冶金原理气固反应动力学课件
合集下载
冶金原理气固反应动力学课件
(2)化学反应控制的主要特征为:
1 / Fp
k 't
对单一致密球体在C0为常数的条件下,化学反应控制时,1-(1-R)1/3 与 t 成直线关系,直线通过原点。 反应的表观活化能E较大,为30~85kJ· mol-1 实例:白钨矿的苏打分解: CaWO4(s)+Na2CO3(aq) = CaCO3(s) + Na2WO4(aq)
(3)应用:
2 D2Co 2 t 1 R (1 R ) 2 r0 3
2 3
2 D2C0 a. t 2 r0
项↑,则R↑,故提高反应率的途径为:减
少原料粒度ro,加大溶液浓度,提高温度以加大扩散系数;
b. 求扩散活化能D2。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
控制步骤:外扩散控制 内扩散控制 化学反应控制 任务:找出控制性步骤,有针对地性强化
方法:查明诸控制过程的规律性,与实际对照。
13.2 化学反应控制
1.动力学方程的推导: 设单一致密固体颗粒,表面各处化学活性相同,反应速率:
假设为球体:
微分可得:
dm v kAC n dt 4 3 2 m r A 4r 3
3.问题分析
(1)内扩散控制时的主要特征: 气(液)/固反应在固相为单一
球形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况
2 下,当属内扩散控制,则 1 R (1 R ) 2 / 3 与反应时间t成直线 3
1 / Fp
k 't
对单一致密球体在C0为常数的条件下,化学反应控制时,1-(1-R)1/3 与 t 成直线关系,直线通过原点。 反应的表观活化能E较大,为30~85kJ· mol-1 实例:白钨矿的苏打分解: CaWO4(s)+Na2CO3(aq) = CaCO3(s) + Na2WO4(aq)
(3)应用:
2 D2Co 2 t 1 R (1 R ) 2 r0 3
2 3
2 D2C0 a. t 2 r0
项↑,则R↑,故提高反应率的途径为:减
少原料粒度ro,加大溶液浓度,提高温度以加大扩散系数;
b. 求扩散活化能D2。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
控制步骤:外扩散控制 内扩散控制 化学反应控制 任务:找出控制性步骤,有针对地性强化
方法:查明诸控制过程的规律性,与实际对照。
13.2 化学反应控制
1.动力学方程的推导: 设单一致密固体颗粒,表面各处化学活性相同,反应速率:
假设为球体:
微分可得:
dm v kAC n dt 4 3 2 m r A 4r 3
3.问题分析
(1)内扩散控制时的主要特征: 气(液)/固反应在固相为单一
球形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况
2 下,当属内扩散控制,则 1 R (1 R ) 2 / 3 与反应时间t成直线 3
(5)气固催化反应宏观动力学精品PPT课件
反应速率比极限传质速率大 得多。此时过程成为传质控
制,ces/cb趋近于零,颗粒
外部效率因子也接近于零。
当Da准数愈来愈小时,极限
传质速率远大于极限反应速 率,过程逐渐变为反应控制,
ces/cb趋近于1,颗粒外部效
率因子也接近于1。
Da准数可作为颗粒外部传质 影响程度大小的判据。Da准
数愈大,外部传质过程影响 愈严重。
等温条件下的催化剂颗粒内部传质过程
催化剂颗粒通常是多孔结构 以增大它的内表面积。颗粒的内 表面积远大于其外表面,有时可 达104倍。因此,催化剂颗粒的 内表面是主要的反应表面。
对于气固催化反应,反应物 必需通过催化剂颗粒的内孔边向 内扩散,边进行化学反应;而反 应产物必须由里向外扩散至孔口, 然后进入气流主体。因此,内部 传质过程是传质和反应同时发生 并交互影响的过程。
k Cbn1 De
L VP SP
颗粒体积 颗粒外表面积
对球形颗粒 LVP
4 3
rP3
rP
与 的关系为 L
SP 4rP2 3 3L
内部效率因子
内部效率因子为颗粒实际反应速率与无内扩
散阻力时反应速率的比值,即
2
R
kC
n es
由于颗粒内部具有一定的浓度分布,使得催
化剂内部各处实际反应速率也各不相同,因而颗
