(完整版)2018年河南省高考数学模拟试卷(理科)(4月份)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省高考数学模拟试卷(理科)(4月份)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个
选项中,只有一项是符合题目要求的.
1.(5分)设集合A={x|﹣3≤2x﹣1≤3},集合B={x|x﹣1>0};则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
2.(5分)已知i为虚数单位,若,则a b=()A.1B.C.D.2
3.(5分)下列说法中,正确的是()
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”
C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题
D.已知x∈R,则“x>1”是“x>2”的充分不必要条件
4.(5分)已知函数f(x)=e x在点(0,f(0))处的切线为l,动点(a,b)在直线l上,则2a+2﹣b的最小值是()
A.4B.2C.D.
5.(5分)展开式中x2的系数为()
A.20B.15C.6D.1
6.(5分)执行如图所示的程序框图,则输出n的值为()
A.14B.13C.12D.11
7.(5分)三国时期我国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,其中直角三角形中较小的锐角α满足sinα+cosα=,现在向该正方形区域内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是()
A.B.C.D.
8.(5分)已知函数,,则f(x)的取值范围是()
A.(﹣∞,2]B.(﹣∞,﹣2]C.[2,+∞)D.[﹣2,+∞)9.(5分)设F1、F2是双曲线C:=1(a>0,b>0)的两个焦点,P是C
上一点,若|PF1|+|PF2|=6a,且△PF1F2最小内角的大小为30°,则双曲线C的渐近线方程是()
A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0 10.(5分)已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD外接球的表面积是()
A.20πB.C.25πD.22π
11.(5分)已知等差数列{a n},{b n}的前n项和分别为S n,,若,则实数=()
A.B.C.D.3
12.(5分)定义域为[a,b]的函数y=f(x)的图象的两个端点分别为A(a,f (a)),B(b,f(b)),M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b(0<λ<1),向量.若不等式恒成立,则称函数f(x)在[a,b]上为“k函数”.已知函数y=x3﹣6x2+11x﹣5在[0,3]上为“k函数”,则实数k的最小值是()
A.1B.2C.3D.4
二、填空题:本题共4小题,每小题5分,共20分.
13.(5分)已知实数x,y满足不等式组,则z=x﹣2y的最小值为.
14.(5分)如图,已知点A(0,1),点P(x0,y0)(x0>0)在曲线y=x2上移动,过P点作PB垂直x轴于B,若图中阴影部分的面积是四边形AOBP面积的,则P点的坐标为.
15.(5分)已知抛物线x2=4y,斜率为的直线交抛物线于A,B两点.若以线段AB为直径的圆与抛物线的准线切于点P,则点P到直线AB的距离为.
16.(5分)已知数列{a n}的前n项和是S n,且a n+S n=3n﹣1,则数列{a n}的通项公式a n=.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题
为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.
17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,面积为S,已知a2+4S=b2+c2.(1)求角A;
(2)若,,求角C.
18.(12分)某公司要根据天气预报来决定五一假期期间5月1日、2日两天的宣传活动,宣传既可以在室内举行,也可以在广场举行.统计资料表明,在室内宣传,每天可产生经济效益8万元.在广场宣传,如果不遇到有雨天气,每天可产生经济效益20万元;如果遇到有雨天气,每天会带来经济损失10万元.若气象台预报5月1日、2日两天当地的降水概率均为40%.
(1)求这两天中恰有1天下雨的概率;
(2)若你是公司的决策者,你会选择哪种方式进行宣传(从“2天都在室内宣传”“2天都在广场宣传”这两种方案中选择)?请从数学期望及风险决策等方面说明理由.
19.(12分)如图,在边长为的菱形ABCD中,∠DAB=60°.点E,F分别在边CD,CB上,点E与点C,D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF 翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:PO⊥平面ABD;
(2)当PB与平面ABD所成的角为45°时,求平面PBF与平面PAD所成锐二面角的余弦值.
20.(12分)已知动点P与A(﹣2,0),B(2,0)两点连线的斜率之积为,点P的轨迹为曲线C,过点E(1,0)的直线交曲线C于M,N两点.
(1)求曲线C的方程;
(2)若直线MA,NB的斜率分别为k1,k2,试判断是否为定值?若是,求出这个值;若不是,请说明理由.
21.(12分)已知函数.
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若函数有两个极值点,试判断函数g(x)的零点个数.
(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]
22.(10分)在直角坐标系xOy中,已知直线l:,曲线C: