BP神经网络matlab实例(简单而经典)
MATLAB程序代码--bp神经网络通用代码
MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下, 希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数: % delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6) %net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sc eg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24, 0, 1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28, 0.8748,1,26.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964, 0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202, 26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7] T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0; 0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ; 0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像。
基于遗传算法的BP神经网络MATLAB代码
基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。
1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。
用matlab编BP神经网络预测程序
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
matlab神经网络工具箱简介和函数及示例
目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本
BP神经网络预测的matlab代码
BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。
BP神经网络实验详解(MATLAB实现)
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
GA-BP神经网络应用实例之MATLAB程序
GA-BP神经网络应用实例之MATLAB程序% gap.xls中存储训练样本的原始输入数据 37组% gat.xls中存储训练样本的原始输出数据 37组% p_test.xls中存储测试样本的原始输入数据 12组% t_test.xls中存储测试样本的原始输出数据 12组% 其中gabpEval.m适应度值计算函数,gadecod.m解码函数%--------------------------------------------------------------------------nntwarn off;% nntwarn函数可以临时关闭神经网络工具箱的警告功能,当代码使用到神经% 网络工具箱的函数时会产生大量的警告而这个函数可以跳过这些警告但% 是,为了保证代码可以在新版本的工具箱下运行,我们不鼓励这么做pc=xlsread('gap.xls');tc=xlsread('gat.xls');p_test=xlsread('p_test.xls');t_test=xlsread('t_test.xls');p=pc';t=tc';p_test=p_test';t_test=t_test';% 归一化处理for i=1:2P(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:))); endfor i=1:4T(i,:)=(t(i,:)-min(t(i,:)))/(max(t(i,:))-min(t(i,:))); endfor i=1:2P_test(i,:)=(p_test(i,:)-min(p_test(i,:)))/(max(p_test(i,:))-min(p_test(i,:)));end%--------------------------------------------------------------------------% 创建BP神经网络,隐含层节点数为12net=newff(minmax(P),[12,4],{'tansig','purelin'},'trainlm'); %-------------------------------------------------------------------------- % 下面使用遗传算法对网络进行优化R=size(P,1);% BP神经网络输入层节点数S2=size(T,1);% BP神经网络输出层节点数S1=12;% 隐含层节点数S=R*S1+S1*S2+S1+S2;% 遗传算法编码长度aa=ones(S,1)*[-1,1];popu=100;% 种群规模initPop=initializega(popu,aa,'gabpEval');% 初始化种群gen=500;% 遗传代数% 下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPop,[1e-6 11],'maxGenTerm',...gen,'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%--------------------------------------------------------------------------% 绘收敛曲线图figure;plot(trace(:,1),1./trace(:,3),'r-'); hold on;plot(trace(:,1),1./trace(:,2),'b-'); xlabel('遗传代数');ylabel('平方和误差');figure;plot(trace(:,1),trace(:,3),'r-'); hold on;plot(trace(:,1),trace(:,2),'b-'); xlabel('遗传代数');ylabel('适应度');legend('平均适应度值','最优适应度值'); %-------------------------------------------------------------------------- % 下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.IW{1,1}=W1;net.LW{2,1}=W2;net.b{1}=B1;net.b{2}=B2;% 设置训练参数net.trainParam.epochs=3000;net.trainParam.goal=1e-6;% 训练网络net=train(net,P,T);w1=net.IW{1,1};w2=net.LW{2,1};b1=net.b{1};b2=net.b{2};% 测试网络性能temp=sim(net,P_test);yuce1=[temp(1,:);temp(2,:),;temp(3,:);temp(4,:)];for i=1:4yuce(i,:)=yuce1(i,:)*(max(t_test(i,:))-min(t_test(i,:)))+min(t_test(i,:));end%--------------------------------------------------------------------------% 测试输出结果之一figure;plot(1:12,yuce(1,:),'bo-');ylabel('切口外径 mm');hold on;plot(1:12,t_test(1,:),'r*-'); legend('测试结果','测试样本');figure;plot(1:12,yuce(1,:)-t_test(1,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(1,:)-t_test(1,:))/t_test(1,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之二figure;plot(1:12,yuce(2,:),'bo-'); ylabel('切口内径 mm');hold on;plot(1:12,t_test(2,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(2,:)-t_test(2,:),'b-');ylabel('误差 mm');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(2,:)-t_test(2,:))/t_test(2,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之三figure;plot(1:12,yuce(3,:),'bo-'); ylabel('最大滚切力 N');hold on;plot(1:12,t_test(3,:),'r*-'); legend('测试结果','测试样本'); figure;plot(1:12,yuce(3,:)-t_test(3,:),'b-');ylabel('误差 N');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(3,:)-t_test(3,:))/t_test(3,:))*100,'b*');ylabel('百分比');title('测试结果与测试样本误差');% 测试输出结果之四figure;plot(1:12,yuce(4,:),'bo-'); ylabel('切断时间 s');hold on;plot(1:12,t_test(4,:),'r*-');legend('测试结果','测试样本');figure;plot(1:12,yuce(4,:)-t_test(4,:),'b-');ylabel('误差 s');title('测试结果与测试样本误差');figure;plot(1:12,((yuce(4,:)-t_test(4,:))/t_test(4,:))*100,'b*'); ylabel('百分比');title('测试结果与测试样本误差');%--------------------------------------------------------------------------。
(完整版)BP神经网络matlab实例(简单而经典)
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
MATLAB实例:BP神经网络用于回归任务
MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。
通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。
因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。
神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。
BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。
如下图所⽰。
整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。
这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。
y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。
这⾥隐层节点数为20。
BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。
BP神经网络用于函数拟合与模式识别的Matlab示例程序 - 副本
BP神经网络用于函数拟合与模式识别的Matlab示例程序clcclearclose all%---------------------------------------------------% 产生训练样本与测试样本,每一列为一个样本P1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];T1 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];P2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];T2 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];%---------------------------------------------------% 归一化[PN1,minp,maxp] = premnmx(P1);PN2 = tramnmx(P2,minp,maxp);%---------------------------------------------------% 设置网络参数NodeNum = 10; % 隐层节点数TypeNum = 3; % 输出维数TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'tansig';TF2 = 'tansig';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});%---------------------------------------------------% 指定训练参数% net.trainFcn = 'traingd'; % 梯度下降算法% net.trainFcn = 'traingdm'; % 动量梯度下降算法%% net.trainFcn = 'traingda'; % 变学习率梯度下降算法% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法%% (大型网络的首选算法 - 模式识别)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小%% 共轭梯度算法% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves 修正算法略大% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大% (大型网络的首选算法 - 函数拟合,模式识别)% net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多%% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS 算法小,比共轭梯度算法略大%% (中小型网络的首选算法 - 函数拟合,模式识别)net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快%% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法%% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm' %---------------------%net.trainParam.show = 1; % 训练显示间隔net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdmnet.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdxnet.trainParam.mem_reduc = 10; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt 算法有效)net.trainParam.epochs = 1000; % 最大训练次数net.trainParam.goal = 1e-8; % 最小均方误差net.trainParam.min_grad = 1e-20; % 最小梯度net.trainParam.time = inf; % 最大训练时间%---------------------------------------------------% 训练与测试net = train(net,PN1,T1); % 训练%---------------------------------------------------% 测试Y1 = sim(net,PN1); % 训练样本实际输出Y2 = sim(net,PN2); % 测试样本实际输出Y1 = full(compet(Y1)); % 竞争输出Y2 = full(compet(Y2));%---------------------------------------------------% 结果统计Result = ~sum(abs(T1-Y1)) % 正确分类显示为1Percent1 = sum(Result)/length(Result) % 训练样本正确分类率Result = ~sum(abs(T2-Y2)) % 正确分类显示为1Percent2 = sum(Result)/length(Result) % 测试样本正确分类率******************************************************************% BP 神经网络用于函数拟合% 使用平台 - Matlab6.5% 作者:陆振波,海军工程大学% 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页% 电子邮件:luzhenbo@% 个人主页:clcclearclose all%---------------------------------------------------% 产生训练样本与测试样本P1 = 1:2:200; % 训练样本,每一列为一个样本T1 = sin(P1*0.1); % 训练目标P2 = 2:2:200; % 测试样本,每一列为一个样本T2 = sin(P2*0.1); % 测试目标%---------------------------------------------------% 归一化[PN1,minp,maxp,TN1,mint,maxt] = premnmx(P1,T1);PN2 = tramnmx(P2,minp,maxp);TN2 = tramnmx(T2,mint,maxt);%---------------------------------------------------% 设置网络参数NodeNum = 20; % 隐层节点数TypeNum = 1; % 输出维数TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'tansig';TF2 = 'tansig';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});%---------------------------------------------------% 指定训练参数% net.trainFcn = 'traingd'; % 梯度下降算法% net.trainFcn = 'traingdm'; % 动量梯度下降算法%% net.trainFcn = 'traingda'; % 变学习率梯度下降算法% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法%% (大型网络的首选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小%% 共轭梯度算法% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves 修正算法略大% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大% (大型网络的首选算法)%net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多%% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS 算法小,比共轭梯度算法略大%% (中型网络的首选算法)net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快%% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法%% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm' %---------------------%net.trainParam.show = 20; % 训练显示间隔net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdmnet.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdxnet.trainParam.mem_reduc = 1; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt算法有效)net.trainParam.epochs = 1000; % 最大训练次数net.trainParam.goal = 1e-8; % 最小均方误差net.trainParam.min_grad = 1e-20; % 最小梯度net.trainParam.time = inf; % 最大训练时间%---------------------------------------------------% 训练net = train(net,PN1,TN1); % 训练%---------------------------------------------------% 测试YN1 = sim(net,PN1); % 训练样本实际输出YN2 = sim(net,PN2); % 测试样本实际输出MSE1 = mean((TN1-YN1).^2) % 训练均方误差MSE2 = mean((TN2-YN2).^2) % 测试均方误差%---------------------------------------------------% 反归一化Y2 = postmnmx(YN2,mint,maxt);%---------------------------------------------------% 结果作图plot(1:length(T2),T2,'r+:',1:length(Y2),Y2,'bo:')title('+为真实值,o为预测值')%输入样本点及其相应的类别,其中有一个奇异点P=[-0.5 -0.5 0.3 -0.1 0.2 0.0 0.6 0.8 60;-0.5 0.5 -0.5 1.0 0.5 -0.9 0.8 -0.6 20];T=[1 1 0 1 1 0 1 0 1];%在坐标图上绘出样本点plotpv(P,T);%建立一个感知器网络figure;plotpv(P,T);net=newp([-1 60;1 20],1);handle=plotpc(net.iw{1},net.b{1});%利用样本点训练网络并绘出得到的分类线E=1;while (sse(E)),[net,Y,E]=adapt(net,P,T);handle=plotpc(net.iw{1},net.b{1},handle);end;%局部放大分类线图figure;plotpv(P,T);plotpc(net.iw{1},net.b{1});axis([-2 2 -2 2]);%选择10个点来测试网络testpoints=[-0.5 0.3 -0.9 0.4 -0.1 0.2 -0.6 0.8 0.1 -0.4; -0.3 -0.8 -0.4 -0.7 0.4 -0.6 0.1 -0.5 -0.5 0.3]; a=sim(net,testpoints);%在坐标图上绘出网络的分类结果及分类线figure;plotpv(testpoints,a);plotpc(net.iw{1},net.b{1});%产生指定类别的样本点,并在图中绘出X = [0 1; 0 1]; % 限制类中心的范围clusters = 5; % 指定类别数目points = 10; % 指定每一类的点的数目std_dev = 0.05; % 每一类的标准差P = nngenc(X,clusters,points,std_dev);plot(P(1,:),P(2,:),'+r');title('输入样本向量');xlabel('p(1)');ylabel('p(2)');%建立网络net=newc([0 1;0 1],5,0.1); %设置神经元数目为5 %得到网络权值,并在图上绘出figure;plot(P(1,:),P(2,:),'+r');w=net.iw{1}hold on;plot(w(:,1),w(:,2),'ob');hold off;title('输入样本向量及初始权值');xlabel('p(1)');ylabel('p(2)');figure;plot(P(1,:),P(2,:),'+r');hold on;%训练网络net.trainParam.epochs=7;net=init(net);net=train(net,P);%得到训练后的网络权值,并在图上绘出w=net.iw{1}plot(w(:,1),w(:,2),'ob');hold off;title('输入样本向量及更新后的权值');xlabel('p(1)');ylabel('p(2)');a=0;p = [0.6 ;0.8];a=sim(net,p)%生成一个信号,作为被预测信号Time=0:0.025:5;T=sin(Time*4*pi);Q=length(T);%由信号T生成输入信号PP = zeros(5,Q);P(1,2:Q) = T(1,1:(Q-1));P(2,3:Q) = T(1,1:(Q-2));P(3,4:Q) = T(1,1:(Q-3));P(4,5:Q) = T(1,1:(Q-4));P(5,6:Q) = T(1,1:(Q-5));%绘出信号T的曲线figure;plot(Time,T);title('信号T');xlabel('时间');ylabel('目标信号');%设计网络net=newlind(P,T);%仿真网络a=sim(net,P);%绘出网络预测输出figure;plot(Time,a);title('预测结果');xlabel('时间');ylabel('预测值');%得到误差信号,并绘出其曲线e=T-a;figure;plot(Time,e);title('误差');xlabel('时间');ylabel('误差值');%分别定义两段时间Time1和Time2,对应信号的不同频率时段Time1=0:0.05:4;Time2=4.05:0.024:6;Time=[Time1 Time2];%得到待预测的目标信号T=[cos(Time1*4*pi) cos(Time2*8*pi)];T=con2seq(T);%绘出目标信号的曲线,并指定给输入figure;plot(Time,cat(2,T{:}));xlabel('时间');ylabel('目标');title('待跟踪的目标信号');P=T;%生成线性网络lr=0.1;delays = [1 2 3 4 5];net = newlin(minmax(cat(2,P{:})),1,delays,lr);%对网络进行自适应训练[net,a,e]=adapt(net,P,T);%绘出预测信号、目标信号及误差信号曲线figure;plot(Time,cat(2,a{:}),Time,cat(2,P{:}),'--');xlabel('时间');ylabel('目标、预测值');title('目标信号及预测结果');figure;plot(Time,cat(2,e{:}));xlabel('时间');ylabel('误差');title('误差信号');%定义输入信号并绘出其曲线time=0:0.025:5;X=sin(sin(time).*time*10);plot(time,X);title('输入信号T');xlabel('时间');ylabel('输入信号');figure;%定义系统线性变换函数,绘出系统输出曲线T=X*2+0.8;plot(time,T);title('系统输出T');xlabel('时间');ylabel('系统输出');%定义网络输入Q=size(X,2);P=zeros(3,Q);P(1,1:Q)=X(1,1:Q);P(2,2:Q)=X(1,1:(Q-1));P(3,3:Q)=X(1,1:(Q-2));%建立网络net=newlind(P,T);%测试网络a=sim(net,P);%绘出网络输出a与系统输出Tfigure;plot(time,a,'+',time,T,'--');title('网络输出a与系统输出T'); xlabel('时间');ylabel('系统输出-- 网络输出+');%计算误差,并绘出其曲线e=T-a;figure;plot(time,e);title('输出误差');xlabel('时间');ylabel('误差');%定义输入信号并绘出其曲线time1=0:0.005:4;time2=4.005:0.005:6;time=[time1 time2];X=sin(sin(time*4).*time*8);plot(time,X);title('输入信号X');xlabel('时间');ylabel('输入信号');%定义系统输出,绘出曲线steps1=length(time1);[T1,state]=filter([1 -0.5],1,X(1:steps1));steps2=length(time2);T2=filter([0.9 -0.6],1,X((1:steps2) + steps1),state); T=[T1 T2];figure;plot(time,T);title('系统输出T');xlabel('时间');ylabel('系统输出');%将系统输入和输出转换成序列信号T=con2seq(T);P=con2seq(X);%建立网络lr=0.5;delays=[0 1];net=newlin(minmax(cat(2,P{:})),1,delays,lr);%训练网络[net,a,e]=adapt(net,P,T);%绘出网络输出a与系统输出Tfigure;plot(time,cat(2,a{:}),'+',time,cat(2,T{:}),'--');title('网络输出a与系统输出T');xlabel('时间');ylabel('系统输出-- 网络输出+');%绘出误差曲线figure;plot(time,cat(2,e{:}));title('输出误差');xlabel('时间');ylabel('误差');。
神经网络算法例题(题目和解答以及Matlab代码)
神经⽹络算法例题(题⽬和解答以及Matlab代码)题⽬:采⽤贝叶斯正则化算法提⾼BP⽹络的推⼴能⼒,⽤来训练BP⽹络,使其能够拟合某⼀附加⽩噪声的正弦样本数据。
解答:采⽤贝叶斯正则化算法‘trainbr’训练BP⽹络,⽬标误差goal=1×10^-3,学习率lr=0.05,最⼤迭代次数epochs=500,拟合附加有⽩噪声的正弦样本数据,拟合数据均⽅根误差为0.0054,拟合后的图形⽤以下代码可以得出。
Matalb代码:clear all;%清除所有变量close all;%清图clc;%清屏%定义训练样本⽮量 P为输⼊⽮量P=[-1:0.05:1];%T为⽬标⽮量T=sin(2*pi*P)+0.1*randn(size(P));%绘制样本数据点figureplot(P,T,'+');hold on;plot(P,sin(2*pi*P),':');%绘制不含噪声的正弦曲线net=newff(minmax(P),[20,1],{'tansig','purelin'});%采⽤贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';%设置训练参数net.trainParam.show=50;%显⽰中间结果的周期net.trainParam.lr=0.05;%学习率net.trainParam.epochs=500;%最⼤迭代次数net.trainParam.goal=1e-3;%⽬标误差%⽤相应算法训练BP⽹络[net,tr]=train(net,P,T);%对BP⽹络进⾏仿真A=sim(net,P);%计算仿真误差E=T-A;MSE=mse(E);%绘制匹配结果曲线plot(P,A,P,T,'+',P,sin(2*pi*P),':');legend('样本点','标准正弦曲线','拟合正弦曲线');。
BP神经网络的设计实例(MATLAB编程)
神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)
Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。
本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。
通过不断调试,大致弄明白这两个函数对神经网络的存储。
下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。
如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口输入:save net %net为已训练好的网络然后在命令窗口输入:load net %net为已保存的网络加载net。
但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作如下所示:%% 以函数的形式训练神经网络functionshenjingwangluo()P=[-1,-2,3,1;-1,1,5,-3];%P为输入矢量T=[-1,-1,1,1,];%T为目标矢量net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')%创建一个新的前向神经网络inputWeights=net.IW{1,1}inputbias=net.b{1}%当前输入层权值和阀值layerWeights=net.LW{2,1}layerbias=net.b{2}net.trainParam.show=50;net.trainParam.lr=0.05;net.trainParam.mc=0.9;net.trainParam.epochs=1000;net.trainParam.goal=0.0002;%调用算法训练BP网络[net,tr]=train(net,P,T);%保存训练好的网络在当前工作目录下的aaa 文件中,net为网络名save('aaa', 'net');%也可以采用格式“save aaa net;”%若要保存到指定目录用“'save('d:\aaa.mat', 'net');”这样就保存到指定的目录下了%%调用网络,以函数的形式function jiazaiwangluo()%网络加载,注意文件名要加单引号load('-mat','aaa');%从指定目录加载“load('-mat','d:\aaa.mat'); ”P=[3;4]A=sim(net,P)%对网络进行仿真上面两个函数都已经调试成功,有需要的朋友可以试试看,希望对大家有帮助。
基于BP神经网络的自整定PID控制的MATLAB程序代码
基于BP神经网络的自整定PID控制仿真在工业控制中,PID控制是工业控制中最常用的方法。
这是因为PID控制器结构简单、实现简单,控制效果良好,已得到广泛应用。
但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。
为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。
利用人工神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。
基于BP神经网络的PID控制器结构如图1所示。
控制器由两部分组成:一是常规PID 控制器,用以直接对对象进行闭环控制,且三个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。
图1 基于神经网络的PID控制器结构1.设计原理神经网络采用结构为4-5-3型的BP网络,如图2。
图2 BP网络结构其中,输出层激励函数取非负的Sigmoid函数,隐层取正负对称的Sigmoid函数。
被控对象为一时变非线性对象,数学模型可表示为: 2()(1)()(1)1(1)a k y k y k u k y k -=+-+- 式中,系数a(k)是慢时变的,。
为保证控制器有一定的动态跟踪能力,选定神经网络的输入层输入为[(),(1),(2),1]T in X e k e k e k =--网络的学习过程由正向和反向传播两部分组成。
如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得输出误差信号最小。
输出层节点分别对应三个可调参数(3)1(3)2(3)3p I D O K O K O K ⎫=⎪=⎬⎪=⎭取性能指标函数为: 21()(()())2E k r k y k =-设其中:()()()r k y k e k -=若PID 控制器采用采用增量式数字PID 控制算法,则有(3)1(3)2(3)3()()(1)()()()()2(1)(2)u k e k e k O u k e k O u k e k e k e k O ⎫∂=--⎪∂⎪⎪∂=⎬∂⎪⎪∂=--+-⎪∂⎭2.网络权系数调整网络权系数的修正采用梯度下降法。
BP神经网络在MATLAB上的实现与应用
收稿日期:2004-02-12作者简介:桂现才(1964)),海南临高人,湛江师范学院数学与计算科学学院讲师,从事数据分析与统计,数据挖掘研究.2004年6月第25卷第3期湛江师范学院学报JO URN AL OF Z HA NJI ANG NOR M AL CO LL EG E Jun 1,2004Vol 125 N o 13BP 神经网络在M ATLAB 上的实现与应用桂现才(湛江师范学院数学与计算科学学院,广东湛江524048)摘 要:BP 神经网络在非线性建模,函数逼近和模式识别中有广泛地应用,该文介绍了B P 神经网络的基本原理,利用MA TL AB 神经网络工具箱可以很方便地进行B P 神经网络的建立、训练和仿真,给出了建立BP 神经网络的注意事项和例子.关键词:人工神经网络;BP 网络;NN box MA TL AB中图分类号:TP311.52 文献标识码:A 文章编号:1006-4702(2004)03-0079-051 BP 神经网络简介人工神经网络(Artificial Neural Netw orks,简称为N N)是近年来发展起来的模拟人脑生物过程的人工智能技术.它由大量简单的神经元广泛互连形成的复杂的非线性系统,它不需要任何先验公式,就能从已有数据中自动地归纳规则,获得这些数据的内在规律,具有很强的非线性映射能力,特别适合于因果关系复杂的非确性推理、判断、识别和分类等问题.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple -layer feedf or ward net 2work,简记为BP 网络),是目前应用最多也是最成功的网络之一,构造一个BP 网络需要确定其处理单元)))神经元的特性和网络的拓扑结构.1.1神经元模型神经元是神经网络最基本的组成部分,一般地,一个有R 个输入的神经元模型如图1所示.其中P 为输入向量,w 为权向量,b 为阈值,f 为传递函数,a 为神经元输出.所有输入P 通过一个权重w 进行加权求和后加上阈值b 再经传递函数f 的作用后即为该神经元的输出a.传递函数可以是任何可微的函数,常用的有Sigmoid 型和线性型.1.2 神经网络的拓扑结构神经网络的拓扑结构是指神经元之间的互连结构.图2是一个三层的B P 网络结构.B P 网络由输入层、输出层以及一个或多个隐层节点互连而成的一种多层网,这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系,又不致使网络输出限制在-1和1之间.2 M A TLAB 中B P 神经网络的实现BP 网络的训练所采用的算法是反向传播法,可以以任意精度逼近任意的连续函数,近年来,为了解决BP 网络收敛速度慢,训练时间长等不足,提出了许多改进算法[1][2].在应用BP 网络解决实际问题的过程中,选择多少层网络、每层多少个神经元节点、选择何种传递函数、何种训练算法等,均无可行的理论指导,只能通过大量的实验计算获得.这无形增加了研究工作量和编程计算工作量.M AT L AB 软件提供了一个现成的神经网络工具箱(Neural Netw ork T oolbox,简称N Nbox),为解决这个矛盾提供了便利条件.下面针对BP 网络的建立、传递函数的选择、网络的训练等,在介绍NN box 相关函数的基础上,给出利用这些函数编程的方法.2.1 神经网络的建立M AT LAB 的N Nbox 提供了建立神经网络的专用函数ne wff().用ne wf f 函数来确定网络层数、每层中的神经元数和传递函数,其语法为:net =ne wf f(PR,[S1,S2,,,S N],{TF1,TF2,,,T FN},B TF,BL F,PF)其中PR 是一个由每个输入向量的最大最小值构成的Rx2矩阵.Si 是第i 层网络的神经元个数.TFi 是第i 层网络的传递函数,缺省为tansig,可选用的传递函数有tansig,logsig 或purelin.BT F )字符串变量,为网络的训练函数名,可在如下函数中选择:traingd 、traingdm 、traingdx 、trainbfg 、trainlm 等,缺省为trainlm.BL F )字符串变量,为网络的学习函数名,缺省为learngdm.BF )字符串变量,为网络的性能函数,缺省为均方差c mse cnew ff 在确定网络结构后会自动调用init 函数用缺省参数来初始化网络中各个权重和阈值,产生一个可训练的前馈网络,即该函数的返回值为net.