( r A ) f(T i,sC i) s f(T b ,C b ) 在实际气固催化反应器中,由于存在热质传递,为
校正由Tb和cb代替Tis和cis计算反应速率而引起的差别,
必需引入校正因子,即反应速率效率因子:
(rA) f(T b,C b) 效率因子反映了内外扩散阻力的影响,若无内外扩 散阻力,则效率因子为1。
制,ces/cb趋近于零,颗粒
外部效率因子也接近于零。
当Da准数愈来愈小时,极限
传质速率远大于极限反应速 率,过程逐渐变为反应控制,
ces/cb趋近于1,颗粒外部效
率因子也接近于1。
Da准数可作为颗粒外部传质 影响程度大小的判据。Da准
数愈大,外部传质过程影响 愈严重。
等温条件下的催化剂颗粒内部传质过程
催化剂颗粒通常是多孔结构 以增大它的内表面积。颗粒的内 表面积远大于其外表面,有时可 达104倍。因此,催化剂颗粒的 内表面是主要的反应表面。
对于气固催化反应,反应物 必需通过催化剂颗粒的内孔边向 内扩散,边进行化学反应;而反 应产物必须由里向外扩散至孔口, 然后进入气流主体。因此,内部 传质过程是传质和反应同时发生 并交互影响的过程。
k Cbn1 De
L VP SP
颗粒体积 颗粒外表面积
对球形颗粒 LVP
4 3
rP3
rP
与 的关系为 L
SP 4rP2 3 3L
内部效率因子
内部效率因子为颗粒实际反应速率与无内扩
散阻力时反应速率的比值,即
2
R
kC
n es
由于颗粒内部具有一定的浓度分布,使得催
化剂内部各处实际反应速率也各不相同,因而颗
( r A ) f(T i,sC i) s f(T b ,C b ) 在实际气固催化反应器中,由于存在热质传递,为
校正由Tb和cb代替Tis和cis计算反应速率而引起的差别,
必需引入校正因子,即反应速率效率因子:
(rA) f(T b,C b) 效率因子反映了内外扩散阻力的影响,若无内外扩 散阻力,则效率因子为1。
气-固相反应动力学.
影响化学脱附速率大小的因素有以下两个。
① 化学脱附需要脱附活化能 Ed,只有能量高于Ed的吸附态 分子才能脱附,它们所占百分数为exp(-Ed/RT )。
② 化学脱附速率与表面覆盖率θA有关,用f ′ (θA )表示, θA 越大,脱附速率越大。
rd f ' (A ) exp(Ed / RT ) rd k ' f ' (A ) exp(Ed / RT )
第二章 气-固相催化反应本征及宏观动力学
第一节 催化及固体催化剂
一、催化反应
1.均相催化反应,反应所在场所是反应空间。 催化反应
2.非均相催化反应,反应场所在催化剂表面。
二、固体催化剂
固体催化剂主要是多孔材料,或由多孔材料为载体与担 载在载体表面的活性物质所组成。
工业固体催化剂是由反应和反应器所决定的具有一定形 状的规则颗粒(直径约2 ~ 10 mm) 。催化剂颗粒内有许多孔 径大小不同、分布曲折的孔道,催化剂的活性位置绝对地分 布在催化剂颗粒内的孔道侧壁上(内表面上)。
气固相催化反应一般经历以下三个基元步骤:1. 反应物气 体分子在催化剂活性位置上吸附; 2. 吸附态的反应物气体分 子在催化剂表面上反应,生成吸附态的产物分子; 3. 吸附态 的产物分子在催化剂表面上脱附。 描述以上吸附、反应、脱 附三个基元步骤的动力学称为本征动力学。
吸附
物理吸附 分子间力,无选择性,单层或多层,吸附 热小(约2 ~ 20kJ/mol),吸、脱附容易, 速率较快,随温度升高,吸附速率减小。
bi pi* bB pB* bL pL*
bM pM*
因A吸附为决速步骤,其它步骤速率很快,近似达到平衡, 除pA之外,其它组分的分压均用平衡分压代替, pi* ≈ pi 。
《气固相反应动力学》课件
《气固相反应动力学》ppt课件
目录
• 气固相反应动力学概述 • 气固相反应动力学的基本原理 • 气固相反应的动力学实验研究 • 气固相反应的动力学模拟研究 • 气固相反应动力学的应用研究 • 总结与展望
01
气固相反应动力学概述
定义与特点
定义
气固相反应动力学是研究气体与固体 物质之间反应速率和反应机制的学科 。
科学研究
气固相反应动力学是化学反应工 程和物理化学等领域的重要分支 ,对于深入理解反应机制和探索 新反应路径具有重要意义。
气固相反应动力学的发展历程
早期研究
