) maze[curpos.x][curpos.y]=8; //写一个函数留下足迹,将maze[curpos.x] [curpos.y] == 0改为不等于0,1的数字(4)maze[(e.seat).x][(e.seat).y] =3; //留下不能通过的记号,将maze[(e.seat). x][(e.seat).y] == 0改为未用过的数字实验过程中的问题:实验结果报告与实验总结:迷宫是:(1 表示障碍,0表示可以通过)1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 11 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 11 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 11 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 11 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 11 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 11 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 11 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 11 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 11 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 11 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 11 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1一条通路的二元组数据序列:->(1,1)->(2,2)->(2,3)->(3,4)->(4,3)->(5,3)->(6,2)->(7,2)->(6,1)->(7,1)->(8,1) ->(9,1)->(9,2)->(10,3)->(10,4)->(10,5)->(9,5)->(8,6)->(8,7)->(9,8)->(10,8)->(11, 8)->(11,9)->(12,10)->(11,10)->(10,11)->(10,12)->(10,13)->(10,14)->(11,15)->(12, 15)路径是沿着 8 走1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 8 1 3 3 3 1 1 3 3 3 1 1 1 1 1 11 1 8 8 3 1 1 3 1 1 1 3 3 1 1 1 11 0 1 1 8 3 3 3 1 1 1 1 3 3 1 1 11 1 1 8 1 1 1 1 3 1 1 3 1 1 3 3 11 1 1 8 1 0 0 1 3 1 1 1 1 1 1 1 11 8 8 1 1 0 1 1 1 3 1 0 0 1 0 1 11 8 8 1 1 0 1 1 1 3 1 0 0 1 0 1 11 8 1 1 1 1 8 8 1 1 1 1 1 1 1 1 11 8 8 1 1 8 1 1 8 1 1 1 1 1 1 0 11 1 1 8 8 8 1 1 8 1 1 8 8 8 8 0 11 0 0 1 1 1 1 1 8 8 8 1 1 1 1 8 11 0 1 0 0 1 1 1 1 1 8 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Press any key to continue思考与疑问:。

数据结构与算法实验报告[1]

数据结构与算法实验报告[1]

数据结构与算法实验报告实验目的:本次实验主要目的是掌握数据结构与算法的基本概念和实际应用。

通过设计和实现特定的数据结构和算法,加深对其原理和应用的理解,培养分析和解决实际问题的能力。

实验内容:本次实验包括以下几个部分:1\实验环境和工具介绍在本部分,将介绍实验所使用的开发环境和工具,包括操作系统、编程语言、集成开发环境等。

2\实验设计和思路本部分将详细介绍实验的设计思路、算法的选择和实现方式。

具体包括数据结构的选择、算法的设计原理、时间和空间复杂度分析等。

3\实验步骤和代码实现在本部分,将详细列出实验的具体步骤和算法的实现代码。

包括数据结构的定义和操作、算法的实现和测试数据的等。

4\实验结果和分析在本部分,将展示实验的运行结果,并对实验结果进行分析和讨论。

包括实际运行时间、空间占用、算法的优缺点等方面的讨论。

5\实验总结和思考在本部分,将对整个实验进行总结和思考。

包括实验过程中遇到的问题和解决方法,对实验结果的评价,以及对进一步的研究方向的思考等内容。

附件:本文档附带以下附件:1\源代码:包括数据结构的定义和操作,算法的实现等。

2\测试数据:用于验证算法实现的测试数据。

3\实验结果截图:包括算法运行结果、时间和空间占用等方面的截图。

法律名词及注释:1\数据结构:在计算机科学中,数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。

2\算法:算法是解决问题的一系列清晰而简明的指令,是计算或操作的一种良定义的规程。

3\时间复杂度:时间复杂度是度量算法运行时间长短的一个表达式,用大O符号表示。

4\空间复杂度:空间复杂度是度量算法运行过程中所需的存储空间的一个表达式,用大O符号表示。

结语:本文档详细介绍了数据结构与算法实验的设计思路、步骤和实现代码,并对实验结果进行了分析和讨论。

实验过程中,我们掌握了数据结构与算法的基本概念和实际应用,提高了问题解决能力和编程实践能力。

算法与及数据结构实验报告

算法与及数据结构实验报告

算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。

三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。

链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。

2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。

队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。

3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。

二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。

4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。

图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。

5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。

快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。

6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。

四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。

删除操作同理,需要移动被删除元素后面的元素。

在查找操作中,通过遍历数组即可完成。

数据结构与算法上机实验报告

数据结构与算法上机实验报告

数据结构与算法B上机实验报告第1次2011-10-02 顺序表的实现和基本操作第2次2011-10-29 二叉树的实现和递归遍历第3次2011-11-23 内部排序第4次2011-12-dd 实现图从邻接矩阵到邻接表存储转化第一次线性表数据结构一、上机实习题目线性链表操作——插入、删除、合并、排序、查找二数据结构设计(算法设计)源程序(#include <iostream>#define MaxSize 100using namespace std;typedef int ElemType;class SeqList{ElemType list[MaxSize];int length;public:SeqList() {length=0;}void SeqListSort(int i,ElemType x);void SeqListCreat(int n);void SeqListInset(int i,ElemType x);void SeqListDelete(int i);void SeqListMerge();int GetLength(){return length;}int SeqListFind(ElemType x);int SeqListIsEmpty();void SeqListPrint();}Mylist1,Mylist2;//创建顺序表void SeqList::SeqListCreat(int n){ElemType x;cout<<"请输入数据元素:";for (int i=0;i<n;i++){cin>>x;list[i]=x;length++;}}//对顺序表进行排序void SeqList::SeqListSort(int i,ElemType x) {for(int k=0;k<length;k++){for(i=k+1;i<=length;i++){if(list[k]>list[i]){x=list[k];list[k]=list[i];list[i]=x;}}}}//在顺序表L中的第i个位置插入新元素x void SeqList::SeqListInset(int i,ElemType x) {int k;if(length>=MaxSize)cout<<"表已满,无法插入!"<<endl;else if(i<0||i>length)cout<<"参数i不合理!"<<endl;else{for (k=length;k>=i;k--){list[k]=list[k-1];}list[i-1]=x;length++;}}//删除第i个位置的数据元素void SeqList::SeqListDelete(int i){int k;if(!SeqListIsEmpty())cout<<"表已空,无法删除!"<<endl;else if(i<0||i>length)cout<<"参数i不合理!"<<endl;elsefor(k=i-1;k<length;k++)list[k]=list[k+1];length--;}//查找元素x在表中的位置int SeqList::SeqListFind(ElemType x) {int i=0;while(i<length&&list[i]!=x)i++;if(i>length)return -1;elsereturn i+1;}//判断顺序表是否为空int SeqList::SeqListIsEmpty(){if(length<=0)return 0;else return 1;}//将顺序表显示在屏幕上void SeqList::SeqListPrint(){if(!SeqListIsEmpty())cout<<"空表!"<<endl;elsefor(int i=0;i<length;i++)cout<<list[i]<<" ";cout<<endl;}int main(){SeqList Mylist1,Mylist2;int i,n,flag=1,select;ElemType x;cout<<"1. 建立顺序表\n";cout<<"2. 对顺序表进行排序\n";cout<<"3. 求x数值的位置\n";cout<<"4. 在第i个位置插入新元素x\n"; cout<<"5. 删除第i个位置上的数值\n"; cout<<"6. 将两个顺序表合并\n";cout<<"7. 退出\n";cout<<endl;while (flag){cout<<"请选择操作:";cin>>select;switch(select){case 1:cout<<"请输入顺序表1的长度:";cin>>n;Mylist1.SeqListCreat(n);cout<<"你所输入的顺序表1为:";Mylist1.SeqListPrint();cout<<"请输入顺序表2的长度:";cin>>n;Mylist2.SeqListCreat(n);cout<<"你所输入的顺序表2为:";break;case 2:cout<<"请选择所要排序的顺序表1或2:"; cin>>n;if(n==1){Mylist1.SeqListSort(i,x);cout<<"排序后的顺序表1为:";Mylist1.SeqListPrint();}else{Mylist2.SeqListSort(i,x);cout<<"排序后的顺序表2为:";Mylist2.SeqListPrint();}break;case 3:cout<<"请输入x的值:";cin>>x;i=Mylist1.SeqListFind(x);if(i!=-1) cout<<"x的位置为:"<<i<<endl;else cout<<"没有找到!";break;case 4:cout<<"请输入要插入的元素的位置和数值x:"; cin>>i>>x;cout<<"插入后的顺序表为:";Mylist1.SeqListPrint();break;case 5:cout<<"请输入要删除的元素的位置:";cin>>i;Mylist1.SeqListDelete(i);cout<<"删除后的顺序表为:";Mylist1.SeqListPrint();break;case 6:cout<<"合并后的顺序表为:\n";Mylist1.SeqListPrint();Mylist2.SeqListPrint();break;case 7:flag=0;break;}}}三运行结果为:四、上机环境和使用语言(计算机程序实现)Visual C++。

数据结构上机实验报告

数据结构上机实验报告

数据结构上机实验报告学院:电子工程学院专业:信息对抗技术姓名:学号:教师:饶鲜日期:目录实验一线性表 ........................................................................................................ - 4 -一、实验目的.................................................................................................... - 4 -二、实验代码.................................................................................................... - 4 -三、实验结果.................................................................................................. - 14 -四、个人思路.................................................................................................. - 15 - 实验二栈和队列 .................................................................................................. - 15 -一、实验目的.................................................................................................. - 15 -二、实验代码.................................................................................................. - 16 -三、实验结果.................................................................................................. - 24 -四、个人思路.................................................................................................. - 25 - 实验三数组 .......................................................................................................... - 26 -一、实验目的.................................................................................................. - 26 -二、实验代码.................................................................................................. - 26 -三、实验结果.................................................................................................. - 28 -四、个人思路.................................................................................................. - 28 - 实验四树 .............................................................................................................. - 29 -一、实验目的.................................................................................................. - 29 -二、实验代码.................................................................................................. - 29 -三、实验结果.................................................................................................. - 39 -四、个人思路.................................................................................................. - 39 -实验一线性表一、实验目的1.熟悉线性表的顺序和链式存储结构2.掌握线性表的基本运算3.能够利用线性表的基本运算完成线性表应用的运算二、实验代码1.设有一个线性表E={e1, e2, … , e n-1, e n},设计一个算法,将线性表逆置,即使元素排列次序颠倒过来,成为逆线性表E’={ e n, e n-1 , … , e2 , e1 },要求逆线性表占用原线性表空间,并且用顺序表和单链表两种方法表示,分别用两个程序来完成。

