高中数学统计与统计案例概率知识点上课讲义

合集下载

高考数学复习统计与统计案例概率节变量间的相关关系与统计案例文新人教A版PPT课件

高考数学复习统计与统计案例概率节变量间的相关关系与统计案例文新人教A版PPT课件

解析 易求-x=9,-y=4,样本点中心(9,4)代入验证,满足y^=0.7x-2.3.
答案 C
3.两个变量y与x的回归模型中,分别选择了4个不同模型,它 们的相关指数R2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 解析 在两个变量y与x的回归模型中,它们的相关指数R2越
最新考纲 1.会作两个有关联变量的数据的散点图,会利用 散点图认识变量间的相关关系;2.了解最小二乘法的思想, 能根据给出的线性回归方程系数公式建立线性回归方程(线性 回归方程系数公式不要求记忆);3.了解独立性检验(只要求 2×2列联表)的基本思想、方法及其简单应用;4.了解回归分 析的基本思想、方法及其简单应用.

的区
域,两个变量的这种相关关系称为一负条相直关线.
(3)如果散点图中点的分布从整体上看大致在
2.线性回归方程
(1)最小二乘法:使得样本数据的点到回归直线的 距离的平方最和小的方法叫做最
小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,
yn),其回归方程为
知识
1.相关关系与回归分析 梳 理 回归分析是对具有相关关系的两个变量进行统计分析的一种
常用方法;判断相散关点性图的常用统计图是:
;统左计下量角有相关右系上数角与相关指数.
(1)在散点图中,点散布在从

的区
域,对于两个变量的这左种上相角关关系右,下我角们将它称为正相关.
(2)在散点图中,点散布在从
≈4.844.


高一数学必修3讲义__统计概率教师版 - 副本

高一数学必修3讲义__统计概率教师版 - 副本

数学必修3 统计与古典概率专题一、统计知识要点: 1、数据的收集:①总体与样本、样本容量 ②随机抽样:简单随机抽样、.系统抽样、.分层抽样 2、数据的处理:①根据数据的特征数:趋中程度:众数、中位数、均值 离散程度:方差、标准差 ②根据频率分布 频率分布直方图 频率分布折线图 茎叶图 3、变量的相关关系①变量间关系 ②相关关系的分析 ③两变量的线性关系 二、概率知识要点:1、古典概型 2、几何概型 三、基础练习1.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 (A )9(B )18(C )27(D) 362.一个容量100的样本,其数据的分组与各组的频数如下表则样本数据落在(10,40)上的频率为A. 0.13B. 0.39C. 0.52D. 0.643.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。

黄金矩形常应用于工艺品设计中。

下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本: 甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 A. 甲批次的总体平均数与标准值更接近 B. 乙批次的总体平均数与标准值更接近 C. 两个批次总体平均数与标准值接近程度相同 D. 两个批次总体平均数与标准值接近程度不能确定4.对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

(A)变量x 与y 正相关,u 与v 正相关(B)变量x 与y 正相关,u 与v 负相关(C)变量x 与y 负相关,u 与v 正相关(D)变量x 与y 负相关,u 与v 负相关5.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。

高中数学人教版概率与统计课件

高中数学人教版概率与统计课件

高中数学人教版概率与统计课件概率与统计是高中数学中的一门重要学科,它研究的是随机事件的发生规律、数据的收集和分析方法。

在高中数学人教版课程中,概率与统计的学习内容涉及概率、统计以及相关的数理统计方法,帮助学生培养数据分析、问题解决和决策能力。

本文将介绍一份高中数学人教版概率与统计课件的主要内容和特点。

一、概率的基本概念1. 随机试验与随机事件:课件首先介绍了什么是随机试验以及随机事件的概念。

随机试验是指在相同的条件下,结果不确定的试验;而随机事件则是指在随机试验中可能发生的事件。

2. 概率的定义:课件详细解释了概率的概念和定义,并介绍了概率的性质,如非负性、规范性和可列可加性。

同时,课件还通过举例说明了如何计算概率。

3. 概率的计算:课件列举了几种计算概率的方法,包括频率法、古典概型和几何概型。

通过实际的例子和计算步骤,帮助学生掌握不同计算方法的应用。

二、离散型随机变量1. 随机变量的概念:课件在介绍离散型随机变量之前,对随机变量的概念进行了详细阐述。

随机变量是指随机试验结果的数值表示,在数学中常用大写字母表示。

2. 离散型随机变量的概率分布:课件通过表格和图表的形式,展示了离散型随机变量的概率分布。

同时,课件还介绍了离散型随机变量的数学期望以及方差的计算方法。

3. 二项分布:课件重点讲解了二项分布的特点和应用。

通过实例演示,学生能够掌握二项分布的概率计算方法,以及二项分布的连续性修正。

三、连续型随机变量1. 连续型随机变量的概念:课件首先介绍了连续型随机变量的概念,并与离散型随机变量进行了比较。

连续型随机变量是指在一定区间内取任意实数值的随机变量。

2. 连续型随机变量的概率密度函数:课件详细解释了概率密度函数的概念及其性质。

通过图形展示和计算实例,学生能够理解概率密度函数的意义和计算方法。

3. 正态分布:课件重点讲解了正态分布的特点和应用。

学生将会学习到正态分布的概率计算方法,以及如何进行正态分布的标准化处理。

高中数学人教版概率与统计课件

高中数学人教版概率与统计课件

高中数学人教版概率与统计课件概率与统计是高中数学中一门重要的课程,它涵盖了许多实际应用和数学原理。

为了帮助同学们更好地理解和学习这门课程,我们为你准备了一份高中数学人教版概率与统计课件。

第一部分:概率1.引言概率作为一门数学分支,旨在研究事件发生的可能性。

通过概率的计算和统计,我们可以预测事件发生的结果,并在实际应用中做出决策。

2.基础概念这一部分介绍了一些概率的基本概念,包括样本空间、随机事件、必然事件和不可能事件等。

学习这些基础概念是理解概率的重要前提。

3.概率计算这一部分详细介绍了如何计算概率。

包括基本概率计算公式的推导和应用。

我们将通过一些实际问题的例子来讲解概率计算的方法。

4.条件概率条件概率是指在已知一定条件下,某事件发生的概率。

本部分将介绍条件概率的计算方法,以及乘法定理和全概率定理的应用。

5.事件独立性这一部分将讲解事件的独立性概念。

一般来说,两个事件相互独立意味着它们的发生不会互相影响。

我们将通过实例来说明事件独立性的判断和计算。

第二部分:统计1.统计的基本概念统计是一门研究收集、处理和解读数据的学科。

在这一部分,我们将介绍统计中的一些基本概念,包括数据的分类、频率分布和统计量等。

2.数据的收集和处理这一部分将详细解释如何收集和处理数据。

我们将介绍数据的收集方法和如何对数据进行整理、分类和汇总。

同时,我们也会介绍一些数据可视化的方法,如频率分布表、直方图和折线图等。

3.样本与总体在统计中,我们常常需要根据样本数据来推断总体的特征。

本部分将介绍样本与总体的关系,并讲解如何通过样本统计量来估计总体参数。

4.正态分布与标准正态分布正态分布是统计中一种重要的分布模型。

我们将详细介绍正态分布的性质和应用,并引入标准正态分布的概念。

5.抽样与抽样分布在统计中,抽样是指从总体中选择样本的过程。

我们将介绍不同的抽样方法,并详细讲解抽样分布及其应用。

结语:高中数学人教版概率与统计课件对于同学们学习概率和统计具有重要的指导作用。

高中数学精选概率与统计PPT课件

高中数学精选概率与统计PPT课件
众数:描述分类变量的中心位置,容易计 算。
23
1. 均值、中位数、众数的特点
b) 综合利用均值和中位数获取样本信 息
如果样本均值大于样本中位数,说明数据 中可能存在较大的极端值。
反之,说明说明数据中存在可能较小的极 端值。
c) 误导:有意仅选取使用中位数或平 均值来描述数据的中心位置。
24
2.
样本标准差的意义和作用。
1. 均值、中位数、众数的特点。 2. 样本标准差的意义和作用。
22
1. 均值、中位数、众数的特点
a) 都用于描述样本的中心位置,有随 机性,随样本容量的增加而稳定于 总体相应的总体特征。
平均数:描述数值变量的中心位置,受样 本中的每一个数据的影响。
中位数:描述数值变量的中心位置,抗 “坏”数据能力强,容易计算。
3
一、与大纲教材的区别
➢ 先讲统计后讲概率 ➢ 先讲古典概型后学排列组合 ➢ 通过案例理解概率统计概念 ➢ 用概率观点解释统计原理 ➢ 增加了随机模拟、几何概型等方面的内容
4
➢ 先讲统计后讲概率
1. 考虑到统计与概率学科发展的历是先有统计,为了研究统计 结论的可信程度问题,概率得到了发展。
2. 考虑到学生的学习心理,统计在前,使得学生在学习统计的 过程中体会随机性,为学习概率知识做铺垫。

回归方程:

经验回归方程:
由样本数据所估计的回归方程,简称为回归方程。

经验回归方程由样本数据所决定。

由随机样本数据所得到的经验回归方程具有随机性。
31
这里给出了线性回归中最小二乘 方法的原理,没有给出评价模 型好坏的方法。
向同学们指出选修中将讨论评价 模型的一种方法,为进一步的 学习指明方向。

概率论与数理统计讲义

概率论与数理统计讲义

概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。

它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。

1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。

概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。

1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。

方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。

1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。

这些性质能够帮助我们更好地理解随机事件的规律和特征。

二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。

统计学广泛应用于社会调查、市场研究以及科学实验等领域。

2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。

它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。

2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。

点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。

2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。

它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。

2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。

方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。

三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。

通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。

3.2 医学研究数理统计在医学研究中具有广泛的应用。

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点

第二章统计一、简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

二、系统抽样1.系统抽样(也叫等距离抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体)/n(样本个数)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

三、分层抽样1.分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

概率与统计 高中数学讲义解析版

概率与统计 高中数学讲义解析版

第九章概率与统计9.1 两个计数原理、排列与组合1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式.【教材梳理】1.分类加法计数原理与分步乘法计数原理(1)分类加法计数原理①定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.②拓展:完成一件事,如果有n类方案,且:第1类方案中有m1种不同的方法,第2类方案中有m2种不同的方法,… ,第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+⋯+m n种不同的方法.(2)分步乘法计数原理①定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.②拓展:完成一件事,如果需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,… ,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.2.排列与组合(1)排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(2)排列数做从n 个不同元素中取出m 个元素的一个组合.(4)组合数3.A n m =(n −m +1)A n m−1=nA n−1m−1 ;(n +1)!−n!=n ⋅n! .4.kC n k =nC n−1k−1 ;C n m =C n−1m−1+C n−2m−1+⋯+C m−1m−1 .1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1) 在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ ) (2) 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( × )(3) 所有元素完全相同的两个排列为相同排列.( × )(4) (n +1)!−n !=n ⋅n ! .( √ )(5) kC n k =nC n−1k−1 .( √ )2. 公共汽车上有10位乘客,沿途5个车站,所有乘客下车的可能方式有( D )A. A 105 种B. C 105 种C. 105 种D. 510 种[解析]解:所有乘客下车的可能方式有510 种.故选D.3. (教材改编题)已知集合M ={1,−2,3} ,N ={−4,5,6,−7} ,从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )A. 12B. 8C. 6D. 4[解析]解:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6 .故选C.4. 已知n ,m 为正整数,且n ≥m ,则下列各式中正确的个数是( C )①A 63=120 ;②A 127=C 127A 77 ;③C n m +C n+1m =C n+1m+1 ;④C n m =C n n−m .A. 1B. 2C. 3D. 4[解析]解:对于①,A 63=6×5×4=120 ,故①正确;对于②,因为C 127=A 127A 77 ,所以A 127=C 127A 77 ,故②正确;对于③,因为C n m +C n m−1=C n+1m ,所以C n m+1+C n m =C n+1m+1 ,故③错误;对于④,C n m =C n n−m ,故④正确.故选C.考点一 分类加法计数原理与分步乘法计数原理例1 (1) 满足a ,b ∈{−1,0,1,2} ,且关于x 的方程ax 2+2x +b =0 有实数解的有序数对(a,b) 的个数为13.[解析]解:当a =0 时,b 的值可以是−1 ,0 ,1 ,2 ,故(a,b) 的个数为4;当a ≠0 时,要使方程ax 2+2x +b =0 有实数解,需使Δ=4−4ab ≥0 ,即ab ≤1 .若a =−1 ,则b 的值可以是−1 ,0 ,1 ,2 ,(a,b) 的个数为4;若a =1 ,则b 的值可以是−1 ,0 ,1 ,(a,b) 的个数为3;若a =2 ,则b 的值可以是−1 ,0 ,(a,b) 的个数为2.由分类加法计数原理可知,(a,b) 的个数为4+4+3+2=13 .故填13.(2) 某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( B )A. 288B. 336C. 576D. 1 680[解析]解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24(种).第二步:排黑车,若白车选AF,则黑车有BE,BG,BH,CE,CH,DE,DG共7种选择,黑车是不相同的,故黑车的停法有2×7=14(种).根据分步计数原理,共有24×14=336(种),故选B.(3)(教材改编题)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案种数为( D )A. 36B. 48C. 54D. 72[解析]解:如图,将五个区域分别记为①,②,③,④,⑤.涂色分为5步完成,前三步涂区域①②③,有4×3×2=24(种)方法.后两步涂区域④⑤,可分为两类:区域②④涂色相同,有1×2种方案;区域②,④涂色不相同,有1×1种方案.所以不同的涂色方案共有24×(1×2+1×1)=72(种).故选D.【点拨】解答计数应用问题的总体思路:根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了.此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.变式1.(1)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A. 56B. 54C. 53D. 52[解析]解:在8个数中任取2个不同的数共有8×7=56个对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56−4=52(个).故选D.(2)某学校有东、南、西、北四个校门.翻新改造期间,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有3名教师和4名学生要进入校园(不分先后顺序),请问进入校园的方式共有128种.(用数字作答)[解析]解:因为学生只能从东门或西门进入校园,所以4名学生进入校园的方式共24=16种.因为教师只能从南门或北门进入校园,所以3名教师进入校园的方式共有23=8种.所以3名教师和4名学生要进入校园的方式共有16×8= 128种.故填128.(3) [2023届湖南长郡中学高三入学考试]某城市在中心广场建造一个花圃,花圃分为6个部分,如图所示.现要栽种4种不同颜色的花,每部分栽种一种,且相邻部分不能栽种同样颜色的花,则不同的栽种方法有( B )A. 80种B. 120种C. 160种D. 240种[解析]解:第一步,对1号区域栽种,有4种选择.第二步,对2号区域栽种,有3种选择.第三步,对3号区域栽种,有2种选择.第四步,对5号区域栽种,分为三种情况:①5号与2号颜色相同,则4号仅有1种选择,6号有2种选择;②5号与3号颜色相同,情况与①类似;③5号与2,3号颜色都不同,则4,6号只有1种选择.所以共有4×3×2×(1×2×2+1×1)=120(种).故选B.考点二排列、组合的基本问题命题角度1 排列的基本问题例2 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;[答案]解:从7个人中选5个人排,排法总数有A75=7×6×5×4×3=2 520(种).(2)排成前后两排,前排3人,后排4人;[答案]分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73A44=5 040(种).另解:本题即为7人排成一排的全排列.(3)全体排成一排,甲不站排头也不站排尾;[答案](优先法)(方法一)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600(种).(方法二)排头与排尾为特殊位置.排头与排尾从除甲的其余6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3 600(种).(4)全体排成一排,女生必须站在一起;[答案](捆绑法)将女生看成一个整体,与3名男生一起全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44A44=576(种).(5)全体排成一排,男生互不相邻;[答案](插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,故共有A44A53=1 440(种).(6)全体排成一排,甲、乙两人中间恰好有3人;[答案](捆绑法)把甲、乙及中间3人看作一个整体,第一步:先排甲乙两人,有A22种方法;第二步:从余下5人中选3人排在甲乙中间,有A53种;第三步:把这个整体与余下2人进行全排列,有A 33 种方法.故共有A 22A 53A 33=720(种).(7) 全体排成一排,甲必须排在乙前面(可不相邻);[答案](消序法)7人的全排列有A 77 种,其中甲在乙前面与乙在甲前面各占12 ,故共有A 772=2 520 (种).另解:7个位置中任选5个排除甲、乙外的5人,余下的两个位置甲、乙的排法即定,故有A 75=2 520 (种).(8) 全部排成一排,甲不排在左端,乙不排在右端.[答案]甲、乙为特殊元素,左、右两端为特殊位置.(方法一)(特殊元素法)甲在最右端时,其他的可全排,有A 66 种;甲不在最右端时,可从余下5个位置中任选一个,有A 51 种,而乙可排在除去最右端位置后剩余的5个中的任意一个上,有A 51 种,其余人全排列,共有A 51A 51A 55 种.由分类加法计数原理,共有A 66+A 51A 51A 55=3 720 (种).(方法二)(特殊位置法)先排最左端,除去甲外,有A 61 种,余下6个位置全排,有A 66 种,但应剔除乙在最右端时的排法A 51A 55 种,因此共有A 61A 66−A 51A 55=3 720 (种).方法三(间接法):7个人全排,共A 77 种,其中,不合条件的有甲在最左端时,有A 66 种,乙在最右端时,有A 66 种,其中都包含了甲在最左端,同时乙在最右端的情形,有A 55 种.因此共有A 77−2A 66+A 55=3 720 (种).【点拨】有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑“捆绑”部分的排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.变式2. 【多选题】某学院学生会的3名男生和2名女生在社区参加志愿者活动,结束后这5名同学排成一排合影留念,则下列说法正确的是( BCD )A. 若让其中的男生甲排在两端,则这5名同学共有24种不同的排法B. 若要求其中的2名女生相邻,则这5名同学共有48种不同的排法C. 若要求其中的2名女生不相邻,则这5名同学共有72种不同的排法D. 若要求其中的1名男生排在中间,则这5名同学共有72种不同的排法[解析]解:对于A,男生甲排在两端,共有2A44=48(种)不同的排法,A错误.对于B,2名女生相邻,共有A22A44=48(种)不同的排法,B正确.对于C,2名女生不相邻,共有A33A42=72(种)不同的排法,C正确;对于D,要求1名男生排在中间,则这5名同学共有3A44=72(种)不同的排法,D正确.故选BCD.命题角度2 组合的基本问题例3 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;[答案]解:1名女生,4名男生,故共有C51C84=350(种).(2)两队长当选;[答案]将两队长作为一类,其他11个作为一类,故共有C22C113=165(种).(3)至少有1名队长当选;[答案]至少有1名队长当选含有两类:只有1名队长和2名队长.故共有C21C114+ C22C113=825(种).或采用间接法:C135−C115=825(种).(4)至多有2名女生当选;[答案]至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法有C52C83+C51C84+C85=966(种).(5)既要有队长,又要有女生当选.[答案]分两类:第一类女队长当选,有C124种选法;第二类女队长不当选,有C41C73+C42C72+C43C71+C44种选法.故选法共有C124+C41C73+C42C72+C43C71+C44=790(种).【点拨】解组合问题时要注意:①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如第3小题,先选1名队长,再从剩下的人中选4人得C21C124≠825,请同学们自己找错因.变式3. 【多选题】为响应政府部门号召,某红十字会安排甲、乙、丙、丁四名志愿者奔赴A,B,C三地参加健康教育工作,则下列说法正确的是( BCD )A. 不同的安排方法共有64种B. 若恰有一地无人去,则不同的安排方法共有42种C. 若甲必须去A地,且每地均有人去,则不同的安排方法共有12种D. 若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有14种[解析]解:四人到三地去,一人只能去一地,方法数为34=81,A错误.若恰有一地无人去,则不同的安排方法数是C31(C41+C42+C43)=42,B正确.若甲必须去A地,且每地均有人去,则不同的安排方法数为A33+C31+C32= 12,C正确.若甲、乙两人都不能去A地,且每地均有人去,分甲、乙去同一个地方和不去同一个地方,则不同的安排方法数为2×5+2A22=14,D正确.故选BCD.考点三排列、组合的综合问题命题角度1 分堆与分配问题例4 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;[答案]解:无序不均匀分组问题.先选1本,有C61种选法;再从余下的5本中选2本,有C52种选法;最后余下3本全选,有C33种选法.故共有C61C52C33=60(种).(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;[答案]有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 61C 52C 33A 33=360 (种).(3) 平均分成三份,每份2本;[答案]无序均匀分组问题.先分三步,则应是C 62C 42C 22 种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB,CD,EF) ,则C 62C 42C 22 种分法中还有(AB,EF,CD) ,(CD,AB,EF) ,(CD,EF,AB) ,(EF,CD,AB) ,(EF,AB,CD) ,共有A 33 种情况,而这A 33 种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 62C 42C 22A 33=15 (种).(4) 平均分配给甲、乙、丙三人,每人2本;[答案]有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 62C 42C 22A 33⋅A 33=C 62C 42C 22=90 (种).(5) 分成三份,1份4本,另外两份每份1本;[答案]无序部分均匀分组问题.共有C 64C 21C 11A 22=15 (种).(6) 甲、乙、丙三人中,一人得4本,另外两人每人得1本;[答案]有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 62C 21C 11A 22⋅A 33=90 (种).(7) 甲得1本,乙得1本,丙得4本.[答案]直接分配问题.甲选1本,有C 61 种方法;乙从余下的5本中选1本,有C 51 种方法,余下4本留给丙,有C 44 种方法,故共有分配方式C 61C 51C 44=30 (种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再堆数的阶乘分配;②被分配的元素是不同的(如“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.变式4.(1) [2020年新高考Ⅰ卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A. 120种B. 90种C. 60种D. 30种[解析]解:首先从6名同学中选1名去甲场馆,方法数为C61;然后从其余5名同学中选2名去乙场馆,方法数为C52;最后剩下的3名同学去丙场馆.故不同的安排方法共有C61C52=6×10=60种.故选C.(2)【多选题】2022年北京冬奥会吉祥物“冰墩墩”有着可爱的外表和丰富的寓意,现有5个不同造型的“冰墩墩”,则下列说法正确的是( BCD )A. 把这5个“冰墩墩”装入3个不同的盒内,共有129种不同的装法B. 从这5个“冰墩墩”中选出3个分别送给3位志愿者,每人1个,共有60种选法C. 从这5个“冰墩墩”中随机取出3个,共有10种不同的取法D. 把这5个“冰墩墩”装入3个不同的盒内,每盒至少装一个,共有150种不同的装法[解析]解:对于A,每个“冰墩墩”可选择3个盒子中的任意一个,根据分步乘法原理共有35=243(种)不同的装法,故A错误.对于B,共有C53A33=60(种)选法,故B正确.对于C,共有C53=10(种)不同的取法,故C正确.对于D,若3个盒子中“冰墩墩”的数量为1,1,3,则有C53C31A22=60(种)不同的装法;若3个盒子中“冰墩墩”的数量为1,2,2,则有C51C31C42=90(种).共有60+90=150(种),故D正确.故选BCD.命题角度2 数字排列问题例5 用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?[答案]解:先排个位数,有C31种方法,然后排千位数,有C41种方法,剩下百位和十位任意排,有A42种方法,故所求为C41C31A42=144个.(2)能组成多少个无重复数字且比1 325大的四位数?[答案]分为三类,第一类是千位是2,3,4,5中任意一个,有A41A53个数;第二类是千位是1,且百位是4,5中的一个,有A21A42个数;第三类是千位是1,且百位是3和十位是4,5中的一个,有A21A31个数.故所求为A41A53+A21A42+A21A31=270个.【点拨】对于有限制条件的数字排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意隐含条件:0不能在首位.变式5.(1)设集合A={0,2,4} ,B={1,3,6} .现分别从A,B中任取2个元素组成无重复数字的四位数,其中不能被5整除的数共有( C )A. 64个B. 96个C. 144个D. 152个[解析]解:所求的四位数中,数字含0的数有C21C32C21A33=72个,数字不含0的数有C22C32A44=72个,共有72+72=144个.故选C.(2)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是32.(用数字作答)[解析]解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步:第一步:先将3,5排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2捆绑放到3,5,4,6形成的空中,共有C51种排法.共有A222A22C51=40(种)排法.又任何相邻两个数字的奇偶性不同,共有2A33A33=72(种)排法,所以所求为72−40=32.故填32.【巩固强化】1. 体育场南侧有3个大门,北侧有2个大门,某学生到该体育场练跑步,每个门都可进出,则他进出体育场的方案共有( D )A. 6种B. 10种C. 5种D. 25种[解析]解:该学生进出体育场都有5种可能,故他进出体育场的方案共有5×5=25(种).故选D.2. 某学校为落实“双减政策”,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.周内选择编程、书法、足球三门课,则不同的选课方案共有( A )A. 15种B. 10种C. 8种D. 5种[解析]解:若周二选编程,则选课方案有C31C31=9(种);若周三选编程,则选课方案有C21C31=6(种).综上,不同的选课方案共有9+6=15(种).故选A.3. [2023届安徽高三开学考试]如图,“天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女)在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人,且两名女航天员不在一个舱内,则不同的安排方案种数为( B )A. 14B. 18C. 30D. 36[解析]解:将6名航天员安排在3个实验舱的方案种数为C64C21C11=30(种),其中两名女航天员在一个舱内的方案种数为C42C21C11=12(种).所求为30−12=18(种).故选B.4. 给如图所示的5块区域A,B,C,D,E涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( D )A. 120种B. 720种C. 840种D. 960种[解析]解:A有5种颜色可选,B有4种颜色可选,D有3种颜色可选,C,E 均可涂除D的涂色外的其它颜色,均有4种可选.故共有5×4×3×4×4= 960(种)不同的涂色方法.故选D.5. 语文里流行一种特别的句子,正和反读起来都一样的,比如:“清水池里池水清”“中山自鸣钟鸣自山中”,那么在所有的四位数中符合这个规律且四个数字不能都相同的四位数有( A )A. 81个B. 90个C. 100个D. 729个[解析]解:设符合题意的四位数为xyyx,则当x=1时,y=0,2,3,…,9,共9个;当x=2时,y=0,1,3,…,9,共9个;…当x=9时,y=0,1,2,…,8,共9个.由分类加法计数原理可知满足条件的四位数有9×9=81(个).故选A.6. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有( D ) A. 27种 B. 36种 C. 33种 D. 30种[解析]解:因为甲和乙一定不同地,甲和丙必须同地,所以有(2,2,1)和(3,1,1)两种分配方案:①分成(2,2,1)三组,其中甲和丙为一组,从余下3人选出2人组成一组,然后排列,有C32A33=3×3×2=18(种);②分成(3,1,1)三组,在丁、戊中选出1人,与甲丙组成一组,然后排列,有C21A33=2×3×2=12(种).共有18+12=30(种).故选D.7.(1)若C n4>C n6,则n的取值集合是{6,7,8,9} .[解析]解:因为C n4>C n6,所以n≥6,且n!4!(n−4)!>n!6!(n−6)!,所以30>(n−4)(n−5),即(n−10)(n+1)<0,解得−1<n<10.综上,6≤n<10.故n 的取值集合是{6,7,8,9}.(2)C22+C32+C42+⋯+C102=165 .[解析]解:C22+C32+C42+⋯+C102=C33+C32+C42+⋯+C102=C43+C42+⋯+ C102=⋯=C102+C103=C113=165.8. 【多选题】上海某校举办了主题为“党在我心中”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,则下列结论正确的是( BCD )A. 若甲、乙、丙三名同学全参加,则不同的朗诵排列顺序有36种B. 若甲、乙、丙三名同学恰有一人参加,则不同的朗诵排列顺序有288种C. 若甲、乙、丙三名同学恰有二人参加,则不同的朗诵排列顺序有432种D. 选派的4名学生不同的朗诵排列顺序有768种[解析]解:对于A,甲、乙、丙三名同学全参加,有C41A44=96(种)情况,由捆绑法易得其中甲、乙相邻的有C41A22A33=48(种)情况.所以甲、乙、丙三名同学全参加时,甲和乙的朗诵排列顺序不能相邻有96−48=48(种)情况,故A错误.对于B,甲、乙、丙三名同学恰有一人参加,不同的朗诵排列顺序有C43C31A44= 288(种)情况,故B正确.对于C,甲、乙、丙三名同学恰有二人参加时,不同的朗诵排列顺序有C42C32A44=432(种)情况,故C正确.对于D,选派的4名学生不同的朗诵排列顺序有288+432+48=768(种)情况,故D正确.故选BCD.【综合运用】9. 直线l:xa +yb=1,a∈{1,3,5,7},b∈{2,4,6,8} .若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( B )A. 6B. 7C. 8D. 16[解析]解:l与坐标轴围成的三角形的面积为S=12ab≥10,即ab≥20.当a= 1时,不满足;当a=3时,b=8,即1条;当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10. 洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象(如图),结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈表示的数为阳数,黑点表示的数为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有( A )A. 120个B. 90个C. 48个D. 12个[解析]解:根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8.第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种选择,根据分步乘法计数原理,这样的四位数共有5×4×6=120(个).故选A.11. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )A. 48B. 18C. 24D. 36[解析]解:第1类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).故选D.12. 【多选题】从1,2,3,4,5,6中任取三个不同的数组成一个三位数,则在所组成的数中( ACD )A. 偶数有60个B. 比300大的奇数有48个C. 个位和百位数字之和为7的数有24个D. 能被3整除的数有48个[解析]解:对于A,先从2,4,6中任取一个数放在个位,再任取两个数放在十位和百位,共有3A52=60(个),故A正确.对于B,若百位数字为3或5,有2×2×4=16(个)三位奇数;若百位数字为4或6,有2×3×4=24(个)三位奇数.则符合题意的三位数有16+24=40(个),故B错误.对于C,个位和百位的数可以是{1,6},{2,5},{3,4}顺序可以交换,再从剩下的数中任选一个放在十位上,共有A22C31C41=24(个),故C正确.对于D,要使组成的数能被3整除,则各位数之和为3的倍数,取出的数有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5},{4,5,6},共8种情况,所以组成的能被3整除的数有8A33=48(个),故D正确.故选ACD.13. 中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图是利用算筹表示数1-9的一种方法.例如:3可以表示为“”,26可以表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数的个数为16. [解析]解:根据题意,6根算筹可以表示的数字组合为15,19,24,28,33,37,46,68,77.数字组合15,19,24,28,37,46,68中,每组可以表示2个两位数,则可以表示2×7=14(个)两位数;数字组合33,77共可表示2个两位数.则共可表示14+2=16(个)两位数.故填16.【拓广探索】。

高中数学统计与概率知识点归纳(全)上课讲义

高中数学统计与概率知识点归纳(全)上课讲义
| n
| xn x |
思考 4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用 s 表示.
假设样本数据 x1,x2,…,xn 的平均数为 x ,则标准差的计算公式是:
七、简单随即抽样的含义
s (x1 x)2 (x2 x)2 n
(xn x)2
收集于网络,如有侵权请联系管理员删除
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规 定的 调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为 14 的观众留 下来座谈
十三、系统抽样的一般步骤 用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号. 如果用系统抽样从 605 件产品中抽取 60 件进行质量检查,由于 605 件产品不能均衡分
收集于网络,如有侵权请联系管理员删除
精品文档
简单随机抽样每个个体入样的可能性都相等,均为 n/N,但是这里一定要将每个 个体入样的可能性、第 n 次每个个体入样的可能性、特定的个体在第 n 次被抽到的 可能性这三种情况区分开来,避免在解题中出现错误.
解题应用 如果从 600 件产品中抽取 60 件进行质量检查,按照上述思路抽样应如何操作?
放回和不放回我们在抽样调查中用的是不放回抽样常用的简单随机抽样方法有抽签法和随机数法?抽签法的优点是简单易行缺点是当总体的容量非常大时费时费力又不方便如果标号的签搅拌得不均匀会导致抽样不公平随机数表法的优点与抽签法相同缺点上当总体容量较大时仍然不是很方便但是比抽签法公平因此这两种方法只适合总体容量较少的抽样类型?简单随机抽样每个个体入样的可能性都相等均为nn但是这里一定要将每个个体入样的可能性第n次每个个体入样的可能性特定的个体在第精品文档收集于网络如有侵权请联系管理员删除可能性这三种情况区分开来避免在解题中出现错误解题应用如果从600件产品中抽取60件进行质量检查按照上述思路抽样应如何操作

高中数学统计课件-概率与统计分析PPT

高中数学统计课件-概率与统计分析PPT
高中数学统计课件——概 率与统计分析PPT
让我们一起探索高中数学统计的基本概念和分析方法。从概率的基础知识到 统计量的应用,这个课件将为你提供全面的指导。让数学变得更有趣和易于 理解。
概率基础知识
了解概率的基本概念和术语。探索随机事件,概率空间和计算概率的方法。
随机事件与概率
探讨随机事件的概念,包括样本空间、事件、概率及其运算法则。学习如何计算事件的概率。
古典概型
介绍古典概型和它们在概率计算中的应用。了解简单事件、等可能原理和计 数原理。
几何概型
研究几何概型及其在概率计算中的应用。包括点、线、面等几何对象的概率 的概念。学习如何计算条件概率,以及它在实际场景中的应用。
独立性
研究独立事件及其特征。学习如何检验事件的独立性,以及如何计算多个独 立事件的联合概率。
方差分析
研究方差分析及其在统计推断中的应用。了解如何进行方差分析和解读分析 结果。
相关分析
学习相关分析的概念和计算方法。了解如何衡量两个变量之间的关联程度。
期望值与方差
介绍随机变量的概念。学习如何计算随机变量的期望值和方差,并了解它们 的意义。
离散型随机变量
研究离散型随机变量和它们的概率分布。包括二项分布、泊松分布等常见概 率分布。
连续型随机变量
介绍连续型随机变量和它们的概率密度函数。学习如何计算连续型随机变量的概率。
正态分布
深入研究正态分布及其特性。了解正态分布在统计分析中的应用。
抽样与统计量
学习如何进行样本抽样和构建统计量。了解样本的选取方法和统计量的一些 重要概念。
点估计
探讨点估计方法和点估计量的性质。学习如何使用样本数据对总体参数进行 估计。
区间估计
介绍区间估计的原理和方法。学习如何通过置信区间对总体参数进行估计。