早在19世纪,科学家就开始研究气固相反应,初期主要关注燃烧和氧 化等简单反应。
理论模型建立
随着实验技术的发展,20世纪初开始建立气固相反应的动力学模型, 如扩散控制模型和化学反应控制模型等。
工业粉尘治理
通过气固相反应技术对工业生产过程中产生的粉尘进行控制和处理 ,减少空气污染。
土壤修复
利用气固相反应技术对受污染的土壤进行修复,如通过化学氧化还原 反应降低土壤中的重金属含量。
在新材料研发中的应用
纳米材料制备
气固相反应技术可用于制备纳米材料,如纳米碳管、纳米氧化物 等,具有广泛的应用前景。
实验技术进步
20世纪中叶以后,实验技术的进步为气固相反应动力学研究提供了更 多手段,如激光诱导荧光、质谱仪等技术的应用。
当前研究热点
目前,气固相反应动力学的研究重点包括新型催化剂的设计与制备、 反应机理的深入研究以及计算机模拟在动力学研究中的应用等。
02
气固相反应动力学的基本 原理
化学反应动力学基础
跨学科合作
气固相反应动力学涉及多个学科领域,需要加强跨学科合 作,促进多学科交叉融合,共同推动气固相反应动力学的 发展。
目录
• 气固相反应动力学概述 • 气固相反应动力学的基本原理 • 气固相反应的动力学实验研究 • 气固相反应的动力学模拟研究 • 气固相反应动力学的应用研究 • 总结与展望
01
气固相反应动力学概述
定义与特点
定义
气固相反应动力学是研究气体与固体 物质之间反应速率和反应机制的学科 。
科学研究
气固相反应动力学是化学反应工 程和物理化学等领域的重要分支 ,对于深入理解反应机制和探索 新反应路径具有重要意义。
气固相反应动力学的发展历程
早期研究
早在19世纪,科学家就开始研究气固相反应,初期主要关注燃烧和氧 化等简单反应。
理论模型建立
随着实验技术的发展,20世纪初开始建立气固相反应的动力学模型, 如扩散控制模型和化学反应控制模型等。
工业粉尘治理
通过气固相反应技术对工业生产过程中产生的粉尘进行控制和处理 ,减少空气污染。
土壤修复
利用气固相反应技术对受污染的土壤进行修复,如通过化学氧化还原 反应降低土壤中的重金属含量。
在新材料研发中的应用
纳米材料制备
气固相反应技术可用于制备纳米材料,如纳米碳管、纳米氧化物 等,具有广泛的应用前景。
实验技术进步
20世纪中叶以后,实验技术的进步为气固相反应动力学研究提供了更 多手段,如激光诱导荧光、质谱仪等技术的应用。
当前研究热点
目前,气固相反应动力学的研究重点包括新型催化剂的设计与制备、 反应机理的深入研究以及计算机模拟在动力学研究中的应用等。
02
气固相反应动力学的基本 原理
化学反应动力学基础
跨学科合作
气固相反应动力学涉及多个学科领域,需要加强跨学科合 作,促进多学科交叉融合,共同推动气固相反应动力学的 发展。
气-固相反应实例ppt课件
=
1
kr¢ea A(1-a)2
c1
=
n0S
da
dt
da
dt
=
1
kr¢ea A(1-a)2
c0 (1 - a )
=
krea (1- a)3/2
一维界面化学反应控制
若反应物片状颗粒(反应过程中反应面积不变):
a =1- l
l0
零级反应:
da = - dl
dt dt
- dns dt
= kr¢ea A0c0
102
3
100
98
96
94 2
92
90
88
86
84
1
82
80
78
76
74
0
72
70 300 400 500 600 700 800 900 1000
Temperature/K
TG(%) DSC( mW/mg)
La(OH)3的TG-DSC曲线 (20K/min)
300 400 500 600 700 800 900 1000 4
1.0
10K/min
15K/min
0.8
20K/min
0.6
1.0
10K/min
0.8
15K/min
20K/min
0.6
0.4
0.4
0.2
0.2
0.0
0.0
540 560 580 600 620 640 660 680 700
Temperature/K
750 760 770 780 790 800 810 820 830 840 850
非等温固相反应动力学分析
将dT/dt=β代入:
第五章 气-固相催化反应动力学
注意:覆盖率和空位率都是相对值,只是个过渡变量。
5.2.2 吸附等温方程 思考1:吸附等温方程?