由于非线性传递函数对输出具有压缩作用,故输出层通常采用线性传递函数,以保持输出范围.2.2 神经网络训练初始化后的网络即可用于训练,即将网络的输入和输出反复作用于网络,不断调整其权重和阈值,以使网络性能函数net.performFcn 达到最小,从而实现输入输出间的非线性映射.对于new ff 函数产生的网络,其缺省的性能函数是网络输出和实际输出间的均方差M SE.在N Nbox 中,给出了十多种网络学习、训练函数,其采用的算法可分为基本的梯度下降算法和快速算法,各种算法的推导参见文献[1][2].在M A T LAB 中训练网络有两类模式:逐变模式(incremental mode)和批变模式(batch mode).在逐变模式中,每一个输入被作用于网络后,权重和阈值被更新一次.在批变模式中,所有的输入被应用于网络后,权重和阈值才被更新一次.使用批变模式不需要为每一层的权重和阈值设定训80湛江师范学院学报(自然科学) 第25卷练函数,而只需为整个网络指定一个训练函数,使用起来相对方便,而且许多改进的快速训练算法只能采用批变模式,在这里我们只讨论批变模式,以批变模式来训练网络的函数是train ,其语法主要格式为:[net,tr]=train(N ET,p,t),其中p 和t 分别为输入输出矩阵,NET 为由ne wff 产生的要训练的网络,net 为修正后的网络,tr 为训练的记录(训练步数epoch 和性能perf).train 根据在new ff 函数中确定的训练函数来训练,不同的训练函数对应不同的训练算法.Traingd 基本梯度下降算法.收敛速度慢,可用于增量模式训练.Traingdm 带有趋势动量的梯度下降算法.收敛速度快于Traingd,可用于增量模式训练.Traingdx 自适应学习速度算法.收敛速度快于Traingd,仅用于批量模式训练.Trainnp 强适应性BP 算法.用于批量模式训练,收敛速度快,数据占用存储空间小.Traincgf Fletcher-reeves 变梯度算法.是一种数据占用存储空间最小的变梯度算法.Traincgp Polak -Ribiere 变梯度算法.存储空间略大于Traincgp,但对有些问题具有较快的收敛速度.Traincgb Powell-beale 变梯度算法.存储空间略大于Traincgp,具有较快的收敛速度.Trainsc g 固定变比的变梯度算法.是一种无需线性搜索的变梯度算法.Trainbf g BFGS 拟牛顿算法.数据存储量近似于Hessian 矩阵,每个训练周期计算虽大,但收敛速度较快.Trainoss 变梯度法与拟牛顿法的折中算法.Trainlm Levenberg -Marquardt 算法.对中度规模的网络具有较快的收敛速度.Trainbr 改进型L )M 算法.可大大降低确定优化网络结构的难度.训练时直接调用上述的函数名,调用前为下列变量赋初始值:net.trainParam.show )))每多少轮显示一次;net.trainPara m.L r )))学习速度;net.trainParam.epochs )))最大训练轮回数;net.trainPara m.goal )))目标函数误差.2.3 仿真函数及实例利用仿真函数可对训练好的网络进行求值运算及应用.函数调用形式为:a=sim(net,p);其中net 为训练好的网络对象,p 为输入向量或矩阵,a 为网络输出.如果P 为向量,则为单点仿真;P 为矩阵,则为多点仿真.作为应用示例利用上述的函数,可解决下述非线性单输入单输出系统的模型化问题.已知系统输入为:x(k)=sin(k*P /50)系统输出为:y(k)=0.7sin(P x)+0.3sin(3P x)假定采样点k I [0,50].采用含有一个隐层的三层BP 网络建模,为了便于比较建立了两个模型.模型一的神经元为{1,7,1},模型二为{3,7,1},输入层和隐层传递函数均为TA NSIG 函数,输出层为线性函数.网络训练分别采用基本梯度下降法和变学习速度的梯度下降法.可编制如下的应用程序:k=0:50;x(k)=sin(k*pi/50);y(k)=0.7*sin(pi*x)+0.3*sin(3*pi*x);net=new ff([0,1],[1,7,1],{-tansig .,.tansig .,.purelin .},.traingd .);%建立模型一,并采用基本梯度下降法训练.net.trainParam.show=100;%100轮回显示一次结果81第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用82湛江师范学院学报(自然科学)第25卷net.trainParam.L r=0.05;%学习速度为0.05net.trainParam.epochs=50000;%最大训练轮回为50000次net.trainParam.goal=1e-4;%均方误差为0.0001net=train(net,x,y);%开始训练,其中x,y分别为输入输出样本y1=sim(net,x);%用训练好的模型进行仿真plot(x,y,x,y1);%绘制结果曲线若采用模型二,仅需将程序第4句ne wf f函数中的第二个参数改为[3,7,1].若采用变学习速度算法,仅需将该函数第4个参数改为.traingda.,加入:net.trainparam.lr-inc=1.05%;训练速度增加系数.一句即可.模型一用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数为4214次.模型二用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数6511次.(M A TL AB6.0)以上结果反映出BP网络经有效训练后可很好地逼近非线性函数.但其训练次数过多,训练时间长.3建立BP神经网络的注意事项利用M A TL AB软件提供的工具箱编制采用BP网络解决非线性问题程序是一种便捷、有效、省事的途径,但在使用时要解决好以下几个关键环节.3.1神经元结点数网络的输入与输出结点数是由实际问题的本质决定的,与网络性能无关.网络训练前的一个关键步骤是确定隐层结点数L,隐层结点数的选择与其说具有科学性,不如说更具有技巧性,往往与输入数据中隐含的特征因素有关.L的选择至今仍得不到一个统一的规范.L的初始值可先由以下两个公式中的其中之一来确定[3][4].l=m+n(1)或l=0143mn+0112n2+2154m+0177n+0135+0151(2)其中m、n分别为输入结点数目与输出结点数目.隐层结点数可根据公式(1)或(2)得出一个初始值,然后利用逐步增长或逐步修剪法.所谓逐步增长是先从一个较简单的网络开始,若不符合要求则逐步增加隐层单元数到合适为止;逐步修剪则从一个较复杂的网络开始逐步删除隐层单元,具体实现已有不少文献讨论.3.2传递函数的选择工具箱提供了三种传递函数:L og-sigmoid、tan-sigmoid和线性函数.前两种为非线性函数,分别将x I(-],+])的输入压缩为y I[0,1]和y I[-1,+1]的输出.因此,对非线性问题,输入层和隐层多采用非线性传递函数,输出层采用线性函数,以保持输出的范围,就非线性传递函数而言,若样本输出均大于零时,多采用L og-sigmoid函数,否则,采用Tan-sigmoid函数.对线性系统而言,各层多采用线性函数.3.3数据预处理和后期处理如果对神经网络的输入和输出数据进行一定的预处理,可以加快网络的训练速度,M A TL AB 中提供的预处理方法有(1)归一化处理:将每组数据都变为-1至1之间数,所涉及的函数有pre mnmx、postmnmx、tramnmx;(2)标准化处理:将每组数据都化为均值为0,方差为1的一组数据,所涉及的函数有prestd、poststd、trastd;(3)主成分分析:进行正交处理,可减少输入数据的维数,所涉及的函数有prepca、trapca.(4)回归分析与相关性分析:所用函数为postrg,可得到回归系数与相关系数,也可用[5]介绍的方法进行置信区间分析.下面以归一化处理为例说明其用法,另外两种预处理方法的用法与此类似.对于输入矩阵p 和输出矩阵t 进行归一化处理的语句为:[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);训练时应该用归一化之后的数据,即:net =train(net,pn,tn);训练结束后还应对网络的输出an =sim(net ,pn)作如下处理:a =postmnmx(an,mint,maxt);当用训练好的网络对新数据pne w 进行预测时,也应作相应的处理:pnew n =tramnmx(pne w,minp,maxp);ane wn =sim(net,pne wn);ane w =postmnmx(anew,mint,ma xt);3.4 学习速度的选定学习速度参数net.trainparam.lr 不能选择的太大,否则会出现算法不收敛.也不能太小,会使训练过程时间太长.一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值来确定.3.5 对过拟合的处理网络训练有时会产生/过拟合0,所谓/过拟合0就是训练集的误差被训练的非常小,而当把训练好的网络用于新的数据时却产生很大的误差的现象,也就是说此时网络适应新情况的泛化能力很差.提高网络泛化能力的方法是选择合适大小的网络结构,选择合适的网络结构是困难的,因为对于某一问题,事先很难判断多大的网络是合适的.为了提高泛化能力,可用修改性能函数和提前结束训练两类方法来实现,详见[6].参考文献:[1] 张乃尧、阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.[2] 刘增良、刘有才.模糊逻辑与神经网络)))理论研究与探索[M].北京:北京航空航天大学出版社,1996.[3] 徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.[4] 高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-85[5] 陈小前,罗世彬,王振国,等1B P 神经网络应用中的前后处理过程研究[J].系统工程理论与实践,2002,22(1):65-70.[6] 闵惜琳、刘国华.用MA TLAB 神经网络工具箱开发B P 网络应用[J].计算机应用,2001,21(8):163-164.[7] 飞思科技产品研发中心.MA TLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.Realization of BP Networks and Their Applications on MATLABG UI Xian-cai(Mathe matics and C omputational Science School,Zhanji ang Normal C ollege,Zhanjiang,Guangdong 524048,Chi na)Abstract:B P Neural Netw orks are widely applied in nonlinear modeling,f unction approach,and pat 2tern rec ognition.This paper introduces the fundmental of BP Neural Networks.Nnbox can be easily used to create,train and simulate a netw ork,w hile some e xamples and explanations are given.Key words:Artificial Neural Netw orks;B P Networks;Nnbox;M A TL AB 83第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用。
第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。
运用Matlab创建BP神经网络(R2021b)
运用Matlab创建BP神经网络(R2021b)运用Matlab创建BP神经网络(R2021b)BP神经网络属于前向网络以下为创建BP神经网络的方法及参数意义(1)net=newff(P,T,S)或者net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) P:输入参数矩阵。
(RxQ1) T:目标参数矩阵。
(SNxQ2)S:N-1个隐含层的数目(S(i)到S(N-1)),输出层的单元数目取决于T,默认为空矩阵。
TF:相关层的传递函数,默认隐含层为tansig函数,输出层为purelin函数。
BTF:BP神经网络学习训练函数,默认值为trainlm函数。
BLF:权重学习函数,默认值为learngdm。
PF:性能函数,默认值为mse。
IPF,OPF,DDF均为默认值即可。
(2)传递函数 purelin 线性传递函数 tansig 正切 S 型传递函数 logsig 对数 S 型传递函数隐含层和输出层函数的选择对BP神经网络预测精度有较大影响,一般隐含层节点转移函数选用 tansig函数或logsig函数,输出层节点转移函数选用tansig函数或purelin函数。
(3)学习训练函数神经网络的学习分为有导师学习和无导师学习。
最速下降BP算法:traingd 动量BP算法:traingdm学习率可变的BP算法:trainda(学习率可变的最速下降BP算法);traindx(学习率可变的动量BP算法)弹性算法:trainrp变梯度算法:traincgf(Fletcher-Reeves修正算法) traincgp(Polak_Ribiere修正算法) traincgb(Powell-Beale复位算法)trainbfg(BFGS 拟牛顿算法) trainoss(OSS算法) trainlm(LM算法)参数说明:通过net.trainParam可以查看参数Show Training Window Feedback showWindow: true Show Command LineFeedback showCommandLine: falseCommand Line Frequency show: 两次显示之间的训练次数 MaximumEpochs epochs: 训练次数Maximum Training Time time: 最长训练时间(秒)Performance Goal goal: 网络性能目标 Minimum Gradientmin_grad: 性能函数最小梯度 Maximum Validation Checks max_fail: 最大验证失败次数 Learning Rate lr: 学习速率Learning Rate Increase lr_inc: 学习速率增长值 Learning Rate lr_dec: 学习速率下降值 Maximum Performance Increase max_perf_inc:Momentum Constant mc: 动量因子(4)BP神经网络预测函数SimOut = sim('model', Parameters) & y=sim(net,x) 函数功能:用训练好的BP神经网络预测函数输出net:训练好的网络 x:输入数据 y:网络预测数据 (5)训练函数[net,tr] = train(Net,P,T,Pi,Ai) 其中,Net 待训练的网络 P 输入数据矩阵T 输出数据矩阵 (default = zeros) Pi 初始化输入层条件 (default = zeros)Ai 初始化输出层条件 (default = zeros) net 训练好的网络 tr 训练过程记录注意:P Ni-by-TS cell array Each element P{i,j,ts} is an Ni-by-Qmatrix. T Nl-by-TS cell array Each element T{i,ts} is a Ui-by-Q matrix.BP网络的常用函数表函数类型前向网络创建函数 Newff logsig 传递函数 tansig purelin learngd 学习函数 learngdm 性能函数 mse 梯度下降动量学习函数均方误差函数创建前向BP网络S型的对数函数 S型的正切函数纯线性函数基于梯度下降法的学习函数函数名称newcf 函数用途创建级联前向网络 msereg plotperf plotes 显示函数 plotep errsurf范例(网上搜寻的,谢谢原作者)均方误差规范化函数绘制网络的性能绘制一个单独神经元的误差曲面绘制权值和阈值在误差曲面上的位置计算单个神经元的误差曲面现给出一药品商店一年当中12个月的药品销售量(单位:箱)如下: 2056 2395 2600 2298 1634 1600 1873 1487 19001500 2046 1556 训练一个BP网络,用当前的所有数据预测下一个月的药品销售量。
matlab神经网络实例(超级简单)
介绍神经网络算法在机械结构优化中的应用的例子(大家要学习的时候只需要把输入输出变量更改为你自己的数据既可以了,如果看完了还有问题的话可以加我微博“极南师兄”给我留言,与大家共同进步)。
把一个结构的8个尺寸参数设计为变量,如上图所示,对应的质量,温差,面积作为输出。
用神经网络拟合变量与输出的数学模型,首相必须要有数据来源,这里我用复合中心设计法则构造设计点,根据规则,八个变量将构造出81个设计点。
然后在ansys workbench中进行81次仿真(先在proe建模并设置变量,将模型导入wokbench中进行相应的设置,那么就会自动的完成81次仿真,将结果导出来exceel文件)Matlab程序如下P=[20 2.5 6 14.9 16.5 6 14.9 16.515 2.5 6 14.9 16.5 6 14.9 16.525 2.5 6 14.9 16.5 6 14.9 16.520 1 6 14.9 16.5 6 14.9 16.520 4 6 14.9 16.5 6 14.9 16.520 2.5 2 14.9 16.5 6 14.9 16.520 2.5 10 14.9 16.5 6 14.9 16.520 2.5 6 10 16.5 6 14.9 16.520 2.5 6 19.8 16.5 6 14.9 16.520 2.5 6 14.9 10 6 14.9 16.520 2.5 6 14.9 23 6 14.9 16.520 2.5 6 14.9 16.5 2 14.9 16.520 2.5 6 14.9 16.5 10 14.9 16.520 2.5 6 14.9 16.5 6 10 16.520 2.5 6 14.9 16.5 6 19.8 16.520 2.5 6 14.9 16.5 6 14.9 1020 2.5 6 14.9 16.5 6 14.9 2317.51238947 1.75371684 4.009911573 12.46214168 13.26610631 4.00991157312.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 13.26610631 4.00991157312.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 13.26610631 4.00991157322.48761053 3.24628316 4.009911573 12.46214168 13.26610631 4.00991157317.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 13.26610631 4.00991157317.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 13.26610631 4.00991157317.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 13.26610631 4.00991157312.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 13.26610631 4.00991157312.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 13.26610631 4.00991157317.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 13.26610631 4.00991157317.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 13.26610631 4.00991157312.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 13.26610631 4.00991157312.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 13.26610631 4.00991157312.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 13.26610631 4.00991157312.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 13.26610631 4.00991157317.