专题六第3讲统计与统计案例

专题六第3讲统计与统计案例

A.10
考 点 核 心 突 破
B.11
C.12
D.16
训 练 高 效 提 能


高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
考 点 核 心 突 破
[自主解答] (1)依表知 x+y+z=4 000-2 000 =2 000, x 4 000=0.2,于是 x=800, 1 y+z=1 200,高二抽取学生人数为 1 200×40=30. (2)因为 29 号、42 号的号码差为 13, 所以 3+13=16, 即另外一个同学的学号是 16,选 D.
考 点 核 心 突 破
A.- x 甲>- x 乙,y 甲>y 乙 C.- x 甲<- x 乙,y 甲>y 乙
菜 单
B.- x 甲<- x 乙,y 甲<y 乙 D.- x 甲>- x 乙,y 甲<y 乙
训 练 高 效 提 能
高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
考 点 核 心 突 破
训 练 高 效 提 能


高考专题辅导与训练· 数学(理科)
第一部分 法
基 础 要 点 整 合
专题六
概率与统计、推理与证明、复数、算
解 题 规 范 流 程
(2)(2013·潍坊二模)某市为增强市民的节约粮食意识, 面向全市征召务宣传志愿者,现从符合条件的志愿者中 随机抽取100名按年龄分组:第 1组[20,25) ,第2组 [25,30), 第 3 组 [30,35) ,第 4 组 [35,40) ,第 5 组 [40,45] ,得到的频率 分布直方图如图所示.若用分层抽样的方法从第 3,4,5 组

高中数学教案:概率与统计的应用讲解

高中数学教案:概率与统计的应用讲解

高中数学教案:概率与统计的应用讲解概率与统计是高中数学中重要的一个分支,它在我们的日常生活中扮演着至关重要的角色。

本文将为您详细介绍概率与统计的应用,内容涵盖基本概率定义、事件概率计算、统计方法等方面,帮助您更好地理解和应用概率与统计知识。

一、基本概率定义及概率计算1.1 概率的概念与性质概率是描述一个事件发生可能性大小的数值,其取值范围在0至1之间。

概率为0意味着事件不可能发生,概率为1意味着事件一定会发生。

概率的性质包括加法原理、乘法原理、互斥事件、相互独立事件等,这些性质为后续的概率计算提供了基础。

1.2 事件概率的计算方法在计算事件的概率时,我们可以采用频率法和几何法两种方法。

频率法是通过实验观察事件发生的频率来估计其概率,当试验次数趋于无穷大时,频率会趋近于准确的概率。

几何法则是通过事件的几何模型来计算其概率,如在等可能事件中,事件A发生的概率等于事件A所包含的样本点个数除以样本空间中的样本点个数。

二、概率与统计的应用2.1 随机事件的应用随机事件是指在相同条件下重复进行的试验中,其结果不确定的事件。

概率可以用来描述随机事件发生的可能性。

例如,在投掷一枚骰子的情况下,我们可以计算得到点数为3的概率为1/6。

在生活中,随机事件的应用广泛,如彩票中奖、赌博游戏、天气预报等都与概率有关。

2.2 统计方法在调查研究中的应用统计是一种研究、收集、整理、分析和解释数据的方式,可以通过对样本数据进行统计推断来得到总体的概况。

统计方法在现代社会的调查研究中扮演着重要的角色。

例如,政府会利用统计数据来制定经济政策,公司会利用统计数据来评估产品的市场需求,科学家会利用统计数据来验证假设,并为进一步的研究提供依据。

2.3 概率与统计在金融领域的应用概率与统计在金融领域的应用十分广泛,如股市预测、风险管理、投资组合优化等。

通过对历史数据的统计分析,可以预测股市未来的走势,并为投资者提供决策依据。

同时,通过对金融市场的波动进行概率统计,可以帮助机构和个人评估风险,并采取相应的措施进行风险管理。

《高中数学概率与统计课件》

《高中数学概率与统计课件》

了解统计学的基本概念和应
学习数据收集的方法和技巧,
用领域。
为后续统计分析做好准备。
数据类型
认识不同类型的数据,如定量数据和定性数据,为后续数据分析提供
依据。
描述统计分析方法
中心趋势分析
离散程度分析
数据分布分析
探索描述数据集中趋势的方法,
研究数据集的离散程度,如范
通过绘制直方图和箱线图等工
如均值、中位数和众数。
学习条件概率的概念和计算方法,探索贝叶斯公式的应用,以解决包含条件
的复杂概率问题。
随机变量及其概率分布
1
随机变量介绍
2
离散型随机变量
认识随机变量,它是概率论
研究离散型随机变量及其概
的核心概念之一。
率分布,如伯努利分布、二
项分布和泊松分布。
3
连续型随机变量
探索连续型随机变量的特性和常见分布,如均匀分布、指数分布和正
态分布。
数学期望和方差的概念及计算方法
数学期望方差Fra bibliotek学习数学期望的概念和计算方法,了解随机变量的
探索方差的概念和计算方法,量化随机变量的离散
平均值。
程度。
大数定理及中心极限定理
研究大数定理和中心极限定理,揭示随机现象在大样本情况下的稳定性和规
律性。
统计学基础及数据收集方法
1
3
统计学介绍
2
数据收集
通过绘制概率图表,更直观地理
几何概率和条件概率。
项分布和正态分布,并探索它们
解概率分布的形状和特点。
的特性。
概率问题的解决方法
1
加法原理
利用加法原理解决多个事件发生的概率
乘法原理

2019年高中数学第8章统计与概率8.4列联表独立性分析案例讲义(含解析)湘教版

2019年高中数学第8章统计与概率8.4列联表独立性分析案例讲义(含解析)湘教版

8.4列联表独立性分析案例[读教材·填要点]1.列联表一般地,对于两个因素X和Y,X的两个水平取值:A和A(如吸烟和不吸烟),Y也有两个水平取值:B和B(如患肺癌和不患肺癌),我们得到下表中的抽样数据,这个表格称为2×2列联表.2.χ2公式χ2=n ad-bc2a +b c+d a+c b+d.3.独立性检验的概念用随机变量χ2研究两变量是否有关的方法称为独立性检验.4.独立性检验的步骤要判断“X与Y有关系”,可按下面的步骤进行:(1)提出假设H0:X与Y无关;(2)根据2×2列联表及χ2公式,计算χ2的值;(3)查对临界值,作出判断.其中临界值如表所示:表示在H0成立的情况下,事件“χ2≥x0”发生的概率.5.变量独立性判断的依据(1)如果χ2>10.828时,就有99.9%的把握认为“X与Y有关系”;(2)如果χ2>6.635时,就有99%的把握认为“X与Y有关系”;(3)如果χ2>2.706时,就有90%的把握认为“X与Y有关系”;(4)如果χ2≤2.706时,就认为没有充分的证据显示“X与Y有关系”,但也不能作出结论“H0成立”,即X与Y没有关系.[小问题·大思维]1.利用χ2进行独立性分析,估计值的准确度与样本容量有关吗?提示:利用χ2进行独立性分析,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确.如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.2.在χ2运算后,得到χ2的值为29.78,在判断因素相关时,P(χ2≥6.64)≈0.01和P(χ2≥7.88)≈0.005,哪种说法是正确的?提示:两种说法均正确.P(χ2≥6.64)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两因素相关;而P(χ2≥7.88)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两因素相关.[例1]数据:[解] 由列联表中的数据,得χ2的值为χ2=-2254×1 379×54×1 579≈68.033>6.635.因此,有99%的把握认为每一晚打鼾与患心脏病有关系.解决一般的独立性分析问题,首先由所给2×2列联表确定a,b,c,d,a+b+c+d 的值,然后代入随机变量的计算公式求出观测值χ2,将χ2与临界值x0进行对比,确定有多大的把握认为两个分类变量有关系.1.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,经过调查得到如下列联表:系?解:由列联表中的数据,得 χ2=-294×95×86×103≈10.759>6.635,∴有99%的把握认为工作态度与支持企业改革之间有关系.[例2] (1)(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.[解] (1)假设H 0:传染病与饮用水无关.把表中数据代入公式,得χ2=-2146×684×518×312≈54.21,因为当H 0成立时,χ2≥10.828的概率约为0.001,所以我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关.(2)依题意得2×2列联表:此时,χ2=-214×72×55×31≈5.785.由于5.785>2.706,所以我们有90%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有90%的把握肯定.独立性分析的步骤:要推断“X与Y是否有关”可按下面的步骤进行:①提出统计假设H0:X与Y无关;②根据2×2列联表与χ2计算公式计算出χ2的值;③根据两个临界值,作出判断.2.为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.是否有90%的把握认为“学生选报文、理科与对外语的兴趣有关”?解:根据题目所给的数据得到如下列联表:χ2=-2211×150×236×125≈1.871×10-4.因为1.871×10-4<2.706,所以没有90%的把握认为“学生选报文、理科与对外语的兴趣有关”.[例3] 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2) 表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B 后皮肤疱疹面积的频数分布表完成下面2×2列联表,并回答是否有99%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.表3:[解]χ2=-2100×100×105×95≈24.56>6.635.因此,有99%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.在绘制列联表时,应对问题中的不同数据分成不同的类别,然后列表.要注意列联表中各行、各列中数据的意义及书写格式.3.已知某班n 名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a ,b ,c 成等差数列,且成绩在[90,100]内的有6人.(1)求n 的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析是否有90%的把握认为“本次测试的及格情况与性别有关”?附:χ2=a +bc +d a +cb +d解:(1)依题意得⎩⎪⎨⎪⎧+0.025+c +2b +a =1,2b =a +c ,解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人, 于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人. 于是本次测试的及格情况与性别的2×2列联表如下:结合列联表计算可得χ2=30×30×48×12=1.667<2.706,故没有90%的把握认为“本次测试的及格情况与性别有关”.性别与患色盲是否有关?你所得到的结论在什么范围内有效?[解] 由题意作2×2列联表如下:法一:由列联表中数据可知,在调查的男人中,患色盲的比例是38480≈7.917%,女人中患色盲的比例为6520≈1.154%,由于两者差距较大,因而我们可以认为性别与患色盲是有关系的.法二:由列联表中所给的数据可知,a=38,b=442,c=6,d=514,a+b=480,c+d=520,a+c=44,b+d=956,n=1 000,代入公式得χ2=-2480×520×44×956≈27.1.由于χ2≈27.1>6.635,所以我们有99%的把握即在犯错误不超过0.01的前提下认为性别与患色盲有关系.这个结论只对所调查的480名男人和520名女人有效.1.下面是2×2列联表:则表中a,b的值分别为A.94,96 B.52,50C.52,54 D.54,52解析:选C ∵a+21=73,∴a=52.又∵a+2=b,∴b=54.2.下列关于χ2的说法中正确的是( )A.χ2在任何相互独立问题中都可以用于检验是否相关B.χ2的值越大,两个事件的相关性越大C.χ2是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这一类问题D.χ2=n ad-bca +b c+d a+c b+d答案:C3.对于因素X与Y的随机变量χ2的值,下列说法正确的是( )A.χ2越大,“X与Y有关系”的可信程度越小B.χ2越小,“X与Y有关系”的可信程度越小C.χ2越接近于0,“X与Y没有关系”的可信程度越小D.χ2越大,“X与Y没有关系”的可信程度越大解析:选B χ2越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大.即χ2越小,“X与Y有关系”的可信程度越小.4.若由一个2×2列联表中的数据计算得χ2的观测值为4.013,那么在犯错误的概率不超过________的前提下,认为两个变量之间有关系.解析:因为4.013>3.841,所以在犯错误的概率不超过0.05的前提下,认为两个变量之间有关系.答案:0.055.某矿石粉厂当生产一种矿石粉时,在数天内即有部分工人患职业性皮肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病人数如下:解析:χ2=-275×28×15×88≈13.826>6.635.故有99%的把握说,新防护服比旧防护服对预防工人职业性皮炎有效.答案:99%6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99%的把握认为喜爱打篮球与性别有关;请说明理由. 附参考公式:χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .解:(1)列联表补充如下:(2)∵χ2=-230×20×25×25≈8.333>6.635,∴有99%的把握认为喜爱打篮球与性别有关.一、选择题1.有两个因素X 与Y 的一组数据,由其列联表计算得χ2≈4.523,则认为X 与Y 有关系是错误的可信度为( )A .95%B .90%C .5%D .10%解析:选C ∵χ2≥3.841.∴X 与Y 有关系的概率为95%,∴X 与Y 有关系错误的可信度为5%.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:计算得,χ2=-260×50×60×50≈7.8.附表:A.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”解析:选C 根据独立性分析的思想方法,正确选项为C.3.某高校“统计初步”课程的老师随机调查了选该课的一些学生情况,具体数据如下表:为了分析主修统计中的数据,得到χ2=-223×27×20×30≈4.84,所以断定主修统计专业与性别有关系,这种判断出错的可能性为( )A.0.025 B.0.05C.0.975 D.0.95解析:选B ∵χ2≈4.84>3.841,所以我们有95%的把握认为主修统计专业与性别无关,即判断出错的可能性为0.05.4.已知P(x2≥2.706)=0.10,两个因素X和Y,取值分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35.若在犯错误的概率不超过0.1的前提下,认为X与Y有关系,则c等于( )A.5 B.6C.7 D.8解析:选A 经分析,c=5.二、填空题5.班级与成绩2×2列联表:表中数据m,n,p,解析:m=10+7=17,n=35+38=73,p=7+38=45,q=m+n=90.答案:17,73,45,906.在吸烟与患肺病是否相关的判断中,有下面的说法:①若χ2>6.64,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:χ2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说明③正确.答案:③7.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A与B 有关;当________时,认为没有充分的证据显示事件A与B是有关的.解析:当k>3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A与B有关,当k<2.706时认为没有充分的证据显示事件A与B是有关的.答案:k>3.841 k<2.7068.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众是否与年龄有关:________(填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以,经直观分析,收看新闻节目的观众与年龄是有关的.答案:是 三、解答题9.某市对该市一重点中学2018年高考上线情况进行统计,随机抽查得到表格:解:对于上述四个科目,分别构造四个随机变量 χ21,χ22,χ23,χ24. 由表中数据可以得到: 语文:χ21=-2201×43×204×40=7.294>6.64,数学:χ22=-2201×43×201×43=30.008>6.64,英语:χ23=-2201×43×200×44=24.155>6.64,综合科目: χ24=-2201×43×201×43=17.264>6.64.所以有99%的把握认为语文、数学、英语、综合科目上线与总分上线有关系,数学上线与总分上线关系最大.10.一次对人们休闲方式的调查中共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2列联表;(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系? 解:(1)2×2列联表如下:(2)χ2=-270×54×64×60≈6.201.因为6.201>3.841,所以有理由认为假设休闲方式与性别无关是不合理的,即在犯错误的概率不超过0.05的前提下认为休闲方式与性别有关.。

高中数学《统计与统计案例》课件

高中数学《统计与统计案例》课件
^
设施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模型y =99+17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用 模型②得到的预测值更可靠.
13
考点整合
1.抽样方法 抽样方法包括简单随机抽样、系统抽样、分层抽样,三种抽样方法都是等概率抽样, 体现了抽样的公平性,但又各有其特点和适用范围.
位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5
B.0.6
C.0.7
D.0.8
解析 法一 设调查的 100 位学生中阅读过《西游记》的学生人数为 x,则 x+80-60
=90,解得 x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计
值为17000=0.7.故选 C.
解 (1)由调查数据,男顾客中对该商场服务满意的比率为4500=0.8,因此男顾客对该商场
服务满意的概率的估计值为 0.8.女顾客中对该商场服务满意的比率为3500=0.6,因此女顾
客对该商场服务满意的概率的估计值为 0.6.
8
(2)K2 的观测值 k=100×5(0×405×0×207-0×303×010)2≈4.762. 由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务 的评价有差异.
^
利用模型②,该地区 2018 年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿 元).
12
(2)利用模型②得到的预测值更可靠. 理由如下: 从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=-30.4+ 13.5t 上下,这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境 基础设施投资额的变化趋势.2010 年相对 2009 年的环境基础设施投资额有明显增加, 2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础

高中数学概率与统计知识点讲课讲稿

高中数学概率与统计知识点讲课讲稿

高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.离散型随机变量的期望与方差 随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;(Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01). 解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学统计与统计案例概率知识点
统计与统计案例概率(文科)
知识点
1.抽样调查
(1)抽样调查
通常情况下,从调查对象中按照一定的方法抽取一部分,进行______,获取数据,并以此对调查对象的某项指标作出______,这就是抽样调查.
(2)总体和样本
调查对象的称为总______体,被抽取的称为样______本.
(3)抽样调查与普查相比有很多优点,最突出的有两点:
①______
②节约人力、物力和财力.
2.简单随机抽样
(1)简单随机抽样时,要保证每个个体被抽到的概率.
(2)通常采用的简单随机抽样的方法:_____
3.分层抽样
(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.
(2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
4.系统抽样
系统抽样是将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按______(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机
械抽样.
5.统计图表
统计图表是______数据的重要工具,常用的统计图表有______
6.数据的数字特征
(1)众数、中位数、平均数
众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.
中位数:将一组数据按大小依次排列,把处在______位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.
平均数:样本数据的算术平均数,即x =1n
(x 1+x 2+…+x n ). 在频率分布直方图中,中位数左边和右边的直方图的面积应该______
(2)样本方差
标准差s =
1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2], 其中x n 是样本数据的第n 项,n 是,______x 是______
标准差是刻画数据的离散程度的特征数,样本方差是标准差的______.通常用样本方差估计总体方差,当______时,样本方差很接近总体方差.
7.用样本估计总体
(1)通常我们对总体作出的估计一般分成两种,一种是______,另一种______.
(2)在频率分布直方图中,纵轴表示,______数据落在各小组内的频率用______表示,各小长方形的面积总和等于.______
(3)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.
(4)当样本数据较少时,用茎叶图表示数据的效果较好,它没有信息的缺失,而且______,方便表示与比较.
8.相关性
(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的______
(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为____________
(3)在两个变量x 和y 的散点图中,若所有点看上去都在一条直线附近波动,则称变量间是______,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是______的.如果所有的点在散点图中没有关系,则称变量间是______的.
9.线性回归方程
(1)最小二乘法
如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+
[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法.
(2)线性回归方程
方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.
⎩⎪⎨⎪⎧ b =
∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2=∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x .
10.回归分析
(1)定义:对______的两个变量进行统计分析的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,(x ,y )称为样本点的中心.
(3)相关系数
①r=

n
i=1
(x i-x)(y i-y)

n
i=1
(x i-x)2∑
n
i=1
(y i-y)2


n
i=1
x i y i-n x y
(∑
n
i=1
x2i-n x2)(∑
n
i=1
y2i-n y2)

②当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关;
当r=0时,表明两个变量线性不相关.
r的绝对值越接近于1,表明两个变量之间的线性相关程度越高.r的绝对值越接近于0,表明两个变量之间的线性相关程度越低.
11.独立性检验
设A,B为两个变量,每一个变量都可以取两个值,
变量A:A1,A2=A1;变量B:B1,B2=B1;
2×2列联表:
构造一个随机变量
χ2=n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.
利用随机变量χ2来判断“两个分类变量有关系”的方法称为独立性检验.
当χ2______时,没有充分的证据判定变量A,B有关联,可以认为变量A,B______的;当______时,有______的把握判定变量A,B有关联;
当______,有______的把握判定变量A,B有关联;
当______时,有______的把握判定变量A,B有关联.
12.基本事件的特点
(1)任何两个基本事件是______的;
(2)任何事件(除不可能事件)都可以表示______的和.
13.古典概型
具有以下两个特点的概率模型称为古典的概率模型,简称古典概型.
(1)试验的所有可能结果______,每次试验只出现其中的一个结果;
(2)每一个试验结果出现的可能______.
14.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每
一个基本事件的概率都是1
n;如果某个事件A包括的结果有m个,那么事件A的概率
P(A)=_____
15.古典概型的概率公式
P(A)=______
1.几何概型
向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=______,则称这种模型为几何概型.
2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是______之比或______之比.
3.借助______可以估计随机事件发生的概率.。

相关文档
最新文档