第五章 气-固相催化反应动力学 5.1 气-固相催化反应 5.2 气-固相催化反应本征动力学 5.3 气-固相催化反应宏观动力学
5.1 气-固相催化反应
5.1.1 气-固相催化反应概述 1、气-固相催化反应——非均相反应——发生在气-固界面。
2、气-固相催化反应的特征
(1)在操作条件下反应物和产物都为气体;
图例 外层气膜 内孔结构 向内传递 向外传递
气 流 主 体
反应物 生成物
气 膜 界 面
反应物 生成物
颗 粒 外 表 面
孔 反应物 道
内 生成物 表
面
气-固相催化反应过程基本概念
● 气流主体——对流过固体催化剂颗粒的气体物料的统称。 ● 气 膜——气流主体流过固体颗粒催化剂外表面所形成的
层流边界层。 ● 外扩散过程——反应组分在气膜中的扩散过程。
(2)反应主要在固体颗粒催化剂内表面上进行;
ri
1 S
dni dt
或ri
1 W
dni dt
(3)反应速率与固体颗粒催化剂内的扩散速率有关。
5.1.2 固体催化剂的表面积、外表面积和内表面积
S108型二氧化硫氧 A202型氨合成催 化制硫酸催化剂 化剂
C307型中低压合 成甲醇催化剂
T-504型常温COS 水解催化剂
① ②
Hale Waihona Puke B① ②③ M
① A A B B
② A B L M
A+B
L+M
气-固相催化反应本证动力学 过程示意图
③ L L M M
5.2.1 本证动力学过程速率方程
5.2.2 吸附等温方程 思考1:吸附等温方程?
第五章 气-固相催化反应动力学 5.1 气-固相催化反应 5.2 气-固相催化反应本征动力学 5.3 气-固相催化反应宏观动力学
5.1 气-固相催化反应
5.1.1 气-固相催化反应概述 1、气-固相催化反应——非均相反应——发生在气-固界面。
2、气-固相催化反应的特征
(1)在操作条件下反应物和产物都为气体;
图例 外层气膜 内孔结构 向内传递 向外传递
气 流 主 体
反应物 生成物
气 膜 界 面
反应物 生成物
颗 粒 外 表 面
孔 反应物 道
内 生成物 表
面
气-固相催化反应过程基本概念
● 气流主体——对流过固体催化剂颗粒的气体物料的统称。 ● 气 膜——气流主体流过固体颗粒催化剂外表面所形成的
层流边界层。 ● 外扩散过程——反应组分在气膜中的扩散过程。
(2)反应主要在固体颗粒催化剂内表面上进行;
ri
1 S
dni dt
或ri
1 W
dni dt
(3)反应速率与固体颗粒催化剂内的扩散速率有关。
5.1.2 固体催化剂的表面积、外表面积和内表面积
S108型二氧化硫氧 A202型氨合成催 化制硫酸催化剂 化剂
C307型中低压合 成甲醇催化剂
T-504型常温COS 水解催化剂
① ②
Hale Waihona Puke B① ②③ M
① A A B B
② A B L M
A+B
L+M
气-固相催化反应本证动力学 过程示意图
③ L L M M
5.2.1 本证动力学过程速率方程
六章节冶金过程动力学应用ppt课件
(界面反应控速)
42
一般情况
如果串联过程 I, II, III, IV, V阻力相差不大, 必须考虑各个 阶段。
稳态 : 过程 N I N IIN II I N IVN VNCo. ns
43
气体边界层内传质
过程 I: 过程 V:
NI kdA4r02(cA,b cA,s) NV kdG4r02(cG,s cG,b)
式中 nAA通过产物层物质量;
DeA 有效扩散系数。
27
有效扩散系数
Effective diffusion coefficient
DeA =
Dp
式中 p产物层的气孔率; 曲折度系数。
28
稳态扩散
4ri2D eAd diA crCo.n sddtA nt
cAi d
cAs
cA
Con.rsi dt ir 4πDeff r0 ri2
dt
b dt
4πrb i2 Bd di r t4πD ef(fr0r0 riri)cAb
31
积分式
t Br02 [13(ri)22(ri)3]
6be D fcfAb r0
r0
或
t6 bB er D 0 fc 2A f [b 13 (1X B )2/32 (1X B )]
XB =1,完全反应时间tf :
气 体 边 界
生 成 物 层
反 应 界 面
层
MCO3=MO+CO2
CO 反
应
CO2
界
面
产物气体
气 体 边 界 层
反 气 生应 体 成界 边 物面 界层 层
C+O2=CO2
MO+CO=M+CO2
第四部分气固多相催化反应动力学基础教学课件PPT.ppt
表面反应活化能
A是A的吸附平衡常数 A0ex pH (/R)T
吸附热
表观活化能 EappEH 补偿效应:在一系列催化剂上进行某一反应,或在不同条件下 处理的同种催化剂上进行一系列反应,将得到的k用Arrhenius方 程处理,有时出现活化能E和指前因子A同时增加或同时减小的 情况,这样是其中一个的作用抵消了另一个的作用,E和A这种 同时同方向的变化称为补偿效应。