《数据结构》上机实验报告—常用排序算法的实现

《数据结构》上机实验报告—常用排序算法的实现
return OK;
}
int InsertSort(Form &F)
{//对顺序表F作直接插入排序
int i,j;
int comp=0;//比较次数
int move=0;//移动次数
for(i=2;i<=F.length;i++)
{
comp++;
if(F.r[i].key<F.r[i-1].key)
{
high--;
move++;
}
F.r[low]=F.r[high];
if(low<high&&F.r[low].key<=p)
{
low++;
move++;
}
F.r[high]=F.r[low];
}
F.r[low]=F.r[0];
return low;
}
void main()
{
Form F;
Init_Form(F);
{
F.r[0]=F.r[i]; //F.r[0]是监视哨
F.r[i]=F.r[i-1];
j=i-2;
comp++;
if(F.r[0].key<F.r[j].key)
{//进行元素移动,以腾出位置插入F.r[i]
F.r[j+1]=F.r[j];// 记录后移
j--;
move++;
}
F.r[j+1]=F.r[0]; //在j+1处插入F.r[i]
2.实现快速排序算法。
3.实现折半插入排序。
4.采用几组不同数据测试各个排序算法的性能(比较次数和移动次数)。

数据结构上机实验报告

数据结构上机实验报告

数据结构上机实验报告数据结构上机实验报告1. 实验目的数据结构是计算机科学中非常重要的一门课程,通过本次上机实验,旨在帮助学生巩固和应用所学的数据结构知识,培养学生分析和解决实际问题的能力。

2. 实验背景本次实验涉及到两个常用的数据结构:栈和队列。

栈是一种后进先出(Last In First Out,LIFO)的数据结构,而队列是一种先进先出(First In First Out,FIFO)的数据结构。

通过实验,我们将学习如何使用这两种数据结构来解决实际问题。

3. 实验内容本次实验分为两个部分:栈的应用和队列的应用。

3.1 栈的应用在栈的应用部分,我们将实现一个简单的括号匹配算法。

该算法可以判断一个字符串中的括号是否匹配。

具体实现步骤如下:3.1.1 创建一个栈来存储括号字符;3.1.2 遍历字符串中的每个字符;3.1.3 如果遇到左括号,则将其入栈;3.1.4 如果遇到右括号,则判断栈顶元素是否是对应的左括号;3.1.5 如果栈为空或栈顶元素不是对应的左括号,则括号不匹配;3.1.6 如果栈顶元素是对应的左括号,则将其出栈;3.1.7 遍历完字符串后,如果栈为空,则括号匹配,否则括号不匹配。

通过实现这个算法,我们可以学习到如何使用栈来解决实际问题,并且理解栈的后进先出的特性。

3.2 队列的应用在队列的应用部分,我们将实现一个简单的任务调度算法。

该算法可以模拟多个任务按照一定的优先级进行调度的过程。

具体实现步骤如下:3.2.1 创建一个队列来存储任务;3.2.2 每个任务包含两个属性:任务名称和优先级;3.2.3 向队列中添加任务,并按照优先级进行排序;3.2.4 从队列中取出优先级最高的任务,并执行;3.2.5 执行完任务后,继续从队列中取出下一个优先级最高的任务,并执行,直到队列为空。

通过实现这个算法,我们可以学习到如何使用队列来实现任务调度,并且理解队列的先进先出的特性。

4. 实验结果与分析通过实验,我们成功实现了括号匹配算法和任务调度算法,并得到了正确的结果。

数据结构上机实验报告

数据结构上机实验报告

数据结构实验报告课程数据结构 _ 院系专业班级实验地点姓名学号实验时间指导老师数据结构上机实验报告1一﹑实验名称:实验一——链表二﹑实验目的:1.了解线性表的逻辑结构特性;2.熟悉链表的基本运算在顺序存储结构上的实现,熟练掌握链式存储结构的描述方法;3.掌握链表的基本操作(建表、插入、删除等)4. 掌握循环链表的概念,加深对链表的本质的理解。

5.掌握运用上机调试链表的基本方法三﹑实验内容:(1)创建一个链表(2)在链表中插入元素(3)在链表中删除一个元素(4)销毁链表四﹑实验步骤与程序#include <iostream.h>#include <malloc.h>typedef struct LNode{int data;struct LNode *next;}Lnode, *LinkList;//假设下面的链表均为带头结点。

void CreatLinkList(LinkList &L,int j){//建立一个链表L,数据为整数,数据由键盘随机输入。

LinkList p,q;L=(LinkList )malloc(sizeof(Lnode));L->next=NULL;q=L;cout<<"请输入一个链表:"<<endl;for(int i=0;i<j;i++){ p=(LinkList)malloc(sizeof(Lnode));cin>>p->data;p->next=q->next;q->next=p;q=p;}}int PrintLinkList(LinkList &L){//输出链表L的数据元素LinkList p;p=L->next;if(L->next==NULL){cout<<"链表没有元素!"<<endl;return 0;}cout<<"链表的数据元素为:";while(p){cout<<p->data<<" ";p=p->next;}cout<<endl;return 1;}void LinkListLengh(LinkList &L){//计算链表L的数据元素个数。

数据结构与算法实验报告

数据结构与算法实验报告

数据结构与算法实验报告数据结构与算法实验报告一、实验目的本实验旨在通过实践的方式,加深对数据结构与算法的理解与应用,并能够独立设计和实现常见的数据结构和算法。

二、实验要求1·设计并实现以下数据结构与算法:(按需列出具体数据结构与算法)2·进行性能测试,分析并总结测试结果。

3·撰写实验报告,完整记录实验过程与结果,并进行适当的分析与总结。

三、实验环境(列出实验所需环境,包括操作系统、编程语言及开发环境等)四、实验过程与方法4·1 数据结构设计与实现(首先介绍每个数据结构的功能与特点,然后给出设计思路和实现方法,包括数据结构的定义、操作方法和算法等)4·2 算法设计与实现(首先介绍每个算法的功能与特点,然后给出设计思路和实现方法,包括算法的定义、输入输出格式、算法流程图等)五、实验结果与分析5·1 数据结构性能测试结果(列出数据结构的测试用例及其输入输出,记录测试结果,包括运行时间、空间占用等方面的数据,并进行适当的分析与总结)5·2 算法性能测试结果(列出算法的测试用例及其输入输出,记录测试结果,包括运行时间、空间占用等方面的数据,并进行适当的分析与总结)六、实验总结6·1 实验成果(总结实验所达到的目标,列出已实现的数据结构和算法)6·2 实验心得(记录实验过程中的收获和体会,包括困难与解决方法、感悟和改进方向等)附件:1·实验源码(附上实验所使用的源代码文件,以供参考)2·实验数据(附上实验所用的测试数据文件或数据表格等)法律名词及注释:(列出文档中涉及的法律名词及其注释,以确保读者对相关法律法规的理解)。

数据结构上机实验报告

数据结构上机实验报告

实验名称:数据结构实验实验时间:2021年X月X日实验地点:计算机实验室实验目的:1. 理解并掌握基本数据结构(线性表、栈、队列、链表、树、图)的概念和操作。

2. 能够运用C语言实现基本数据结构的各种操作。

3. 培养编程能力和问题解决能力。

实验内容:1. 线性表2. 栈3. 队列4. 链表5. 树6. 图实验环境:1. 操作系统:Windows 102. 编程语言:C语言3. 开发环境:Visual Studio 2019实验步骤:一、线性表1. 实现线性表的创建、插入、删除、查找和遍历等基本操作。

2. 编写代码,实现以下功能:- 创建一个线性表,包含10个元素。

- 在第3个位置插入一个新元素。

- 删除第5个位置的元素。

- 查找线性表中的第7个元素。

- 遍历线性表,并打印所有元素。

二、栈1. 实现栈的创建、入栈、出栈、判空和求栈顶元素等基本操作。

2. 编写代码,实现以下功能:- 创建一个栈。

- 向栈中依次入栈元素1、2、3、4、5。

- 判断栈是否为空。

- 求栈顶元素。

- 出栈元素,并打印出栈的元素。

三、队列1. 实现队列的创建、入队、出队、判空和求队头元素等基本操作。

2. 编写代码,实现以下功能:- 创建一个队列。

- 向队列中依次入队元素1、2、3、4、5。

- 判断队列是否为空。

- 求队头元素。

- 出队元素,并打印出队的元素。

四、链表1. 实现单链表、双向链表和循环链表的创建、插入、删除、查找和遍历等基本操作。

2. 编写代码,实现以下功能:- 创建一个单链表,包含元素1、2、3、4、5。

- 在第2个位置插入一个新元素。

- 删除第3个位置的元素。

- 查找链表中的第4个元素。

- 遍历链表,并打印所有元素。

五、树1. 实现二叉树的创建、插入、删除、查找和遍历等基本操作。

2. 编写代码,实现以下功能:- 创建一个二叉树,包含元素1、2、3、4、5。

- 在第2个位置插入一个新元素。

- 删除第3个位置的元素。

数据结构上机实验报告

数据结构上机实验报告

数据结构上机实验报告一、实验目的本次数据结构上机实验的主要目的是通过实际编程操作,深入理解和掌握常见的数据结构及其基本操作,提高解决实际问题的能力和编程技能。

具体目标包括:1、熟练掌握线性表、栈、队列、树、图等数据结构的基本概念和存储方式。

2、学会运用数据结构的相关算法进行数据的插入、删除、查找、排序等操作。

3、培养分析问题、设计算法、编写代码和调试程序的综合能力。

4、增强对数据结构在实际应用中的认识,提高解决复杂问题的思维能力。

二、实验环境1、操作系统:Windows 102、编程环境:Visual Studio 20193、编程语言:C++三、实验内容本次实验共包括以下几个部分:1、线性表的操作实现顺序表和链表的创建、插入、删除、查找和遍历操作。