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 13.26610631 4.00991157317.33785832 19.7338936917.51238947 1.75371684 4.009911573 12.46214168 19.73389369 4.00991157317.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 19.73389369 4.00991157317.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 19.73389369 4.00991157312.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 19.73389369 4.00991157312.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 19.73389369 4.00991157312.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 19.73389369 4.00991157312.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 19.73389369 4.00991157317.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 19.73389369 4.00991157317.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 19.73389369 4.00991157322.48761053 1.75371684 4.009911573 17.33785832 19.73389369 4.00991157312.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 19.73389369 4.00991157317.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 19.73389369 4.00991157317.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 19.73389369 4.00991157317.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 19.73389369 4.00991157317.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 19.73389369 4.00991157312.46214168 19.7338936922.48761053 3.24628316 7.990088427 17.33785832 19.73389369 4.00991157312.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 13.26610631 7.99008842717.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 13.26610631 7.99008842717.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 13.26610631 7.99008842712.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 13.26610631 7.99008842712.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 13.26610631 7.99008842712.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 13.26610631 7.99008842712.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 13.26610631 7.99008842717.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 13.26610631 7.99008842717.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 13.26610631 7.99008842712.46214168 19.7338936922.48761053 1.75371684 4.009911573 17.33785832 13.26610631 7.99008842712.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 13.26610631 7.99008842717.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 13.26610631 7.99008842717.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 13.26610631 7.99008842717.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 13.26610631 7.99008842717.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 13.26610631 7.99008842722.48761053 3.24628316 7.990088427 17.33785832 13.26610631 7.99008842712.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 19.73389369 7.99008842712.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 19.73389369 7.99008842712.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 19.73389369 7.99008842717.33785832 19.7338936922.48761053 3.24628316 4.009911573 12.46214168 19.73389369 7.99008842717.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 19.73389369 7.99008842717.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 19.73389369 7.99008842717.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 19.73389369 7.99008842712.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 19.73389369 7.99008842712.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 19.73389369 7.99008842717.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 19.73389369 7.99008842717.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 19.73389369 7.99008842712.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 19.73389369 7.99008842712.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 19.73389369 7.99008842712.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 19.73389369 7.99008842712.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 19.73389369 7.99008842717.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 19.73389369 7.99008842717.33785832 19.73389369]';%注意因为本人做了81组仿真试验,这里的矩阵后面有转置符号,在神经网络模型中,输入P的是8X81的矩阵(把程序复制过来之后格式没对齐,大家自己调整一下啦),对应的下面的输出T的是3x81的矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p=p1';t=t1';
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化
net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP网络
net.trainParam.show=2000; % 训练网络
net.trainParam.lr=0.01;
net.trainParam.epochs=100000;
net.trainParam.goal=1e-5;
[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络
pnew=pnew1';
pnewn=tramnmx(pnew,minp,maxp);
anewn=sim(net,pnewn); %对BP网络进行仿真
anew=postmnmx(anewn,mint,maxt); %还原数据
y=anew';
1、BP网络构建
(1)生成BP网络
=
net newff PR S S SNl TF TF TFNl BTF BLF PF
(,[1 2...],{ 1 2...},,,)
R⨯维矩阵。
PR:由R维的输入样本最小最大值构成的2
S S SNl:各层的神经元个数。
[ 1 2...]