第四部分气固多相催化反应动力学基础教学课件
一、基本概念
1.1 反应速率
1、反应速率定义:反应速率表示反应的快慢,通常定义为参
与反应的某种反应物或产物i的量随反应时间的变化率,
ri
1
dni dt
是反应空间。对于均相催化反应,是反应体系的体积;对
于固体催化剂的气度多相催化反应,可以是催化剂的体积V、
0
1
1
A PA * B PB
r kPAkAPA* 1APA*BPB
总反应平衡常数K = PB/PA*,A = k+/k-
最后有
r
k (PA
PB K
)
1 k ' PB
其中
k'
A
K
B
吸附-化学平衡:由吸附平衡和表面化学反应平衡组成的总平 衡。
3、无速控步骤时的速率方程-稳定态处理法 处理模型:在催化反应的连续系列中,如各步骤速率相近和远离 平衡的情况下,没有速控步骤。 稳态近似:假定个步骤速率相近,从而中间物种浓度在较长时间 内恒定,即:
总反应速率 rkA*(1A P A kA B P P A BC P C )2
(2)双分子反应 Langmuir-Hinshelwood机理:表面反应发生在两个吸附物种 间,且此步骤为速控步骤。 例1、设反应A + B C按以下机理进行
A是A的吸附平衡常数 A0ex pH (/R)T
吸附热
表观活化能 EappEH 补偿效应:在一系列催化剂上进行某一反应,或在不同条件下 处理的同种催化剂上进行一系列反应,将得到的k用Arrhenius方 程处理,有时出现活化能E和指前因子A同时增加或同时减小的 情况,这样是其中一个的作用抵消了另一个的作用,E和A这种 同时同方向的变化称为补偿效应。
第四部分气固多相催化反应动力学基础教学课件
一、基本概念
1.1 反应速率
1、反应速率定义:反应速率表示反应的快慢,通常定义为参
与反应的某种反应物或产物i的量随反应时间的变化率,
ri
1
dni dt
是反应空间。对于均相催化反应,是反应体系的体积;对
于固体催化剂的气度多相催化反应,可以是催化剂的体积V、
0
1
1
A PA * B PB
r kPAkAPA* 1APA*BPB
总反应平衡常数K = PB/PA*,A = k+/k-
最后有
r
k (PA
PB K
)
1 k ' PB
其中
k'
A
K
B
吸附-化学平衡:由吸附平衡和表面化学反应平衡组成的总平 衡。
3、无速控步骤时的速率方程-稳定态处理法 处理模型:在催化反应的连续系列中,如各步骤速率相近和远离 平衡的情况下,没有速控步骤。 稳态近似:假定个步骤速率相近,从而中间物种浓度在较长时间 内恒定,即:
总反应速率 rkA*(1A P A kA B P P A BC P C )2
(2)双分子反应 Langmuir-Hinshelwood机理:表面反应发生在两个吸附物种 间,且此步骤为速控步骤。 例1、设反应A + B C按以下机理进行
气固反应动力学
A(g) + bB(s) = gG(g) + sS(s)
(1)
如铁矿石被CO或H2气还原
USTB
冶金与生态工程学院
August, 2006
气-固反应动力学
当无气体产物生成时(如金属氧化) 当无固相生成时(如C燃烧反应) 当无气体反应物时(如碳酸盐分解)
A(g) + bB(s) = sS(s) A(g) + bB(s) = gG(g) bB(s) = gG(g) + sS(s)
各步骤的速率相等,且=总反应速率
此时,各步骤的阻力都要考虑。
以上分析实际上适用于几乎所有的多相反应
USTB
冶金与生态工程学院
August, 2006
气-固反应动力学
1.2气/固反应的未反应核模型
如式(1)表示的反应,假设固体产物层是多孔的,则界面化学反应发 生在多孔固体产物层和未反应的固体反应核之间。随着反应的进行, 未反应的固体反应核逐渐缩小。基于这一考虑建立起来的预测气/固 反应速率的模型称为缩小的未反应核模型,或简称为未反应核模型。 大量的实验结果证明了这个模型可广泛应用于如矿石的还原、金属及 合金的氧化、碳酸盐的分解、硫化物焙烧等气/固反应。
4πDeff
(
r0ri r0 − ri
)
•
(cAb
−
cAi )
=
4πri2kreacAi
cAi
=
Deff r0cAb
krea (r0 ri
−
r2) + i
r0 Deff
rC
= − dnA dt
= 4πri2krea
Deff cAbr0 krea (r0ri − ri2 ) + r0 Deff
冶金原理气固反应动力学讲解
(2)推导过程思路:
对反应 aA(s) bB(g,l) eE(s) dD(g,l) 而言,由于内扩散控制
故:单位时间A的反应量 dm 单位时间B的扩散量 J
dt
dm dt
4r12
dr1 dt
根据菲克第一定律求出在Cs = C0时
J
4 D2
r0r1 r0 r1
C0
两式相等,解方程得
(式13-12b)
2.问题分析