比较顺序表和链表在不同操作下的性能差异。

2、栈和队列的应用利用栈实现表达式求值。

用队列模拟银行排队系统。

3、树的遍历实现二叉树的先序、中序和后序遍历算法,并输出遍历结果。

构建哈夫曼树,并进行编码和解码操作。

4、图的基本操作用邻接矩阵和邻接表存储图,并实现图的深度优先搜索和广度优先搜索算法。

四、实验步骤及结果1、线性表的操作顺序表的实现:```cppinclude <iostream>using namespace std;define MAXSIZE 100 //顺序表的最大长度class SeqList {private:int dataMAXSIZE; //存储顺序表元素的数组int length; //顺序表的当前长度public:SeqList(){//构造函数,初始化顺序表length = 0;}//插入元素bool insert(int pos, int element) {if (pos < 0 || pos > length || length == MAXSIZE) {return false;}for (int i = length; i > pos; i) {datai = datai 1;}datapos = element;length++;return true;}//删除元素bool remove(int pos) {if (pos < 0 || pos >= length) {return false;}for (int i = pos; i < length 1; i++){datai = datai + 1;}length;return true;}//查找元素int search(int element) {for (int i = 0; i < length; i++){if (datai == element) {return i;}}return -1;}//遍历输出顺序表void traverse(){for (int i = 0; i < length; i++){cout << datai <<"";}cout << endl;}};int main(){SeqList list;listinsert(0, 10);listinsert(1, 20);listinsert(2, 30);listtraverse();listremove(1);listtraverse();int position = listsearch(30);if (position!=-1) {cout <<"元素 30 在位置"<< position << endl;} else {cout <<"未找到元素 30" << endl;}return 0;}```链表的实现:```cppinclude <iostream>using namespace std;class Node {public:int data;Node next;Node(int element) {data = element;next = NULL;}};class LinkedList {private:Node head;public:LinkedList(){head = NULL;}//插入元素void insert(int element) {Node newNode = new Node(element);if (head == NULL) {head = newNode;} else {Node current = head;while (current>next!= NULL) {current = current>next;}current>next = newNode;}}//删除元素void remove(int element) {if (head == NULL) {return;}if (head>data == element) {Node temp = head;head = head>next;delete temp;return;}Node current = head;Node prev = NULL;while (current!= NULL && current>data!= element) {prev = current;current = current>next;}if (current!= NULL) {prev>next = current>next;delete current;}}//查找元素bool search(int element) {Node current = head;while (current!= NULL) {if (current>data == element) {return true;}current = current>next;}return false;}//遍历输出链表void traverse(){Node current = head;while (current!= NULL) {cout << current>data <<"";current = current>next;}cout << endl;}};int main(){LinkedList list;listinsert(10);listinsert(20);listinsert(30);listtraverse();listremove(20);listtraverse();if (listsearch(30)){cout <<"找到元素 30" << endl;} else {cout <<"未找到元素 30" << endl;}return 0;}```性能比较:在插入和删除操作中,顺序表在表头或中间位置操作时需要移动大量元素,时间复杂度较高;而链表只需要修改指针,时间复杂度较低。

《数据结构和算法设计》实验报告

《数据结构和算法设计》实验报告

《数据结构与算法设计》实验报告——实验二一、实验目的按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。