{ 1 2...}
TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练
[,,,,,] (,,,,,,)
=
net tr Y E Pf Af train net P T Pi Ai VV TV
(3)网络仿真
=
[,,,,] (,,,,)
Y Pf Af E perf sim net P Pi Ai T
{'tansig','purelin'},'trainrp'
BP网络训练参数
2、BP网络举例
举例1、
%traingd
clear;
clc;
P=[-1 -1 2 2 4;0 5 0 5 7];
T=[-1 -1 1 1 -1];
%利用minmax函数求输入样本范围
net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');
net.trainParam.show=50;% net.trainParam.lr=0.05; net.trainParam.epochs=300; net.trainParam.goal=1e-5; [net,tr]=train(net,P,T);
net.iw{1,1}%隐层权值 net.b{1}%隐层阈值
net.lw{2,1}%输出层权值 net.b{2}%输出层阈值
sim(net,P)
举例2、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
看到期望输出的范围是()1,1-,所以利用双极性Sigmoid 函数作为转移函数。
程序如下:
clear; clc; X=-1:0.1:1;
D=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609... 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988... 0.3072 0.3960 0.3449 0.1816 -0.312 -0.2189 -0.3201]; figure;
plot(X,D,'*'); %绘制原始数据分布图(附录:1-1) net = newff([-1 1],[5 1],{'tansig','tansig'}); net.trainParam.epochs = 100; %训练的最大次数 net.trainParam.goal = 0.005; %全局最小误差 net = train(net,X,D); O = sim(net,X); figure;
plot(X,D,'*',X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3)
V = net.iw{1,1}%输入层到中间层权值 theta1 = net.b{1}%中间层各神经元阈值 W = net.lw{2,1}%中间层到输出层权值 theta2 = net.b{2}%输出层各神经元阈值
所得结果如下:
输入层到中间层的权值: ()-9.1669 7.3448 7.3761 4.8966 3.5409T
V = 中间层各神经元的阈值: ()6.5885 -2.4019 -0.9962 1.5303 3.2731T θ= 中间层到输出层的权值: ()0.3427 0.2135 0.2981 -0.8840 1.9134W = 输出层各神经元的阈值:-1.5271T =
举例3、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
解:
看到期望输出的范围超出()1,1-,所以输出层神经元利用线性函数作为转移函数。
程序如下:
clear; clc;
X = [0 1 2 3 4 5 6 7 8 9 10]; D = [0 1 2 3 4 3 2 1 2 3 4]; figure;
plot(X,D,'*'); %绘制原始数据分布图
net = newff([0 10],[5 1],{'tansig','purelin'}) net.trainParam.epochs = 100; net.trainParam.goal=0.005; net=train(net,X,D); O=sim(net,X); figure;
plot(X,D,'*',X,O); %绘制训练后得到的结果和误差曲线(附录:2-2、2-3) V = net.iw{1,1}%输入层到中间层权值 theta1 = net.b{1}%中间层各神经元阈值 W = net.lw{2,1}%中间层到输出层权值 theta2 = net.b{2}%输出层各神经元阈值
所得结果如下:
输入层到中间层的权值:()0.8584 2.0890 -1.2166 0.2752 -0.3910T
V =
中间层各神经元的阈值:()-14.0302 -9.8340 7.4331 -2.0135 0.5610T
θ= 中间层到输出层的权值: ()-0.4675 -1.1234 2.3208 4.6402 -2.2686W = 输出层各神经元的阈值: 1.7623T =
问题:以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP 神经网络,
利用该组信号的6个过去值预测信号的将来值。
load data3_1.txt ;
[m,n]=size( data3_1); tsx = data3_1(1:m-1,1); tsx=tsx';
ts = data3_1(2:m,1); ts=ts';
[TSX,TSXps]=mapminmax(tsx,1,2); [TS,TSps]=mapminmax(ts,1,2); TSX=TSX';
figure;
plot(ts,'LineWidth',2);
title('到杭旅游总人数(1999.01.01-2009.12.31)','FontSize',12);
xlabel('统计年份(1990.12.19-2009.08.19)','FontSize',12);
ylabel('归一化后的总游客数/万人','FontSize',12);
grid on;
% 生成BP网络、利用minmax函数求输入样本范围
net_1=newff(minmax(TS),[10,1],{'tansig','purelin'},'traincgf')
% 设置训练参数
net_1.trainParam.show = 50; %显示训练迭代过程(NaN表示不显示,缺省25)net_1.trainParam.lr = 0.025; %学习率(缺省0.01)
net_1.trainParam.mc = 0.9; %动量因子(缺省0.9)
net_1.trainParam.epochs = 10000; %最大训练次数
net_1.trainParam.goal = 0.001; %训练要求精度
inputWeights=net_1.IW{1,1} %输入层权值
inputbias=net_1.b{1} %输入层阈值
layerWeights=net_1.LW{2,1} %输出层权值
layerbias=net_1.b{2} %输出层阈值
TS',TSX
% 网络训练
[net_1,tr]=train(net_1,TS,TSX);。