(1)方程式 1 (1 R)1的/3 适用k'范t 围
任何真理都有其一定的适用范围 从推导过程的“假设”知其适用范围为:
反应固相为单一、致密球体,其各方向上的化学性质一致; 反应剂浓度C0保持不变。 对非球体:
1 (1 R)1/Fp k't
三维尺寸不等时Fp 的取值介于 2和3之间
1-(1-R)1/3 1-(1-R)1/3
0
t
t
(3)应用
a. 指明提高反应率的途径
1 (1 R)1/3 kC0n t
r0
式中 kC0n t 项↑则(1- R)1/3↓ R↑
r0
故 时间t↑、C0↑、r0↓、提高温度使k↑,都有利于提高R
b. 利用不同温度下k值求反应的表观活化能
根据Arrhenius公式: lnk E B RT
形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况下,
当属内扩散控制,则 直线通过原点。
1 2 R (1 R)与2/3反应时间t成直线关系, 3
表观活化能小,8~30kJ·mol-1
1-2/3R-(1-R)2/3
0
t
实例:黄铜矿的硫酸高铁浸出过程:
反应 2Fe2(SO4)3(aq) + CuFeS2(s) = CuSO4(aq) +5FeSO4(aq) + 2S(s)
对反应 aA(s) bB(g,l) eE(s) dD(g,l) 而言,由于内扩散控制
故:单位时间A的反应量 dm 单位时间B的扩散量 J
dt
dm dt
4r12
dr1 dt
根据菲克第一定律求出在Cs = C0时
J
4 D2
r0r1 r0 r1
C0
两式相等,解方程得
(式13-12b)
2.问题分析
(1)方程式 1 (1 R)1的/3 适用k'范t 围
任何真理都有其一定的适用范围 从推导过程的“假设”知其适用范围为:
反应固相为单一、致密球体,其各方向上的化学性质一致; 反应剂浓度C0保持不变。 对非球体:
1 (1 R)1/Fp k't
三维尺寸不等时Fp 的取值介于 2和3之间
1-(1-R)1/3 1-(1-R)1/3
0
t
t
(3)应用
a. 指明提高反应率的途径
1 (1 R)1/3 kC0n t
r0
式中 kC0n t 项↑则(1- R)1/3↓ R↑
r0
故 时间t↑、C0↑、r0↓、提高温度使k↑,都有利于提高R
b. 利用不同温度下k值求反应的表观活化能
根据Arrhenius公式: lnk E B RT
形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况下,
当属内扩散控制,则 直线通过原点。
1 2 R (1 R)与2/3反应时间t成直线关系, 3
表观活化能小,8~30kJ·mol-1
1-2/3R-(1-R)2/3
0
t
实例:黄铜矿的硫酸高铁浸出过程:
反应 2Fe2(SO4)3(aq) + CuFeS2(s) = CuSO4(aq) +5FeSO4(aq) + 2S(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)推导过程思路:
对反应
aA( s ) bB( g ,l ) eE( s ) dD( g ,l ) 而言,由于内扩散控制
dm J 单位时间B的扩散量 故:单位时间A的反应量 dt dm dr1 2 4r1 dt dt
根据菲克第一定律求出在Cs = C0时
r0 r1 J 4 D2 C0 r0 r1
aA( s ) bB( g ,l ) eE( s ) dD( g ,l )
A
B
E D
步骤1:B(g,l)向E(s)表面扩散,外扩散;
步骤2:B(g,l)通过E(s)向反应界面的扩散,内扩散;
步骤3:B在反应界面上与A发生化学反应; 步骤4:生成物D通过E(s)向边界层扩散;
步骤5:生成物D通过边界层向外扩散,外扩散。Βιβλιοθήκη 1-(1-R)1/30
t
1-(1-R)1/3
t
(3)应用
a. 指明提高反应率的途径
n kC 0 式中 t 项↑则(1- R)1/3↓ r0
1 (1 R)1/ 3
R↑
kC0n t r0
故 时间t↑、C0↑、r0↓、提高温度使k↑,都有利于提高R
b. 利用不同温度下k值求反应的表观活化能 根据Arrhenius公式: ln k
通过几何运算求出r,r0与反应分数R的关系:
r r0 (1 R)1/ 3
代入(式13-10)得:
(式13-11)
1 (1 R)
合并常数
1/ 3
kC t r0
n 0
(式13-12a)
1 (1 R)
1/ 3
k't
(式13-12b)
2.问题分析
(1)方程式
1 (1 R)
两式相等,解方程得
1 2 1 2 1 r13 t r1 r0 2 6 3 r0 D2Co
根据(式13-11) r = r0(1-R)1/3
(式13-18)
将r1,r0转化为反应分数R,得
2 D2Co 2 t 1 R (1 R ) 2 r0 3
简化
2 3