二、实验内容简单计算器。

请按照四则运算加、减、乘、除、幂(^)和括号的优先关系和惯例,编写计算器程序。

要求:①从键盘输入一个完整的表达式,以回车作为表达式输入结束的标志。

②输入表达式中的数值均为大于等于零的整数。

中间的计算过程如果出现小数也只取整。

例如,输入:4+2*5= 输出:14输入:(4+2)*(2-10)= 输出:-48三、程序设计概要设计1、宏定义#define TRUE 1#define FALSE 0#define OK 1#define ERROR 02、基本函数:(1)void InitStack_char(SqStack *S) //char型栈初始化(2)void InitStack_int(sqStack *S) //int型栈初始化(3)void Push_char(SqStack *S,char ch) //char型元素进栈(4)void Push_int(sqStack *S,int num) //int型元素进栈(5)char GetTop_char(SqStack *S) //取char型栈顶元素(6)int GetTop_int(sqStack *S) //取int型栈顶元素(7)Status In(char c) //判断是否为运算符,若是运算符则返回,否则返回(8)char Precede(char a,char b) //判断两运算符的先后次序(9)Status Pop_char(SqStack *S,char &x) //char型栈出栈(10)Status Pop_int(sqStack *S,int &x) //int型栈出栈(11)int Operate(int a,char theta,int b) //计算a和b运算结果3、流程图详细设计数据类型typedef struct node //构造char型栈{char ch;struct node *next;}node;typedef struct{struct node *base;struct node *top;}SqStack;typedef struct lnode //构造int型栈{int num;struct lnode *next;}lnode;typedef struct{struct lnode *base;struct lnode *top;}sqStack;操作部分void InitStack_char(SqStack *S){S->base = (node *)malloc(sizeof(node));S->base->next=NULL;S->top = S->base;} //char型栈初始化void InitStack_int(sqStack *S){S->base = (lnode *)malloc(sizeof(lnode));S->base->next=NULL;S->top = S->base;} //int型栈初始化void Push_char(SqStack *S,char ch){node *p;p=(node*)malloc(sizeof(node));p->ch=ch;p->next=S->top;S->top=p;} //char型元素进栈Status Push_int(sqStack *S,int num){lnode *p;p=(lnode*)malloc(sizeof(lnode));p->num=num;p->next=S->top;S->top=p;return OK;} //int型元素进栈char GetTop_char(SqStack *S){return (S->top->ch);} //取char型栈顶元素int GetTop_int(sqStack *S){return (S->top->num);} //取int型栈顶元素Status Pop_char(SqStack *S,char &x){if(S->base == S->top)return ERROR;node *p;p=S->top;x=p->ch;S->top=p->next;free(p);return OK;} //char型栈出栈Status Pop_int(sqStack *S,int &x){if(S->base == S->top)return ERROR;lnode *p;p=S->top;x=p->num;S->top=p->next;free(p);return OK;} //int型栈出栈计算功能int Operate(int a,char theta,int b){int i,z = 1;switch(theta){case '+':z = (a + b);break;case '-':z = (a - b);break;case '*':z = (a * b);break;case '/':z = (a / b);break;case '^':for(i = 1;i<=b;i++)z = z*a;break;}return (z);} //计算a和b运算结果Status In(char c){if(c=='+'||c=='-'||c=='*'||c=='/'||c=='('||c==')'||c=='='||c=='^') return OK;elsereturn ERROR;} //判断是否为运算符char Precede(char a,char b){if(a=='+'||a=='-'){if(b=='+'||b=='-'||b==')'||b=='=')return '>';elsereturn '<';}if(a=='*'||a=='/'){if(b=='('||b=='^')return '<';elsereturn '>';}if(a=='('){if(b==')')return '=';elsereturn '<';}if(a==')'){if(b!='(')return '>';}if(a=='#'){if(b=='=')return '=';elsereturn '<';}if(a=='^')return ('>');} //判断两运算符的先后次序主函数int main() //主函数{char c,x,theta;int a,b,c1; //定义变量SqStack OPTR; //定义字符栈sqStack OPNR; //定义整型栈InitStack_char(&OPTR); //初始化InitStack_int(&OPNR); //初始化Push_char(&OPTR,'#'); //将字符型栈底设为#c = getchar(); //从键盘输入得到字符while(c!='='||GetTop_char(&OPTR)!='#') //判定是否执行循环if(!In(c)){c1 = 0;while(!In(c)){c1 = c1*10+c-'0';c = getchar();}Push_int(&OPNR,c1);} //当扫描字符不是运算符时,转化为整型数存入栈中else{switch(Precede(GetTop_char(&OPTR),c)) //判定运算符的优先关系{case '<':Push_char(&OPTR,c);c = getchar();break; //当前运算符优先级高,存入char栈case '=':Pop_char(&OPTR,c);c = getchar();break; //运算符次序相等,存入char栈case '>': //当前运算符优先级低Pop_char(&OPTR,theta);Pop_int(&OPNR,b);Pop_int(&OPNR,a);Push_int(&OPNR, Operate(a,theta,b));//计算运算结果,并存入int栈break; //继续循环}}printf("%d\n",GetTop_int(&OPNR)); //计算完成,取出int栈顶元素,并输出return 0;}四、程序调试分析编写程序的过程中遇到了很多的问题,最突出的两个问题就是整数和两位数的运算处理,一开始修改了主函数部分之后,原来可以执行一位数运算的程序出现了error,由于没有及时保存,并且之前的代码无法恢复,只得重新编写一次。

数据结构上机实验报告

数据结构上机实验报告

数据结构上机实验报告1. 实验目的本次实验旨在通过编写程序,掌握和理解常见的数据结构及其应用。

2. 实验环境与工具- 操作系统:Windows 10- 开发语言:C++- 集成开发环境(IDE):Visual Studio Code3. 实验内容及步骤3.1 线性表操作演示程序设计与分析步骤:a) 设计一个线性表类,并包含以下基本功能:i) 初始化线性表;ii) 插入元素到指定位置;iii) 删除指定位置的元素;iv) 获取指定位置处的元素值。

b)使用该线性表类进行一系列测试,验证各个功能是否正常运行。

记录并分析每个函数调用所消耗时间以评估算法效率。

3.2 栈和队列综合应用设计与模拟步骤:a)根据给出问题需求,在已有栈、队列等相关代码基础上完成如下任务:i)利用两个堆栈来模拟浏览器前进后退功能;ii)使用循环链式存储结构表示双向链队, 并对其进行初始化、入队、出队等操作。

b). 运行以上代码片段,并输出相应结果。

同时分析算法的时间复杂度和空间复杂度。

4. 实验结果与讨论a) 线性表操作演示程序设计与分析实验结果:- 初始化线性表所需时间为X秒;- 插入元素到指定位置平均耗时Y毫秒;- 删除指定位置的元素平均耗时Z毫秒。

b)栈和队列综合应用设计与模拟实验结果:i) 浏览器前进后退功能测试:共浏览N个网页,前进M 次、后退K次。

运行总体消耗时间T1;ii) 双向链队初始化、入队、出对等操作测试: 共进行P 组数据处理, 运行总体消耗时间T2.5. 结论通过本次上机实验,我们掌握了线性表及其相关基本操作,并且成功完成了栈和队列在特定场景下的应用。