2 2/3 k t 1 R (1 R ) 3
Co:反应剂的整体浓度
r0
·
·
r
E A
r1
Cs:矿粒表面反应剂浓度
C’s:反应区反应剂浓度 内扩散控制时
2
Cs 0
2.方程式的推导 (1)简化条件:a. 致密单一、球形颗粒;b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
2.方程式的推导
(1)简化条件:a. 致密单一、球形颗粒;b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
第十三章 冶金过程的气(液)/固相反应动力学
13.1 气(液)/固多相反应过程的机理(收缩核模型) 13.2 化学反应控制 13.3 内扩散控制 13.4 外扩散控制 13.5 混合控制 13.6 影响气(液)/固反应速率的因素 13.7 气(液)/固反应的强化
13.1 气(液)/固多相反应过程的机理(收缩核模型)
dm dr 2 4r dt dt
(式13-7)
(式13-8)
(式13-9)
dt 将式13-8、式13-9代入式13-7,并整理得: dr 设C为常数,C=C0积分,整理得:
kC n
r0 r
n kC0
t
(式13-10)
r0 r
n kC0
t
(式13-10)
3.问题分析
(1)内扩散控制时的主要特征: 气(液)/固反应在固相为单一
球形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况
2 下,当属内扩散控制,则 1 R (1 R ) 2 / 3 与反应时间t成直线 3
关系,直线通过原点。 表观活化能小,8~30kJ· mol-1
1-2/3R-(1-R)2/3 0
(2)化学反应控制的主要特征为:
1 / Fp
k 't
对单一致密球体在C0为常数的条件下,化学反应控制时,1-(1-R)1/3 与 t 成直线关系,直线通过原点。 反应的表观活化能E较大,为30~85kJ· mol-1 实例:白钨矿的苏打分解: CaWO4(s)+Na2CO3(aq) = CaCO3(s) + Na2WO4(aq)
E B RT
lnk
实例: Na2CO3(aq) + CaWO4(s) = Na2WO4(aq) + CaCO3(s)
E= 69.9kJ· mol-1
1/T×103/K-1
13.3 内扩散控制
1.模型
Cs
Cs
aA( s ) bB( g ,l ) eE( s ) dD( g ,l )
C0
t
实例:黄铜矿的硫酸高铁浸出过程:
反应 2Fe2(SO4)3(aq) + CuFeS2(s) = CuSO4(aq) +5FeSO4(aq) + 2S(s)
R
R
时间/h
(2)适用范围:
a. 致密单一、球形颗粒; b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
1/ 3
k't
的适用范围
任何真理都有其一定的适用范围
从推导过程的“假设”知其适用范围为: 反应固相为单一、致密球体,其各方向上的化学性质一致; 反应剂浓度C0保持不变。 对非球体:
1 (1 R )
1 / Fp
k 't
三维尺寸不等时Fp 的取值介于 2和3之间
1 (1 R )
控制步骤:外扩散控制 内扩散控制 化学反应控制 任务:找出控制性步骤,有针对地性强化
方法:查明诸控制过程的规律性,与实际对照。
13.2 化学反应控制
1.动力学方程的推导: 设单一致密固体颗粒,表面各处化学活性相同,反应速率:
假设为球体:
微分可得:
dm v kAC n dt 4 3 2 m r A 4r 3
(3)应用:
2 D2Co 2 t 1 R (1 R ) 2 r0 3
2 3
2 D2C0 a. t 2 r0
项↑,则R↑,故提高反应率的途径为:减
少原料粒度ro,加大溶液浓度,提高温度以加大扩散系数;
b. 求扩散活化能D2。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
对反应
aA( s ) bB( g ,l ) eE( s ) dD( g ,l ) 而言,由于内扩散控制
dm J 单位时间B的扩散量 故:单位时间A的反应量 dt dm dr1 2 4r1 dt dt
根据菲克第一定律求出在Cs = C0时
r0 r1 J 4 D2 C0 r0 r1
aA( s ) bB( g ,l ) eE( s ) dD( g ,l )
A
B
E D
步骤1:B(g,l)向E(s)表面扩散,外扩散;
步骤2:B(g,l)通过E(s)向反应界面的扩散,内扩散;
步骤3:B在反应界面上与A发生化学反应; 步骤4:生成物D通过E(s)向边界层扩散;
步骤5:生成物D通过边界层向外扩散,外扩散。Βιβλιοθήκη 1-(1-R)1/30
t
1-(1-R)1/3
t
(3)应用
a. 指明提高反应率的途径
n kC 0 式中 t 项↑则(1- R)1/3↓ r0
1 (1 R)1/ 3
R↑
kC0n t r0
故 时间t↑、C0↑、r0↓、提高温度使k↑,都有利于提高R
b. 利用不同温度下k值求反应的表观活化能 根据Arrhenius公式: ln k
通过几何运算求出r,r0与反应分数R的关系:
r r0 (1 R)1/ 3
代入(式13-10)得:
(式13-11)
1 (1 R)
合并常数
1/ 3
kC t r0
n 0
(式13-12a)
1 (1 R)
1/ 3
k't
(式13-12b)
2.问题分析
(1)方程式
1 (1 R)
两式相等,解方程得
1 2 1 2 1 r13 t r1 r0 2 6 3 r0 D2Co
根据(式13-11) r = r0(1-R)1/3
(式13-18)
将r1,r0转化为反应分数R,得
2 D2Co 2 t 1 R (1 R ) 2 r0 3
简化
2 3
2 2/3 k t 1 R (1 R ) 3
Co:反应剂的整体浓度
r0
·
·
r
E A
r1
Cs:矿粒表面反应剂浓度
C’s:反应区反应剂浓度 内扩散控制时
2
Cs 0
2.方程式的推导 (1)简化条件:a. 致密单一、球形颗粒;b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
2.方程式的推导
(1)简化条件:a. 致密单一、球形颗粒;b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
第十三章 冶金过程的气(液)/固相反应动力学
13.1 气(液)/固多相反应过程的机理(收缩核模型) 13.2 化学反应控制 13.3 内扩散控制 13.4 外扩散控制 13.5 混合控制 13.6 影响气(液)/固反应速率的因素 13.7 气(液)/固反应的强化
13.1 气(液)/固多相反应过程的机理(收缩核模型)
dm dr 2 4r dt dt
(式13-7)
(式13-8)
(式13-9)
dt 将式13-8、式13-9代入式13-7,并整理得: dr 设C为常数,C=C0积分,整理得:
kC n
r0 r
n kC0
t
(式13-10)
r0 r
n kC0
t
(式13-10)
3.问题分析
(1)内扩散控制时的主要特征: 气(液)/固反应在固相为单一
球形的致密颗粒,反应剂浓度不变、反应前后颗粒直径不变的情况
2 下,当属内扩散控制,则 1 R (1 R ) 2 / 3 与反应时间t成直线 3
关系,直线通过原点。 表观活化能小,8~30kJ· mol-1
1-2/3R-(1-R)2/3 0
(2)化学反应控制的主要特征为:
1 / Fp
k 't
对单一致密球体在C0为常数的条件下,化学反应控制时,1-(1-R)1/3 与 t 成直线关系,直线通过原点。 反应的表观活化能E较大,为30~85kJ· mol-1 实例:白钨矿的苏打分解: CaWO4(s)+Na2CO3(aq) = CaCO3(s) + Na2WO4(aq)
E B RT
lnk
实例: Na2CO3(aq) + CaWO4(s) = Na2WO4(aq) + CaCO3(s)
E= 69.9kJ· mol-1
1/T×103/K-1
13.3 内扩散控制
1.模型
Cs
Cs
aA( s ) bB( g ,l ) eE( s ) dD( g ,l )
C0
t
实例:黄铜矿的硫酸高铁浸出过程:
反应 2Fe2(SO4)3(aq) + CuFeS2(s) = CuSO4(aq) +5FeSO4(aq) + 2S(s)
R
R
时间/h
(2)适用范围:
a. 致密单一、球形颗粒; b. 反应剂浓度C0不变; c. 反应过程中未反应核减小、产物层增大、但颗粒大小不变。
1/ 3
k't
的适用范围
任何真理都有其一定的适用范围
从推导过程的“假设”知其适用范围为: 反应固相为单一、致密球体,其各方向上的化学性质一致; 反应剂浓度C0保持不变。 对非球体:
1 (1 R )
1 / Fp
k 't
三维尺寸不等时Fp 的取值介于 2和3之间
1 (1 R )
控制步骤:外扩散控制 内扩散控制 化学反应控制 任务:找出控制性步骤,有针对地性强化
方法:查明诸控制过程的规律性,与实际对照。
13.2 化学反应控制
1.动力学方程的推导: 设单一致密固体颗粒,表面各处化学活性相同,反应速率:
假设为球体:
微分可得:
dm v kAC n dt 4 3 2 m r A 4r 3
(3)应用:
2 D2Co 2 t 1 R (1 R ) 2 r0 3
2 3
2 D2C0 a. t 2 r0
项↑,则R↑,故提高反应率的途径为:减
少原料粒度ro,加大溶液浓度,提高温度以加大扩散系数;
b. 求扩散活化能D2。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。