同时,在代码编写过程中也深刻理解并评估了各种算法效率。

6. 致谢感谢老师们给予我宝贵意见以及同学们之间相互交流合作提供支持。

7. 附件8. 法律名词及注释在此处添加涉及到的法律名词或术语,并提供简要注释。

算法与数据结构实验报告

算法与数据结构实验报告

算法与数据结构实验报告算法与数据结构实验报告引言算法与数据结构是计算机科学中的两个重要概念。

算法是解决问题的一系列步骤或规则,而数据结构是组织和存储数据的方式。

在本次实验中,我们将探索不同的算法和数据结构,并通过实际的案例来验证它们的效果和应用。

一、排序算法排序算法是计算机科学中最基础的算法之一。

在本次实验中,我们实现了冒泡排序、插入排序和快速排序算法,并对它们进行了比较。

冒泡排序是一种简单但低效的排序算法。

它通过多次遍历待排序的元素,每次比较相邻的两个元素并交换位置,将较大的元素逐渐“冒泡”到数组的末尾。

尽管冒泡排序的时间复杂度为O(n^2),但它易于实现且适用于小规模的数据集。

插入排序是一种更高效的排序算法。

它将待排序的元素依次插入已排好序的部分中,直到所有元素都被插入完毕。

插入排序的时间复杂度为O(n^2),但对于部分有序的数据集,插入排序的效率会更高。

快速排序是一种常用的排序算法,它采用分治的思想。

快速排序的基本思路是选择一个基准元素,将小于基准的元素放在基准的左边,大于基准的元素放在基准的右边,然后对左右两部分分别进行快速排序。

快速排序的时间复杂度为O(nlogn),但在最坏情况下会退化为O(n^2)。

通过实际的实验数据,我们发现快速排序的效率远高于冒泡排序和插入排序。

这是因为快速排序采用了分治的策略,将原始问题划分为更小的子问题,从而减少了比较和交换的次数。

二、查找算法查找算法是在给定数据集中寻找特定元素的算法。

在本次实验中,我们实现了线性查找和二分查找算法,并对它们进行了比较。

线性查找是一种简单但低效的查找算法。

它通过逐个比较待查找的元素和数据集中的元素,直到找到匹配的元素或遍历完整个数据集。

线性查找的时间复杂度为O(n),适用于小规模的数据集。

二分查找是一种更高效的查找算法,但要求数据集必须是有序的。

它通过将数据集划分为两部分,并与中间元素进行比较,从而确定待查找元素所在的部分,然后再在该部分中进行二分查找。

数据结构与算法实验报告

数据结构与算法实验报告

数据结构与算法实验报告数据结构与算法实验报告1.引言在本实验中,我们将研究和实现一些经典的数据结构和算法,以及它们在各种问题中的应用。

本文档详细介绍了每个实验的目标、方法、结果和分析。

2.实验一:线性表的操作2.1 实验目标本实验旨在熟悉线性表的基本操作,并通过实践掌握线性表的顺序存储结构和链式存储结构的实现。

2.2 实验方法2.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code2.2.2 实验步骤1.实现顺序存储结构的线性表。

2.实现链式存储结构的线性表。

3.通过编写测试用例,验证线性表的各种操作。

2.3 实验结果与分析通过实验,我们完成了线性表的顺序存储结构和链式存储结构的实现,并且通过测试用例验证了它们的正确性。

3.实验二:树的操作3.1 实验目标本实验旨在熟悉树的基本操作,并通过实践掌握二叉树和平衡二叉树的实现。

3.2 实验方法3.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code3.2.2 实验步骤1.实现二叉树的基本操作,如插入节点、删除节点等。

2.实现平衡二叉树,并保持其平衡性。

3.通过编写测试用例,验证树的各种操作。

3.3 实验结果与分析通过实验,我们完成了二叉树和平衡二叉树的实现,并且通过测试用例验证了它们的正确性。

4.实验三:图的操作4.1 实验目标本实验旨在熟悉图的基本操作,并通过实践掌握图的表示方法和常用算法。

4.2 实验方法4.2.1 实验环境- 编程语言:C++- 开发工具:Visual Studio Code4.2.2 实验步骤1.实现图的邻接矩阵表示法和邻接链表表示法。

2.实现图的深度优先搜索和广度优先搜索算法。

3.通过编写测试用例,验证图的各种操作和算法的正确性。

4.3 实验结果与分析通过实验,我们完成了图的邻接矩阵表示法和邻接链表表示法的实现,以及深度优先搜索和广度优先搜索算法的实现,并且通过测试用例验证了它们的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与算法B上机实验报告第1次2011-10-02 顺序表的实现和基本操作第2次2011-10-29 二叉树的实现和递归遍历第3次2011-11-23 内部排序第4次2011-12-dd 实现图从邻接矩阵到邻接表存储转化第一次线性表数据结构一、上机实习题目线性链表操作——插入、删除、合并、排序、查找二数据结构设计(算法设计)源程序(#include <iostream>#define MaxSize 100using namespace std;typedef int ElemType;class SeqList{ElemType list[MaxSize];int length;public:SeqList() {length=0;}void SeqListSort(int i,ElemType x);void SeqListCreat(int n);void SeqListInset(int i,ElemType x);void SeqListDelete(int i);void SeqListMerge();int GetLength(){return length;}int SeqListFind(ElemType x);int SeqListIsEmpty();void SeqListPrint();}Mylist1,Mylist2;//创建顺序表void SeqList::SeqListCreat(int n){ElemType x;cout<<"请输入数据元素:";for (int i=0;i<n;i++){cin>>x;list[i]=x;length++;}}//对顺序表进行排序void SeqList::SeqListSort(int i,ElemType x) {for(int k=0;k<length;k++){for(i=k+1;i<=length;i++){if(list[k]>list[i]){x=list[k];list[k]=list[i];list[i]=x;}}}}//在顺序表L中的第i个位置插入新元素x void SeqList::SeqListInset(int i,ElemType x) {int k;if(length>=MaxSize)cout<<"表已满,无法插入!"<<endl;else if(i<0||i>length)cout<<"参数i不合理!"<<endl;else{for (k=length;k>=i;k--){list[k]=list[k-1];}list[i-1]=x;length++;}}//删除第i个位置的数据元素void SeqList::SeqListDelete(int i){int k;if(!SeqListIsEmpty())cout<<"表已空,无法删除!"<<endl;else if(i<0||i>length)cout<<"参数i不合理!"<<endl;elsefor(k=i-1;k<length;k++)list[k]=list[k+1];length--;}//查找元素x在表中的位置int SeqList::SeqListFind(ElemType x) {int i=0;while(i<length&&list[i]!=x)i++;if(i>length)return -1;elsereturn i+1;}//判断顺序表是否为空int SeqList::SeqListIsEmpty(){if(length<=0)return 0;else return 1;}//将顺序表显示在屏幕上void SeqList::SeqListPrint(){if(!SeqListIsEmpty())cout<<"空表!"<<endl;elsefor(int i=0;i<length;i++)cout<<list[i]<<" ";cout<<endl;}int main(){SeqList Mylist1,Mylist2;int i,n,flag=1,select;ElemType x;cout<<"1. 建立顺序表\n";cout<<"2. 对顺序表进行排序\n";cout<<"3. 求x数值的位置\n";cout<<"4. 在第i个位置插入新元素x\n"; cout<<"5. 删除第i个位置上的数值\n"; cout<<"6. 将两个顺序表合并\n";cout<<"7. 退出\n";cout<<endl;while (flag){cout<<"请选择操作:";cin>>select;switch(select){case 1:cout<<"请输入顺序表1的长度:";cin>>n;Mylist1.SeqListCreat(n);cout<<"你所输入的顺序表1为:";Mylist1.SeqListPrint();cout<<"请输入顺序表2的长度:";cin>>n;Mylist2.SeqListCreat(n);cout<<"你所输入的顺序表2为:";break;case 2:cout<<"请选择所要排序的顺序表1或2:"; cin>>n;if(n==1){Mylist1.SeqListSort(i,x);cout<<"排序后的顺序表1为:";Mylist1.SeqListPrint();}else{Mylist2.SeqListSort(i,x);cout<<"排序后的顺序表2为:";Mylist2.SeqListPrint();}break;case 3:cout<<"请输入x的值:";cin>>x;i=Mylist1.SeqListFind(x);if(i!=-1) cout<<"x的位置为:"<<i<<endl;else cout<<"没有找到!";break;case 4:cout<<"请输入要插入的元素的位置和数值x:"; cin>>i>>x;cout<<"插入后的顺序表为:";Mylist1.SeqListPrint();break;case 5:cout<<"请输入要删除的元素的位置:";cin>>i;Mylist1.SeqListDelete(i);cout<<"删除后的顺序表为:";Mylist1.SeqListPrint();break;case 6:cout<<"合并后的顺序表为:\n";Mylist1.SeqListPrint();Mylist2.SeqListPrint();break;case 7:flag=0;break;}}}三运行结果为:四、上机环境和使用语言(计算机程序实现)Visual C++。

使用语言:C++五、上机总结(体会提高)总的来说,这次让我感触最深的就是C++挺麻烦的,应该说我还是太不熟悉了,以前没有怎么接触过,通过这次实验,我初步掌握了一点点的C++的基础,往后我要多花点时间学习。

再者,通过这次实验,我也掌握了对于线性表的的表示,使用,特别是顺序表。

但是对于链表还是有待提高。

六、参考资料《据结构与算法分析》教材,《据结构》(C语言版),《软件开发技术基础》(第二版)。

同时还有网上的一些资源。

当然还有同学之间的探讨。

第二次:非线性表数据结构一、上机实习题目编写的递归算法,交换二叉树的左右子树。

二数据结构设计(算法设计)源程序#include<stdio.h>#include<malloc.h>#define N 9typedef struct binode{int data;struct binode *lchild,*rchild;//指向左右孩子的指针}binode,*bitree;//结点与指针typedef struct{bitree elem[100];int top;}stack;bitree creat_bt()//按先序建二叉树{bitree t;int i,x=0;//一颗N个结点的二叉树tscanf("%d",&x);if(x==100)//输入100作为结束该结点,而不是用循环t=NULL;else{t=(bitree)malloc(sizeof(binode));t->data=x;printf("请输入%d结点的左子结点",t->data);t->lchild=creat_bt();printf("请输入%d结点的右子结点",t->data);t->rchild=creat_bt();}return t;}bitree exchange(bitree t) //递归左、右子树交换{bitree p;if(t!=NULL){ p=t->lchild;t->lchild=t->rchild;t->rchild=p;exchange(t->lchild);exchange(t->rchild);}return t;}void preorder(bitree bt) //递归的先序遍历{ if (bt){printf("% d",bt->data);preorder(bt->lchild);preorder(bt->rchild);}}main(){bitree root;//一颗树rootprintf("\n");printf("输入二叉树的元素:");root=creat_bt();printf("交换前的先序序列是:"); preorder(root);exchange(root);printf("\n交换后的先序序列是:"); preorder(root);printf("\n");}三运行结果为:四、上机环境和使用语言(计算机程序实现)Visual C++。

相关文档
最新文档